1
|
Lauten TH, Reed EC, Natour T, Pitts LJ, Jojo CN, Griffin BL, Case AJ. Beta Adrenergic Signaling as a Therapeutic Target for Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647384. [PMID: 40291744 PMCID: PMC12026814 DOI: 10.1101/2025.04.05.647384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background We recently identified a molecular mechanism involving beta-adrenergic 1 and 2 receptors (β1/2) in the development of T H 17 lymphocytes. Pharmacological and genetic inhibition of these receptors in combination, but not separately, impaired the ability of T-lymphocytes to produce proinflammatory interleukin 17A (IL-17A) and instead promoted the production of protective T reg cells that secrete anti-inflammatory interleukin-10 (IL-10). However, it remained unclear whether this regulatory mechanism could serve as a novel therapeutic approach for autoimmune disorders mediated by IL-17A-producing T-lymphocytes. Methods Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system (CNS) characterized by an autoimmune response where both T-lymphocytes and IL-17A are implicated in the pathogenesis of the disease. Using an animal model of MS, termed experimental autoimmune encephalomyelitis (EAE), we addressed the impact of beta adrenergic receptor blockade (genetically and pharmacologically) on EAE disease progression, severity, and T H 17/T reg balance. Results The genetic deletion β1/2 receptors, either systemically or specifically in T-lymphocytes, significantly attenuated EAE disease severity and animal weight loss. Pharmacological blockade of β1/2 receptors with either propranolol (lipophilic) or nadolol (aqueous) limited disease severity and weight loss similar to the genetic models. All models showed degrees of shifted T H 17/T reg balance (suppressing T H 17 and promoting T reg ) and decreased T-lymphocyte IL-17A production. Importantly, pharmacological blockade was initiated at the time of symptom development, which mimics the typical time where diagnosis of disease would occur. Conclusions Our data depict a novel role for β1/2 adrenergic signaling in the control of T H 17/T reg cells in EAE. These findings provide new insight into the disease progression as well as provide a potential new pharmacological therapy for IL-17A-related autoimmune diseases.
Collapse
|
2
|
Raihane AS, Armstrong DG, Gillenwater TJ, Galiano RD. Advancing Therapeutic Solutions for Burn Wounds: Potential Use of Noninvasive Ultrasound-Driven Splenic Stimulation. Adv Wound Care (New Rochelle) 2025. [PMID: 40147451 DOI: 10.1089/wound.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Significance: Burn wound injuries are a global health challenge, affecting millions annually and resulting in significant morbidity, mortality, and economic burden. The urgent need for accessible and cost-effective therapeutic alternatives, especially for underserved populations, has driven interest in novel approaches such as noninvasive splenic stimulation using pulsed-focused ultrasound (pFUS). This technique targets systemic inflammation, a key factor in delayed wound healing, offering a potential shift in burn care management. Recent Advances: Preclinical studies have shown that pFUS applied to the spleen can accelerate wound healing by activating the cholinergic anti-inflammatory pathway, promoting pro-angiogenic and anti-inflammatory responses. While current treatments-including biologics, antioxidants, and growth factors-have limitations, pFUS presents a noninvasive alternative. One interventional study and ongoing clinical trials are now investigating its application in burn wound care, marking an important step toward clinical translation. Critical Issues: Despite encouraging results, research on splenic stimulation for wound healing remains limited. The small number of studies highlights the need for further investigation into the underlying mechanisms, optimal treatment parameters, and potential risks. Additionally, the scalability and cost-effectiveness of pFUS in diverse clinical settings require thorough evaluation. Future Directions: Ongoing clinical trials will provide critical data on the efficacy and safety of splenic pFUS in burn patients. Future research should focus on expanding clinical studies, refining stimulation protocols, and exploring its broader application in tissue repair. If validated, this approach could offer a cost-effective, noninvasive treatment, particularly valuable in socioeconomically challenged regions.
Collapse
Affiliation(s)
- Ahmed Sami Raihane
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - T Justin Gillenwater
- Division of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California, USA
| | - Robert D Galiano
- Division of Plastic Surgery, Department of Surgery, Northwestern Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kruchinova S, Gendugova M, Namitokov A, Sokolskaya M, Gilevich I, Tatarintseva Z, Karibova M, Danilov V, Simakin N, Shvartz E, Kosmacheva E, Shvartz V. Low-Frequency Electrical Stimulation of the Auricular Branch of the Vagus Nerve in Patients with ST-Elevation Myocardial Infarction: A Randomized Clinical Trial. J Clin Med 2025; 14:1866. [PMID: 40142674 PMCID: PMC11943318 DOI: 10.3390/jcm14061866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Despite the vast evidence of the beneficial effect of vagus nerve stimulation on the course of myocardial infarction confirmed in studies using animal models, the introduction of this method into actual clinical practice remains uncommon. Objective: The objective of our study was to evaluate the effect of transcutaneous vagus nerve stimulation (tVNS) on in-hospital and long-term outcomes for patients with ST-elevation myocardial infarction. Materials and Methods: A blind, randomized, placebo-controlled clinical trial was conducted. The participants were randomly split into two groups. The Active tVNS group was subjected to stimulation of the tragus containing the auricular branch of the vagus nerve. The Sham tVNS group underwent stimulation of the lobule. Stimulation was performed immediately on admission before the start of the percutaneous coronary intervention (PCI). Then, tVNS continued throughout the entire PCI procedure and 30 min after its completion. The primary endpoints were hospital mortality and 12-month mortality. The secondary endpoints were in-hospital and remote non-lethal cardiovascular events. The combined endpoint consisted of major adverse cardiovascular events (MACEs)-recurrent myocardial infarction, stroke/TIA, and overall mortality. Results: A total of 110 patients were randomized into the Active tVNS group (n = 55) and the Sham tVNS group (n = 55). The incidences of hospital mortality, cardiogenic shock, and AV block 3 were statistically less common in the Active tVNS group than in the Sham tVNS group (p = 0.024*, p = 0.044*, and p = 0.013*, respectively). In the long-term period, no statistical differences were found in the studied outcomes obtained following the construction of Kaplan-Meyer survival curves. When comparing groups by total mortality, taking into account hospital mortality, we observed a tendency for the survival curves to diverge (Logrank test, p = 0.066). Statistical significance was revealed by the composite endpoint, taking into account hospital events (Logrank test, p = 0.0016*). Conclusions: tVNS significantly reduced hospital mortality (p = 0.024*), the level of markers of myocardial damage, and the frequency of severe cardiac arrhythmias in patients with acute myocardial infarction. In the long term, the prognostic value of tVNS was revealed by the composite endpoint major adverse cardiovascular events. Further studies with an expanded sample are needed for a more detailed verification of the data obtained to confirm the effectiveness of tVNS and allow an in-depth analysis of the safety and feasibility of its use in routine clinical practice. This clinical trial is registered with ClinicalTrials database under a unique identifier: NCT05992259.
Collapse
Affiliation(s)
- Sofia Kruchinova
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Milana Gendugova
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Alim Namitokov
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Maria Sokolskaya
- Bakoulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - Irina Gilevich
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
| | - Zoya Tatarintseva
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
| | - Maria Karibova
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Vasiliy Danilov
- Autonomous Non-Profit Organization Sports School “Become a Champion”, 350063 Krasnodar, Russia
| | - Nikita Simakin
- Cardiology Department, Novorossiysk City Hospital, 353915 Novorossiysk, Russia
| | - Elena Shvartz
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia;
| | - Elena Kosmacheva
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Vladimir Shvartz
- Bakoulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| |
Collapse
|
4
|
Abdel-Aziz N, El-Bahkery A, Ibrahim EA. The synergistic effects of citicoline and silymarin on liver injury and thyroid hormone disturbances in γ-irradiated rats. Mol Biol Rep 2025; 52:176. [PMID: 39883250 DOI: 10.1007/s11033-025-10255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats. METHODS AND RESULTS The rats were exposed to γ-radiation (7 Gy) and treated with citicoline (300 mg/kg/day) and/or silymarin (50 mg/kg/day). The results showed that citicoline alleviated liver damage in irradiated rats by reducing hepatic malondialdehyde levels, serum aspartate aminotransferase activity, and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-κB). It also increased acetylcholine (ACh) levels and the gene expression of the anti-inflammatory protein α7 nicotinic acetylcholine receptor (α7nAChR). Additionally, citicoline improved serum triiodothyronine (T3) levels, thyroid hormone receptor beta (TRβ) gene expression, and iodothyronine deiodinase type 1 activity in hepatic tissues of irradiated rats. Furthermore, citicoline enhanced the effects of silymarin on thyroxine (T4), TRβ, ACh, and α7nAChR when co-administered in irradiated rats. Histopathological analysis confirmed these findings, demonstrating improved liver tissue structure. CONCLUSIONS Citicoline mitigates γ-radiation-induced liver damage by reducing oxidative stress, activating the cholinergic anti-inflammatory pathway, and modulating thyroid hormone metabolism. These findings support the use of citicoline as a safe standalone treatment or as an adjuvant with silymarin for managing liver damage and thyroid hormone disturbances caused by γ-irradiation.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Azza El-Bahkery
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Lauten TH, Elkhatib SK, Natour T, Reed EC, Jojo CN, Case AJ. T H17/Treg lymphocyte balance is regulated by beta adrenergic and cAMP signaling. Brain Behav Immun 2025; 123:1061-1070. [PMID: 39542072 PMCID: PMC11967417 DOI: 10.1016/j.bbi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a mouse model of repeated social defeat stress (RSDS) that recapitulates certain features of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. METHODS Using a modified version of RSDS that allows for both males and females, as well as ex vivo models of T-lymphocyte polarization, we assessed the impact and mechanism of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte differentiation to IL-17A-producing subtypes (i.e., TH17). RESULTS Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g.,IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Furthermore, cyclic AMP (cAMP) was demonstrated to be mechanistically involved in driving IL-17A production in T-lymphocytes, and amplifying cAMP signaling could restore IL-17A deficits caused by the absence of β1/2 signaling. Last, removal of β1/2 and cAMP signaling, even in IL-17A polarizing conditions, promoted regulatory T-lymphocyte (Treg) polarization, suggesting adrenergic signaling plays a role in the switching between pro- and anti-inflammatory T-lymphocyte subtypes. CONCLUSIONS Our data depict a novel role for β1/2 adrenergic and cAMP signaling in the balance of TH17/Treg lymphocytes. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.
Collapse
MESH Headings
- Animals
- Mice
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Signal Transduction
- Cyclic AMP/metabolism
- Male
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Female
- Receptors, Adrenergic, beta-2/metabolism
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Mice, Knockout
- Receptors, Adrenergic, beta-1/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/immunology
- Social Defeat
- Disease Models, Animal
- Cell Differentiation
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta/metabolism
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Safwan K Elkhatib
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Emily C Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
6
|
Dante D, Jangra J, Baidya ATK, Kumar R, Darreh-Shori T. Micellar Choline-Acetyltransferase Complexes Exhibit Ultra-Boosted Catalytic Rate for Acetylcholine Synthesis-Mechanistic Insights for Development of Acetylcholine-Enhancing Micellar Nanotherapeutics. Int J Mol Sci 2024; 25:13602. [PMID: 39769363 PMCID: PMC11679501 DOI: 10.3390/ijms252413602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Choline-acetyltransferase (ChAT) is the key cholinergic enzyme responsible for the biosynthesis of acetylcholine (ACh), a crucial signaling molecule with both canonical neurotransmitter function and auto- and paracrine signaling activity in non-neuronal cells, such as lymphocytes and astroglia. Cholinergic dysfunction is linked to both neurodegenerative and inflammatory diseases. In this study, we investigated a serendipitous observation, namely that the catalytic rate of human recombinant ChAT (rhChAT) protein greatly differed in buffered solution in the presence and absence of Triton X-100 (TX100). At a single concentration of 0.05% (v/v), TX100 boosted the specific activity of rhChAT by 4-fold. Dose-response analysis within a TX100 concentration range of 0.8% to 0.008% (accounting for 13.7 mM to 0.013 mM) resulted in an S-shaped response curve, indicative of an over 10-fold boost in the catalytic rate of rhChAT. This dramatic boost was unlikely due to a mere structural stabilization since it remained even after the addition of 1.0 mg/mL gelatin to the ChAT solution as a protein stabilizer. Furthermore, we found that the catalytic function of the ACh-degrading enzyme, AChE, was unaffected by TX100, underscoring the specificity of the effect for ChAT. Examination of the dose-response curve in relation to the critical micelle concentration (CMC) of TX100 revealed that a boost in ChAT activity occurred when the TX100 concentration passed its CMC, indicating that formation of micelle-ChAT complexes was crucial. We challenged this hypothesis by repeating the experiment on Tween 20 (TW20), another non-ionic surfactant with ~3-fold lower CMC compared to TX100 (0.06 vs. 0.2 mM). The analysis confirmed that micelle formation is crucial for ultra-boosting the activity of ChAT. In silico molecular dynamic simulation supported the notion of ChAT-micelle complex formation. We hypothesize that TX100 or TW20 micelles, by mimicking cell-membrane microenvironments, facilitate ChAT in accessing its full catalytic potential by fine-tuning its structural stabilization and/or enhancing its substrate accessibility. These insights are expected to facilitate research toward the development of new cholinergic-enhancing therapeutics through the formulation of micelle-embedded ChAT nanoparticles.
Collapse
Affiliation(s)
- Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Stockholm, Sweden;
| | - Jatin Jangra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Anurag T. K. Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Stockholm, Sweden;
| |
Collapse
|
7
|
Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev 2024; 101:102521. [PMID: 39341508 DOI: 10.1016/j.arr.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The most cutting-edge issue in the research on aging is the quest for biomarkers that transcend molecular and cellular domains to encompass organismal-level implications. We recently hypothesized the role of Autonomic Nervous System (ANS) imbalance in this context. Studies on ANS functions during aging highlighted an imbalance towards heightened sympathetic nervous system (SNS) activity, instigating a proinflammatory milieu, and attenuated parasympathetic nervous system (PNS) function, which exerts anti-inflammatory effects via the cholinergic anti-inflammatory pathway (CAP) and suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This scenario strongly suggests that ANS imbalance can fuel inflammaging, now recognized as one of the most relevant risk factors for age-related disease development. Recent recommendations have increasingly highlighted the need for actionable strategies to improve the quality of life for older adults by identifying biomarkers that can be easily measured, even in asymptomatic individuals. We advocate for considering ANS imbalance as a biomarker of aging and inflammaging. Measures of ANS imbalance, such as heart rate variability (HRV), are relatively affordable, non-invasive, and cost-effective, making this hallmark easily diagnosable. HRV gains renewed significance within the aging research landscape, offering a tangible link between pathophysiological perturbations and age-related health outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo GHC), Castiglione dei Pepoli, Bologna, Italy
| |
Collapse
|
8
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Drenckpohl DC, Christifano DN, Carlson SE. Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants? Pediatr Res 2024; 96:875-883. [PMID: 38658665 DOI: 10.1038/s41390-024-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
We undertook this review to determine if it is plausible that choline or phosphatidylcholine (PC) deficiency is a factor in necrotizing enterocolitis (NEC) after two clinical trials found a dramatic and unexpected reduction in NEC in an experimental group provided higher PC compared to a control group. Sources and amounts of choline/PC for preterm infants are compared to the choline status of preterm infants at birth and following conventional nutritional management. The roles of choline/PC in intestinal structure, mucus, mesenteric blood flow, and the cholinergic anti-inflammatory system are summarized. Low choline/PC status is linked to prematurity/immaturity, parenteral and enteral feeding, microbial dysbiosis and hypoxia/ischemia, factors long associated with the risk of developing NEC. We conclude that low choline status exists in preterm infants provided conventional parenteral and enteral nutritional management, and that it is plausible low choline/PC status adversely affects intestinal function to set up the vicious cycle of inflammation, loss of intestinal barrier function and worsening tissue hypoxia that occurs with NEC. In conclusion, this review supports the need for randomized clinical trials to test the hypothesis that additional choline or PC provided parenterally or enterally can reduce the incidence of NEC in preterm infants. IMPACT STATEMENT: Low choline status in preterm infants who are managed by conventional nutrition is plausibly linked to the risk of developing necrotizing enterocolitis.
Collapse
Affiliation(s)
- Douglas C Drenckpohl
- Department of Food & Nutrition, OSF Healthcare Saint Francis Medical Center, Peoria, IL, 61637, USA
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Danielle N Christifano
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
10
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Lauten TH, Elkhatib SK, Natour T, Reed EC, Jojo CN, Case AJ. Beta-adrenergic signaling and T-lymphocyte-produced catecholamines are necessary for interleukin 17A synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597633. [PMID: 38895227 PMCID: PMC11185643 DOI: 10.1101/2024.06.05.597633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a preclinical model of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. Methods Using a modified version of repeated social defeat stress (RSDS) that allows for both males and females, we assessed the impact of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte IL-17A generation. Additionally, we explored the impact of adrenergic signaling and T-lymphocyte-produced catecholamines on both CD4+ and CD8+ T-lymphocytes polarized to IL-17A-producing phenotypes ex vivo. Results Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Furthermore, ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Indeed, pharmacological depletion of catecholamines both in vivo and ex vivo abrogated T-lymphocyte IL-17A production demonstrating the importance of immune-generated neurotransmission in pro-inflammatory cytokine generation. Conclusions Our data depict a novel role for β1/2 adrenergic receptors and autologous catecholamine signaling during T-lymphocyte IL-17A production. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.
Collapse
Affiliation(s)
- Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Safwan K. Elkhatib
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N. Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
12
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
13
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
14
|
Bao R, Wang S, Liu X, Tu K, Liu J, Huang X, Liu C, Zhou P, Liu S. Neuromorphic electro-stimulation based on atomically thin semiconductor for damage-free inflammation inhibition. Nat Commun 2024; 15:1327. [PMID: 38351088 PMCID: PMC10864345 DOI: 10.1038/s41467-024-45590-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by β2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).
Collapse
Affiliation(s)
- Rong Bao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Xiaohe Huang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chunsen Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Shen Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
16
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|