1
|
Zhang Q, Schultz J, Simmering J, Kirkpatrick BQ, Weber MA, Skuodas S, Hicks T, Pierce G, Laughlin M, Bertolli AX, Larson T, Thangavel R, Oya M, Meyerholz D, Aldridge G, Fassler J, Narayanan NS. Glycolysis-enhancing α1-adrenergic antagonists are neuroprotective in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647018. [PMID: 40236185 PMCID: PMC11996510 DOI: 10.1101/2025.04.03.647018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Terazosin (TZ) is an α 1 -adrenergic receptor antagonist that enhances glycolysis by activating the enzyme phosphoglycerate kinase 1 (PGK1). Epidemiological data suggest that TZ may be neuroprotective in Parkinson's disease and in dementia with Lewy bodies and that glycolysis-enhancing drugs might be protective in other neurodegenerative diseases involving protein aggregation, such as Alzheimer's disease (AD). We investigated TZ in AD and report four main results. First, we found that TZ increased ATP levels in a Saccharomyces cerevisiae mutant with impaired energy homeostasis and reduced the aggregation of the AD-associated protein, amyloid beta (Aβ) 42. Second, in an AD transgenic mouse model (5xFAD) we found that TZ attenuated amyloid pathology in the hippocampus and rescued cognitive impairments in spatial memory and interval timing behavioral assays. Third, using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we found that AD patients newly started on TZ or related glycolysis-enhancing drugs had a slower progression of both cognitive dysfunction and neuroimaging biomarkers, such as 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET), a measure of brain metabolism. Finally, in a large human administrative dataset, we found that patients taking TZ or related glycolysis-enhancing drugs had a lower hazard of being diagnosed with AD compared to those taking tamsulosin or 5-alpha reductase inhibitors. These data further implicate metabolism in neurodegenerative diseases and suggest that glycolysis-enhancing drugs may be neuroprotective in AD.
Collapse
|
2
|
Tong S, Wang R, Li H, Tong Z, Geng D, Zhang X, Ren C. Executive dysfunction in Parkinson's disease: From neurochemistry to circuits, genetics and neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111272. [PMID: 39880275 DOI: 10.1016/j.pnpbp.2025.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Cognitive decline is one of the most significant non-motor symptoms of Parkinson's disease (PD), with executive dysfunction (EDF) being the most prominent characteristic of PD-associated cognitive deficits. Currently, lack of uniformity in the conceptualization and assessment scales for executive functions impedes the early and accurate diagnosis of EDF in PD. The neurobiological mechanisms of EDF in PD remain poorly understood. Moreover, the treatment of cognitive impairment in PD has progressed slowly and with limited efficacy. Thus, this review explores the characteristics and potential mechanisms of EDF in PD from multiple perspectives, including the concept of executive function, commonly used neuropsychological tests, neurobiochemistry, genetics, electroencephalographic activity and neuroimaging. The available evidence indicates that degeneration of the frontal-striatal circuit, along with mutations in the Catechol-O-methyltransferase (COMT) gene and Leucine-rich repeat kinase 2 (LRRK2) gene, may contribute to EDF in patients with PD. The increase in theta and delta waves, along with the decrease in alpha waves, offers potential biomarkers for the early identification and monitoring of EDF, as well as the development of dementia in patients with PD. The PD cognition-related pattern (PDCP) pattern may serve as a tool for monitoring and assessing cognitive function progression in these patients and is anticipated to become a biomarker for cognitive disorders associated with PD. The aim is to provide new insights for the early and precise diagnosis and treatment of EDF in PD.
Collapse
Affiliation(s)
- Shuyan Tong
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruiwen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Huihua Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, China
| | - Zhu Tong
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
3
|
Maiti P, Xue Y, Rex TS, McDonald MP. Gene Therapy Targeting GD3 Synthase Protects Against MPTP-Induced Parkinsonism and Executive Dysfunction. Eur J Neurosci 2025; 61:e70061. [PMID: 40091288 DOI: 10.1111/ejn.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
More than half of Parkinson's patients exhibit fronto-striatally mediated executive dysfunction, including deficits in sustained attention, judgment, and impulse control. We have previously shown that modification of brain gangliosides by targeted deletion of GD3 synthase (GD3S) is neuroprotective in vivo and in vitro. The objective of the present study was to determine whether GD3S knockdown will protect neurons and prevent executive dysfunction following a subchronic regimen of 25-mg/kg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6N wild-type mice were assessed on a battery of sensorimotor tasks and a reaction-time task that included measures of sustained attention and impulse control. Sustained attention was measured by response accuracy and reaction time; impulsivity was measured by premature responding in the response holes or the food well during the precue period. After reaching stable performance, mice received intrastriatal injections of a recombinant adeno-associated viral (AAV) vector expressing a short-hairpin RNA (shRNA) construct targeting St8sia1, the gene that codes for GD3S, or a scrambled-sequence control (scrRNA). After 4 weeks, mice received MPTP or saline injections. MPTP-lesioned mice in the scrRNA control group exhibited loss of impulse control in the sessions following MPTP injections, compared to the other three groups. These deficits abated with extended training but re-emerged on challenge sessions with shorter cue durations or longer precue durations. GD3S knockdown partially protected nigrostriatal neurons from MPTP neurotoxicity and prevented the motor impairments (coordination, bradykinesia, fine motor skills) and loss of impulse control. Our data suggest that inhibition of GD3S warrants further investigation as a novel therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Panchanan Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tonia S Rex
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Bruce RA, Weber M, Bova A, Volkman R, Jacobs C, Sivakumar K, Stutt H, Kim Y, Curtu R, Narayanan K. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. eLife 2025; 13:RP96287. [PMID: 39812105 PMCID: PMC11735027 DOI: 10.7554/elife.96287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model in which MSN ensemble activity represented the accumulation of temporal evidence. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs had opposing dynamics yet played complementary cognitive roles, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
Affiliation(s)
- Robert A Bruce
- Department of Neurology, University of IowaIowa CityUnited States
| | - Matthew Weber
- Department of Neurology, University of IowaIowa CityUnited States
| | - Alexandra Bova
- Department of Neurology, University of IowaIowa CityUnited States
| | - Rachael Volkman
- Department of Neurology, University of IowaIowa CityUnited States
| | - Casey Jacobs
- Department of Neurology, University of IowaIowa CityUnited States
| | - Kartik Sivakumar
- Department of Neurology, University of IowaIowa CityUnited States
| | - Hannah Stutt
- Department of Neurology, University of IowaIowa CityUnited States
| | - Youngcho Kim
- Department of Neurology, University of IowaIowa CityUnited States
| | - Rodica Curtu
- Department of Mathematics, University of IowaIowa CityUnited States
- The Iowa Neuroscience InstituteIowa CityUnited States
| | - Kumar Narayanan
- Department of Neurology, University of IowaIowa CityUnited States
- The Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
5
|
Lin YP, Lin II, Chiou WD, Chang HC, Chen RS, Lu CS, Chan HL, Chang YJ. Optimizing rehabilitation strategies in Parkinson's disease: a comparison of dual cognitive-walking treadmill training and single treadmill training. Sci Rep 2024; 14:25210. [PMID: 39448695 PMCID: PMC11502839 DOI: 10.1038/s41598-024-75422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Dual cognitive-walking treadmill training (DTT), designed to replicate real-life walking conditions, has shown promise effect in individuals with Parkinson's disease (PD). This study aims to compare the effects of DTT versus single treadmill training (STT) on cognitive and walking performance under both single and dual task conditions, as well as on fall, patients' subjective feeling, and quality of life. Sixteen individuals with PD were randomly assigned to DTT or STT group and underwent 8 weeks of training. The DTT group received treadmill training with cognitive loads, while the STT group received treadmill training without cognitive load. Outcome measures included gait parameters (speed, step length) and cognitive performance (reaction time, accuracy, composite score) under both single and dual task conditions. Unified Parkinson's Disease Rating Scale-part III (UPDRS-III), Falls Efficacy Scale (FES), Patient Global Impression of Change (PGIC), and Parkinson's Disease Questionnaire (PDQ-39) were also measured. Both DTT and STT groups showed increased comfortable walking speed and step length. Only the DTT group demonstrated significant improvements in cognitive composite score under both single and dual task conditions, as well as UPDRS-III, FES, and PDQ-39(p < 0.05). DTT can enhance cognitive function without compromising walking ability and also have real-world transferability.
Collapse
Affiliation(s)
- Yen-Po Lin
- Department of Medical Education, Chang Gung Memorial Hospital Keelung, Keelung, Taiwan
| | - I-I Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan, Taiwan
| | - Wei-Da Chiou
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan, Taiwan
- Department of Physical Rehabilitation, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Hsiao-Lung Chan
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- Department of Electrical Engineering, Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Bruce R, Weber MA, Bova A, Volkman R, Jacobs C, Sivakumar K, Kim Y, Curtu R, Narayanan N. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550569. [PMID: 37546735 PMCID: PMC10402049 DOI: 10.1101/2023.07.25.550569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
|
7
|
Martel AC, Apicella P. Insights into the interaction between time and reward prediction on the activity of striatal tonically active neurons: A pilot study in rhesus monkeys. Physiol Rep 2024; 12:e70037. [PMID: 39245818 PMCID: PMC11381318 DOI: 10.14814/phy2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Prior studies have documented the role of the striatum and its dopaminergic input in time processing, but the contribution of local striatal cholinergic innervation has not been specifically investigated. To address this issue, we recorded the activity of tonically active neurons (TANs), thought to be cholinergic interneurons in the striatum, in two male macaques performing self-initiated movements after specified intervals in the seconds range have elapsed. The behavioral data showed that movement timing was adjusted according to the temporal requirements. About one-third of all recorded TANs displayed brief depressions in firing in response to the cue that indicates the interval duration, and the strength of these modulations was, in some instances, related to the timing of movement. The rewarding outcome of actions also impacted TAN activity, as reflected by stronger responses to the cue paralleled by weaker responses to reward when monkeys performed correctly timed movements over consecutive trials. It therefore appears that TAN responses may act as a start signal for keeping track of time and reward prediction could be incorporated in this signaling function. We conclude that the role of the striatal cholinergic TAN system in time processing is embedded in predicting rewarding outcomes during timing behavior.
Collapse
Affiliation(s)
- A C Martel
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - P Apicella
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
8
|
Magnante AT, Ord AS, Holland JA, Sautter SW. Neurocognitive functioning of patients with early-stage Parkinson's disease. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1041-1052. [PMID: 35931087 DOI: 10.1080/23279095.2022.2106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder commonly associated with motor deficits. However, cognitive impairment is also common in patients with PD. Cognitive concerns in PD may affect multiple domains of neurocognition and vary across different stages of the disease. Extant research has focused mainly on cognitive deficits in middle to late stages of PD, whereas few studies have examined the unique cognitive profiles of patients with early-stage PD. This study addressed this gap in the published literature and examined neurocognitive functioning and functional capacity of patients with de novo PD, focusing on the unique pattern of cognitive deficits specific to the early stage of the disease. Results indicated that the pattern of cognitive deficits in patients with PD (n = 55; mean age = 72.93) was significantly different from healthy controls (n = 59; mean age = 71.88). Specifically, tasks related to executive functioning, attention, and verbal memory demonstrated the most pronounced deficits in patients with early-stage PD. Clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Anna Theresa Magnante
- College of Health and Behavioral Sciences, Regent University, Virginia Beach, VA, USA
| | - Anna Shirokova Ord
- College of Health and Behavioral Sciences, Regent University, Virginia Beach, VA, USA
| | - Jamie A Holland
- College of Health and Behavioral Sciences, Regent University, Virginia Beach, VA, USA
| | - Scott W Sautter
- College of Health and Behavioral Sciences, Regent University, Virginia Beach, VA, USA
- Hampton Roads Neuropsychology Inc., Virginia Beach, VA, USA
| |
Collapse
|
9
|
Kim B, Hong S, Lee J, Kang S, Kim JS, Jung C, Shin T, Youn B, Moon C. Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling. Anim Cells Syst (Seoul) 2024; 28:198-215. [PMID: 38693920 PMCID: PMC11062273 DOI: 10.1080/19768354.2024.2348671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - BuHyun Youn
- Department of Biological Science, Pusan National University, Busan, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Stutt HR, Weber MA, Cole RC, Bova AS, Ding X, McMurrin MS, Narayanan NS. Sex similarities and dopaminergic differences in interval timing. Behav Neurosci 2024; 138:85-93. [PMID: 38661668 PMCID: PMC11512544 DOI: 10.1037/bne0000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | - Xin Ding
- Department of Neurology, University of Iowa
| | | | | |
Collapse
|
11
|
Vaccaro MG, Pullano L, Canino S, Pastore M, Sarica A, Quattrone A, Fernandes SM, Migliorini F, Maestu F, Quattrone A. Assessing of the Italian version of the Memory Strategy Test (TMS) in people with Parkinson disease: a preliminary descriptive psychometric study. Neurol Sci 2023; 44:3895-3903. [PMID: 37354323 PMCID: PMC10570218 DOI: 10.1007/s10072-023-06906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Previous literature has shown that executive functions (EF) are related to performance in memory (M) tasks. The Test of Memory strategies (TMS) is a psychometric test that examines EF and M simultaneously and it was recently validated on an Italian healthy cohort. The first aim of the study was to apply TMS, for the first time, on a sample of patients with Parkinson's disease (PD), who are characterized by mild cognitive impairment. The second aim is to investigate whether TMS scores can discriminate PD patients from healthy controls. METHOD Ninety-eight subjects were enrolled, including 68 patients with PD, and 30 Italian healthy controls (HC), who also underwent a memory evaluation through well-known tests. RESULTS Confirmatory factor analysis (CFA) demonstrated that TMS of PD patients had a bi-dimensional structure as previously found in healthy cohort. In detail, The TMS-1 and TMS-2 lists require greater involvement of the EF factor, while TMS-3, TMS-4 and TMS-5 the M factor. Receiver operating characteristic (ROC) curves and precision-recall (PR) curves showed that the M subscale can distinguish between HC and PD, while EF had poor discrimination power. CONCLUSION The hypothesized prediction model of TMS test seems to have adequate ability to discriminate PD from HC especially for the M function.
Collapse
Affiliation(s)
- Maria Grazia Vaccaro
- Neuroscience Research Centre, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Germaneto, Catanzaro, 88100, Italy.
| | - Luca Pullano
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, 88100, Italy
| | - Silvia Canino
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, 88100, Italy
| | - Massimiliano Pastore
- Department of Developmental and Social Psychology, Padova University, Padua, Italy
| | - Alessia Sarica
- Neuroscience Research Centre, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Andrea Quattrone
- Neuroscience Research Centre, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | | | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, 52074, Aachen, Germany
| | - Fernando Maestu
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Aldo Quattrone
- Neuroscience Research Centre, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| |
Collapse
|
12
|
Singh A, Cole RC, Espinoza AI, Wessel JR, Cavanagh JF, Narayanan NS. Evoked mid-frontal activity predicts cognitive dysfunction in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:945-953. [PMID: 37263767 PMCID: PMC10592174 DOI: 10.1136/jnnp-2022-330154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cognitive dysfunction is a major feature of Parkinson's disease (PD), but the pathophysiology remains unknown. One potential mechanism is abnormal low-frequency cortical rhythms which engage cognitive functions and are deficient in PD. We tested the hypothesis that mid-frontal delta/theta rhythms predict cognitive dysfunction in PD. METHOD We recruited 100 patients with PD and 49 demographically similar control participants who completed a series of cognitive control tasks, including the Simon, oddball and interval-timing tasks. We focused on cue-evoked delta (1-4 Hz) and theta (4-7 Hz) rhythms from a single mid-frontal EEG electrode (cranial vertex (Cz)) in patients with PD who were either cognitively normal, with mild-cognitive impairments (Parkinson's disease with mild-cognitive impairment) or had dementia (Parkinson's disease dementia). RESULTS We found that PD-related cognitive dysfunction was associated with increased response latencies and decreased mid-frontal delta power across all tasks. Within patients with PD, the first principal component of evoked electroencephalography features from a single electrode (Cz) strongly correlated with clinical metrics such as the Montreal Cognitive Assessment score (r=0.34) and with National Institutes of Health Toolbox Executive Function score (r=0.46). CONCLUSIONS These data demonstrate that cue-evoked mid-frontal delta/theta rhythms directly relate to cognition in PD. Our results provide insight into the nature of low-frequency frontal rhythms and suggest that PD-related cognitive dysfunction results from decreased delta/theta activity. These findings could facilitate the development of new biomarkers and targeted therapies for cognitive symptoms of PD.
Collapse
Affiliation(s)
- Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota
| | | | | | | | | | | |
Collapse
|
13
|
Yeager BE, Twedt HP, Bruss J, Schultz J, Narayanan NS. Salience network and cognitive impairment in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.13.23296825. [PMID: 37873396 PMCID: PMC10593050 DOI: 10.1101/2023.10.13.23296825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with cognitive as well as motor impairments. While much is known about the brain networks leading to motor impairments in PD, less is known about the brain networks contributing to cognitive impairments. Here, we leveraged resting-state functional magnetic resonance imaging (rs-fMRI) data from the Parkinson's Progression Marker Initiative (PPMI) to examine network dysfunction in PD patients with cognitive impairment. We tested the hypothesis that cognitive impairments in PD involve altered connectivity of the salience network (SN), a key cortical network that detects and integrates responses to salient stimuli. We used the Montreal Cognitive Assessment (MoCA) as a continuous index of coarse cognitive function in PD. We report two major results. First, in 82 PD patients we found significant relationships between lower intra-network connectivity of the frontoparietal network (FPN; comprising the dorsolateral prefrontal and posterior parietal cortices bilaterally) with lower MoCA scores. Second, we found significant relationships between lower inter-network connectivity between the SN and the basal ganglia network (BGN) and the default mode network (DMN) with lower MoCA scores. These data support our hypothesis about the SN and provide new insights into the brain networks contributing to cognitive impairments in PD.
Collapse
Affiliation(s)
- Brooke E Yeager
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Hunter P Twedt
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Joel Bruss
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Jordan Schultz
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| |
Collapse
|
14
|
Ewald VAM, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. Int J Bipolar Disord 2023; 11:32. [PMID: 37779127 PMCID: PMC10542629 DOI: 10.1186/s40345-023-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on disorder sub-type (BDI vs II), depressed mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. RESULTS Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power during the task compared to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, depressed mood, or antipsychotic medication use. CONCLUSIONS This work suggests that BD sub-type, depressed mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
| | - Nicholas T Trapp
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Benjamin D Pace
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, IA, USA
| | - Jenny G Richards
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Ilisa K Gala
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Krystal L Parker
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Campagnolo M, Emmi A, Biundo R, Fiorenzato E, Batzu L, Chaudhuri KR, Antonini A. The pharmacological management of the behavioral aspects of Parkinson's disease: an update. Expert Opin Pharmacother 2023; 24:1693-1701. [PMID: 37493445 DOI: 10.1080/14656566.2023.2240228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Behavioural symptoms are common manifestations of Parkinson's disease and include depression, anxiety, impulse control disorders, hallucinations, psychosis, and cognitive dysfunction. They remain inadequately addressed in many patients despite their relevance for quality of life and disability. This applies also to impulse control disorders where the most common approach in recent literature is to refrain from using dopamine agonists without consideration about their potential benefit on motor complications. AREAS COVERED We conducted a narrative review searching for articles on behavioral symptoms in Parkinson disease and selected those which included involved neurotransmitters such as dopamine, noradrenaline, serotonin, acetylcholine. We specifically focused our search on open-label and randomized double-blind studies and biomarkers which could best characterize these clinical manifestations. EXPERT OPINION Management of Parkinson disease behavioural manifestations lacks clear guidelines and standardized protocols beside general suggestions of dose adjustments in dopamine replacement therapy and use of antidepressants or antipsychotic drugs with little consideration of patients' age, sex, comorbidities, and motor status. We suggest a pragmatic approach which includes education of affected patients and caring people, dealing with complex cases by experienced multidisciplinary teams, use of cognitive behavioural therapy, and psychological counselling to complement drug treatment.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Emmi
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Stutt HR, Weber MA, Cole RC, Bova AS, Ding X, McMurrin MS, Narayanan NS. Sex similarities and dopaminergic differences in interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539584. [PMID: 37205472 PMCID: PMC10187305 DOI: 10.1101/2023.05.05.539584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing represenation in behavioral neuroscience.
Collapse
|
17
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
18
|
Shen T, Pu JL, Jiang YS, Yue YM, He TT, Qu BY, Zhao S, Yan YP, Lai HY, Zhang BR. Impact of cognition-related single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Neural Regen Res 2022; 18:1154-1160. [PMID: 36255006 PMCID: PMC9827791 DOI: 10.4103/1673-5374.355764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson's disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Forty-eight Parkinson's disease patients and 39 matched healthy controls underwent genotyping and 7T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson's disease diagnosis. We found that, in Parkinson's disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein (SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson's disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jia-Li Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Si Jiang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu-Mei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting-Ting He
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bo-Yi Qu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shuai Zhao
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ya-Ping Yan
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| | - Bao-Rong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China,Correspondence to: Bao-Rong Zhang, ; Hsin-Yi Lai, .
| |
Collapse
|
19
|
Nayeri Z, Aliakbari F, Afzali F, Parsafar S, Gharib E, Otzen DE, Morshedi D. Characterization of exogenous αSN response genes and their relation to Parkinson’s disease using network analyses. Front Pharmacol 2022; 13:966760. [PMID: 36249814 PMCID: PMC9563388 DOI: 10.3389/fphar.2022.966760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Despite extensive research, the molecular mechanisms underlying the toxicity of αSN in Parkinson’s disease (PD) pathology are still poorly understood. To address this, we used a microarray dataset to identify genes that are induced and differentially expressed after exposure to toxic αSN aggregates, which we call exogenous αSN response (EASR) genes. Using systems biology approaches, we then determined, at multiple levels of analysis, how these EASR genes could be related to PD pathology. A key result was the identification of functional connections between EASR genes and previously identified PD-related genes by employing the proteins’ interactions networks and 9 brain region-specific co-expression networks. In each brain region, co-expression modules of EASR genes were enriched for gene sets whose expression are altered by SARS-CoV-2 infection, leading to the hypothesis that EASR co-expression genes may explain the observed links between COVID-19 and PD. An examination of the expression pattern of EASR genes in different non-neurological healthy brain regions revealed that regions with lower mean expression of the upregulated EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates and lose their neurological functions during PD progression. Gene Set Enrichment Analysis of healthy and PD samples from substantia nigra revealed that a specific co-expression network, “TNF-α signaling via NF-κB”, is an upregulated pathway associated with the PD phenotype. Inhibitors of the “TNF-α signaling via NF-κB” pathway may, therefore, decrease the activity level of this pathway and thereby provide therapeutic benefits for PD patients. We virtually screened FDA-approved drugs against these upregulated genes (NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified several promising drugs. Altogether, our study provides a better understanding of αSN toxicity mechanisms in PD and identifies potential therapeutic targets and small molecules for treatment of PD.
Collapse
Affiliation(s)
- Zahra Nayeri
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Farzaneh Afzali
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Soha Parsafar
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Gharib
- Department of Chemistry and Biochemistry, University de Moncton, Moncton, ON, Canada
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- *Correspondence: Dina Morshedi,
| |
Collapse
|
20
|
Crowley BZ, Patrie J, Sperling SA. Depression differentially affects patient and caregiver perceptions of neuropsychiatric symptoms in Parkinson's disease. Clin Neuropsychol 2022:1-16. [PMID: 35938748 DOI: 10.1080/13854046.2022.2106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aims of this study were twofold. First, we examined the relationship between patient and caregiver ratings of neuropsychiatric symptoms in Parkinson's disease (PD). Second, we examined if the severity of depressive symptoms affects patient and caregiver perceptions of other neuropsychiatric symptoms and contributes to discrepancies between their perceptions. METHOD We examined data from a retrospective clinical cohort of 209 patients with PD and their caregivers. We used intra-class correlation coefficients and the Bland Altman method to assess intra-respondent (retrospective versus current) and inter-respondent (patient versus caregiver) agreement between Frontal Systems Behavior Scales (FrSBe) subscale scores. We then used generalized estimating equation models to examine FrSBe subscale scores and the magnitude of the intra- and inter-respondent discrepancies in FrSBe subscale scores, as a function of Beck Depression Inventory-2nd Edition scores, with patient demographic variable adjustments. RESULTS There was low agreement between patient and caregiver ratings on all three subscales, at both time points, and high response variability within and between raters. Patients generally reported more severe neuropsychiatric symptoms than caregivers. Depression severity predicted patients' perceptions at both time points, but was more strongly associated with current perceptions. Depression severity predicted caregivers' current perceptions only. The inter-respondent discrepancy in perceived apathy and disinhibition, but not executive dysfunction, increased as a function of depression severity. CONCLUSIONS There are differences in how patients with PD and caregivers perceive neuropsychiatric behaviors and the extent to which depressive symptoms influence their perceptions. Shared neuropathology and negative response biases likely contribute to these relationships.
Collapse
Affiliation(s)
- Brittany Z Crowley
- School of Education and Human Development, University of Virginia, Charlottesville, Virginia, USA
| | - James Patrie
- Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Scott A Sperling
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Miyawaki EK. Review: Subjective Time Perception, Dopamine Signaling, and Parkinsonian Slowness. Front Neurol 2022; 13:927160. [PMID: 35899266 PMCID: PMC9311331 DOI: 10.3389/fneur.2022.927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The association between idiopathic Parkinson's disease, a paradigmatic dopamine-deficiency syndrome, and problems in the estimation of time has been studied experimentally for decades. I review that literature, which raises a question about whether and if dopamine deficiency relates not only to the motor slowness that is an objective and cardinal parkinsonian sign, but also to a compromised neural substrate for time perception. Why does a clinically (motorically) significant deficiency in dopamine play a role in the subjective perception of time's passage? After a discussion of a classical conception of basal ganglionic control of movement under the influence of dopamine, I describe recent work in healthy mice using optogenetics; the methodology visualizes dopaminergic neuronal firing in very short time intervals, then allows for correlation with motor behaviors in trained tasks. Moment-to-moment neuronal activity is both highly dynamic and variable, as assessed by photometry of genetically defined dopaminergic neurons. I use those animal data as context to review a large experimental experience in humans, spanning decades, that has examined subjective time perception mainly in Parkinson's disease, but also in other movement disorders. Although the human data are mixed in their findings, I argue that loss of dynamic variability in dopaminergic neuronal activity over very short intervals may be a fundamental sensory aspect in the pathophysiology of parkinsonism. An important implication is that therapeutic response in Parkinson's disease needs to be understood in terms of short-term alterations in dynamic neuronal firing, as has already been examined in novel ways—for example, in the study of real-time changes in neuronal network oscillations across very short time intervals. A finer analysis of a treatment's network effects might aid in any effort to augment clinical response to either medications or functional neurosurgical interventions in Parkinson's disease.
Collapse
Affiliation(s)
- Edison K. Miyawaki
- Department of Neurology, Mass General Brigham, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Edison K. Miyawaki
| |
Collapse
|
22
|
Larson T, Khandelwal V, Weber MA, Leidinger MR, Meyerholz DK, Narayanan NS, Zhang Q. Mice expressing P301S mutant human tau have deficits in interval timing. Behav Brain Res 2022; 432:113967. [PMID: 35718229 DOI: 10.1016/j.bbr.2022.113967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Interval timing is a key executive process that involves estimating the duration of an interval over several seconds or minutes. Patients with Alzheimer's disease (AD) have deficits in interval timing. Since temporal control of action is highly conserved across mammalian species, studying interval timing tasks in animal AD models may be relevant to human disease. Amyloid plaques and tau neurofibrillary tangles are hallmark features of AD. While rodent models of amyloid pathology are known to have interval timing impairments, to our knowledge, interval timing has not been studied in models of tauopathy. Here, we evaluate interval timing performance of P301S transgenic mice, a widely studied model of tauopathy that overexpresses human tau with the P301S mutation. We employed an interval timing task and found that P301S mice consistently underestimated temporal intervals compared to wild-type controls, responding early in anticipation of the target interval. Our study indicating timing deficits in a mouse tauopathy model could have relevance to human tauopathies such as AD.
Collapse
Affiliation(s)
- Travis Larson
- Medical Scientist Training Program, Duke University School of Medicine, United States of America; Department of Neurology, University of Iowa, United States of America
| | | | - Matthew A Weber
- Department of Neurology, University of Iowa, United States of America
| | | | - David K Meyerholz
- Department of Pathology, University of Iowa, United States of America
| | | | - Qiang Zhang
- Department of Neurology, University of Iowa, United States of America
| |
Collapse
|
23
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
24
|
Montaser-Kouhsari L, Young CB, Poston KL. Neuroimaging approaches to cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:257-286. [PMID: 35248197 DOI: 10.1016/bs.pbr.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While direct visualization of Lewy body accumulation within the brain is not yet possible in living Parkinson's disease patients, brain imaging studies offer insights into how the buildup of Lewy body pathology impacts different regions of the brain. Unlike biological biomarkers and purely behavioral research, these brain imaging studies therefore offer a unique opportunity to relate brain localization to cognitive function and dysfunction in living patients. Magnetic resonance imaging studies can reveal physical changes in brain structure as they relate to different cognitive domains and task specific impairments. Functional imaging studies use a combination of task and resting state magnetic resonance imaging, as well as positron emission tomography and single photon emission computed tomography, and can be used to determine changes in blood flow, neuronal activation and neurochemical changes in the brain associated with PD cognition and cognitive impairments. Other unique advantages to brain imaging studies are the ability to monitor changes in brain structure and function longitudinally as patients progress and the ability to study changes in brain function when patients are exposed to different pharmacological manipulations. This is particularly true when assessing the effects of dopaminergic replacement therapy on cognitive function in Parkinson's disease patients. Together, this chapter will describe imaging studies that have helped identify structural and functional brain changes associated with cognition, cognitive impairment, and dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Leila Montaser-Kouhsari
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States; Department of Neurosurgery, Stanford University, Stanford, CA, United States.
| |
Collapse
|
25
|
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:435-455. [PMID: 35248205 DOI: 10.1016/bs.pbr.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuromodulation is a widely used treatment for motor symptoms of Parkinson's disease (PD). It can be a highly effective treatment as a result of knowledge of circuit dysfunction associated with motor symptoms in PD. However, the mechanisms underlying cognitive symptoms of PD are less well-known, and the effects of neuromodulation on these symptoms are less consistent. Nonetheless, neuromodulation provides a unique opportunity to modulate motor and cognitive circuits while minimizing off-target side effects. We review the modalities of neuromodulation used in PD and the potential implications for cognitive symptoms. There have been some encouraging findings with both invasive and noninvasive modalities of neuromodulation, and there are promising advances being made in the field of therapeutic neuromodulation. Substantial work is needed to determine which modulation targets are most effective for the different types of cognitive deficits of PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Derrick N Okine
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Brooke E Yeager
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
26
|
Schneider JS, Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203:108880. [PMID: 34774549 DOI: 10.1016/j.neuropharm.2021.108880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Impairment in various aspects of cognition is recognized as an important non-motor symptom of Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) is common in non-demented PD patients and is often associated with severity of motor symptoms, disease duration and increasing age. Further, PD-MCI can have a significant negative effect on performance of daily life activities and may be a harbinger of development of PD dementia. Thus, there is significant interest in developing therapeutic strategies to ameliorate cognitive deficits in PD and improve cognitive functioning of PD patients. However, due to significant questions that remain regarding the pathophysiology of cognitive dysfunction in PD, remediation of cognitive dysfunction in PD has proven difficult. In this paper, we will focus on PD-MCI and will review some of the current therapeutic approaches being taken to try to improve cognitive functioning in patients with PD-MCI.
Collapse
Affiliation(s)
- Jay S Schneider
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
27
|
Mijalkov M, Volpe G, Pereira JB. Directed Brain Connectivity Identifies Widespread Functional Network Abnormalities in Parkinson's Disease. Cereb Cortex 2022; 32:593-607. [PMID: 34331060 PMCID: PMC8805861 DOI: 10.1093/cercor/bhab237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by topological abnormalities in large-scale functional brain networks, which are commonly analyzed using undirected correlations in the activation signals between brain regions. This approach assumes simultaneous activation of brain regions, despite previous evidence showing that brain activation entails causality, with signals being typically generated in one region and then propagated to other ones. To address this limitation, here, we developed a new method to assess whole-brain directed functional connectivity in participants with PD and healthy controls using antisymmetric delayed correlations, which capture better this underlying causality. Our results show that whole-brain directed connectivity, computed on functional magnetic resonance imaging data, identifies widespread differences in the functional networks of PD participants compared with controls, in contrast to undirected methods. These differences are characterized by increased global efficiency, clustering, and transitivity combined with lower modularity. Moreover, directed connectivity patterns in the precuneus, thalamus, and cerebellum were associated with motor, executive, and memory deficits in PD participants. Altogether, these findings suggest that directional brain connectivity is more sensitive to functional network differences occurring in PD compared with standard methods, opening new opportunities for brain connectivity analysis and development of new markers to track PD progression.
Collapse
Affiliation(s)
- Mite Mijalkov
- Address correspondence to Mite Mijalkov and Joana B. Pereira, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Neo 7th floor, Blickagången 16, 141 83 Huddinge, Sweden. (M.M.); (J.B.P.)
| | | | - Joana B Pereira
- Address correspondence to Mite Mijalkov and Joana B. Pereira, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Neo 7th floor, Blickagången 16, 141 83 Huddinge, Sweden. (M.M.); (J.B.P.)
| |
Collapse
|
28
|
Zhang Q, Abdelmotilib H, Larson T, Keomanivong C, Conlon M, Aldridge GM, Narayanan NS. Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neurosci Lett 2021; 765:136273. [PMID: 34601038 DOI: 10.1016/j.neulet.2021.136273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
One hallmark feature of Parkinson's disease (PD) is Lewy body pathology associated with misfolded alpha-synuclein. Previous studies have shown that striatal injection of alpha-synuclein preformed fibrils (PFF) can induce misfolding and aggregation of native alpha-synuclein in a prion-like manner, leading to cell death and motor dysfunction in mouse models. Here, we tested whether alpha-synuclein PFFs injected into the medial prefrontal cortex results in deficits in interval timing, a cognitive task which is disrupted in human PD patients and in rodent models of PD. We injected PFF or monomers of human alpha-synuclein into the medial prefrontal cortex of mice pre-injected with adeno-associated virus (AAV) coding for overexpression of human alpha-synuclein or control protein. Despite notable medial prefrontal cortical synucleinopathy, we did not observe consistent deficits in fixed-interval timing. These results suggest that cortical alpha-synuclein does not reliably disrupt fixed-interval timing.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Travis Larson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Cameron Keomanivong
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Mackenzie Conlon
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
29
|
Bruce RA, Weber MA, Volkman RA, Oya M, Emmons EB, Kim Y, Narayanan NS. Experience-related enhancements in striatal temporal encoding. Eur J Neurosci 2021; 54:5063-5074. [PMID: 34097793 PMCID: PMC8511940 DOI: 10.1111/ejn.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.
Collapse
Affiliation(s)
- R. Austin. Bruce
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Matthew A. Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | - Mayu Oya
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Eric B. Emmons
- Department of Biology, Wartburg College, Waverly, IA, 50677
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
30
|
Fung BJ, Sutlief E, Hussain Shuler MG. Dopamine and the interdependency of time perception and reward. Neurosci Biobehav Rev 2021; 125:380-391. [PMID: 33652021 PMCID: PMC9062982 DOI: 10.1016/j.neubiorev.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023]
Abstract
Time is a fundamental dimension of our perception of the world and is therefore of critical importance to the organization of human behavior. A corpus of work - including recent optogenetic evidence - implicates striatal dopamine as a crucial factor influencing the perception of time. Another stream of literature implicates dopamine in reward and motivation processes. However, these two domains of research have remained largely separated, despite neurobiological overlap and the apothegmatic notion that "time flies when you're having fun". This article constitutes a review of the literature linking time perception and reward, including neurobiological and behavioral studies. Together, these provide compelling support for the idea that time perception and reward processing interact via a common dopaminergic mechanism.
Collapse
Affiliation(s)
- Bowen J Fung
- The Behavioural Insights Team, Suite 3, Level 13/9 Hunter St, Sydney NSW 2000, Australia.
| | - Elissa Sutlief
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Timing variability and midfrontal ~4 Hz rhythms correlate with cognition in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:14. [PMID: 33589640 PMCID: PMC7884691 DOI: 10.1038/s41531-021-00158-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Patients with Parkinson's disease (PD) can have significant cognitive dysfunction; however, the mechanisms for these cognitive symptoms are unknown. Here, we used scalp electroencephalography (EEG) to investigate the cortical basis for PD-related cognitive impairments during interval timing, which requires participants to estimate temporal intervals of several seconds. Time estimation is an ideal task demand for investigating cognition in PD because it is simple, requires medial frontal cortical areas, and recruits basic executive processes such as working memory and attention. However, interval timing has never been systematically studied in PD patients with cognitive impairments. We report three main findings. First, 71 PD patients had increased temporal variability compared to 37 demographically matched controls, and this variability correlated with cognitive dysfunction as measured by the Montreal Cognitive Assessment (MOCA). Second, PD patients had attenuated ~4 Hz EEG oscillatory activity at midfrontal electrodes in response to the interval-onset cue, which was also predictive of MOCA. Finally, trial-by-trial linear mixed-effects modeling demonstrated that cue-triggered ~4 Hz power predicted subsequent temporal estimates as a function of PD and MOCA. Our data suggest that impaired cue-evoked midfrontal ~4 Hz activity predicts increased timing variability that is indicative of cognitive dysfunction in PD. These findings link PD-related cognitive dysfunction with cortical mechanisms of cognitive control, which could advance novel biomarkers and neuromodulation for PD.
Collapse
|
32
|
Zhang Q, Weber MA, Narayanan NS. Medial prefrontal cortex and the temporal control of action. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:421-441. [PMID: 33785154 DOI: 10.1016/bs.irn.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Across species, the medial prefrontal cortex guides actions in time. This process can be studied using behavioral paradigms such as simple reaction-time and interval-timing tasks. Temporal control of action can be influenced by prefrontal neurotransmitters such as dopamine and acetylcholine and is highly relevant to human diseases such as Parkinson's disease, schizophrenia, and attention-deficit hyperactivity disorder (ADHD). We review evidence that across species, medial prefrontal lesions impair the temporal control of action. We then consider neurophysiological correlates in humans, primates, and rodents that might encode temporal processing and relate to cognitive-control mechanisms. These data have informed brain-stimulation studies in rodents and humans that can compensate for timing deficits. This line of work illuminates basic mechanisms of temporal control of action in the medial prefrontal cortex, which underlies a range of high-level cognitive processing and could contribute to new biomarkers and therapies for human brain diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Matthew A Weber
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
33
|
Bartoli M, Palermo S, Cipriani GE, Amanzio M. A Possible Association Between Executive Dysfunction and Frailty in Patients With Neurocognitive Disorders. Front Psychol 2020; 11:554307. [PMID: 33262722 PMCID: PMC7685991 DOI: 10.3389/fpsyg.2020.554307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Frailty is an age-related dynamic status, characterized by a reduced resistance to stressors due to the cumulative decline of multiple physiological systems. Several researches have highlighted a relationship between physical frailty and cognitive decline; however, the role of specific cognitive domains has not been deeply clarified yet. Current studies have hypothesized that physical frailty and neuropsychological deficits may share systemic inflammation and increased oxidative stress in different neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. However, the role of the executive dysfunction should be investigated in a more detailed way using a multidimensional approach. With this aim, we conducted a review of the literature on the few experimental articles published to discuss the existence of a relationship between frailty and cognitive impairment in neurocognitive disorders, particularly focusing on the domain of executive dysfunction. The data suggest that physical frailty and cognitive decline, especially executive dysfunction, are two aspects strongly linked in mild and major neurocognitive disorders due to Alzheimer’s and Parkinson’s disease. In light of this, a new framework linking aging, cognitive decline, and neurodegenerative diseases is needed. In order to analyze the effects that aging processes have on neural decline and neurocognitive disease, and to identify relevant groups of users and patients, future longitudinal studies should adopt a multidimensional approach, in the field of primary prevention and in the continuum from mild to major neurocognitive disorder.
Collapse
Affiliation(s)
| | - Sara Palermo
- Department of Psychology, University of Turin, Turin, Italy.,European Innovation Partnership on Active and Healthy Ageing, Brussels, Belgium
| | | | - Martina Amanzio
- Department of Psychology, University of Turin, Turin, Italy.,European Innovation Partnership on Active and Healthy Ageing, Brussels, Belgium
| |
Collapse
|
34
|
Luis-Martínez R, Monje MHG, Antonini A, Sánchez-Ferro Á, Mestre TA. Technology-Enabled Care: Integrating Multidisciplinary Care in Parkinson's Disease Through Digital Technology. Front Neurol 2020; 11:575975. [PMID: 33250846 PMCID: PMC7673441 DOI: 10.3389/fneur.2020.575975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) management requires the involvement of movement disorders experts, other medical specialists, and allied health professionals. Traditionally, multispecialty care has been implemented in the form of a multidisciplinary center, with an inconsistent clinical benefit and health economic impact. With the current capabilities of digital technologies, multispecialty care can be reshaped to reach a broader community of people with PD in their home and community. Digital technologies have the potential to connect patients with the care team beyond the traditional sparse clinical visit, fostering care continuity and accessibility. For example, video conferencing systems can enable the remote delivery of multispecialty care. With big data analyses, wearable and non-wearable technologies using artificial intelligence can enable the remote assessment of patients' conditions in their natural home environment, promoting a more comprehensive clinical evaluation and empowering patients to monitor their disease. These advances have been defined as technology-enabled care (TEC). We present examples of TEC under development and describe the potential challenges to achieve a full integration of technology to address complex care needs in PD.
Collapse
Affiliation(s)
- Raquel Luis-Martínez
- Department of Neurosciences, University of Basque Country (UPV/EHU), Leioa, Spain
- Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain
| | - Angelo Antonini
- Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Álvaro Sánchez-Ferro
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain
| | - Tiago A Mestre
- Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, Parkinson's Disease and Movement Disorders Center, The University of Ottawa Brain Research Institute, Ottawa, ON, Canada
| |
Collapse
|
35
|
Gallego Hiroyasu EM, Yotsumoto Y. Older adults preserve accuracy but not precision in explicit and implicit rhythmic timing. PLoS One 2020; 15:e0240863. [PMID: 33075063 PMCID: PMC7571673 DOI: 10.1371/journal.pone.0240863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/03/2020] [Indexed: 11/19/2022] Open
Abstract
Aging brings with it several forms of neurophysiological and cognitive deterioration, but whether a decline in temporal processing is part of the aging process is unclear. The current study investigated whether this timing deficit has a cause independent of those of memory and attention using rhythmic stimuli that reduce the demand for these higher cognitive functions. In Study 1, participants took part in two rhythmic timing tasks: explicit and implicit. Participants had to distinguish regular from irregular sequences while processing temporal information explicitly or implicitly. Results showed that while the accuracy in the implicit timing task was preserved, older adults had more noise in their performance in the explicit and implicit tasks. In Study 2, participants took part in a dual-implicit task to explore whether the performance of temporal tasks differed with increasing task difficulty. We found that increasing task difficulty magnifies age-related differences.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Martel A, Apicella P. Temporal processing in the striatum: Interplay between midbrain dopamine neurons and striatal cholinergic interneurons. Eur J Neurosci 2020; 53:2090-2099. [DOI: 10.1111/ejn.14741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Anne‐Caroline Martel
- Institut de Neurosciences de la Timone UMR 7289 Aix Marseille Université, CNRS Marseille France
| | - Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289 Aix Marseille Université, CNRS Marseille France
| |
Collapse
|
37
|
Emmons EB, Kennedy M, Kim Y, Narayanan NS. Corticostriatal stimulation compensates for medial frontal inactivation during interval timing. Sci Rep 2019; 9:14371. [PMID: 31591426 PMCID: PMC6779764 DOI: 10.1038/s41598-019-50975-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022] Open
Abstract
Prefrontal dysfunction is a common feature of brain diseases such as schizophrenia and contributes to deficits in executive functions, including working memory, attention, flexibility, inhibitory control, and timing of behaviors. Currently, few interventions improve prefrontal function. Here, we tested whether stimulating the axons of prefrontal neurons in the striatum could compensate for deficits in temporal processing related to prefrontal dysfunction. We used an interval-timing task that requires working memory for temporal rules and attention to the passage of time. Our previous work showed that inactivation of the medial frontal cortex (MFC) impairs interval timing and attenuates ramping activity, a key form of temporal processing in the dorsomedial striatum (DMS). We found that 20-Hz optogenetic stimulation of MFC axon terminals increased curvature of time-response histograms and improved interval-timing behavior. Furthermore, optogenetic stimulation of terminals modulated time-related ramping of medium spiny neurons in the striatum. These data suggest that corticostriatal stimulation can compensate for deficits caused by MFC inactivation and they imply that frontostriatal projections are sufficient for controlling responses in time.
Collapse
Affiliation(s)
- Eric B Emmons
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Morgan Kennedy
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
38
|
Vikene K, Skeie GO, Specht K. Subjective judgments of rhythmic complexity in Parkinson's disease: Higher baseline, preserved relative ability, and modulated by tempo. PLoS One 2019; 14:e0221752. [PMID: 31479488 PMCID: PMC6719828 DOI: 10.1371/journal.pone.0221752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Previous research has demonstrated that people with Parkinson's disease (PD) have difficulties with the perceptual discrimination of rhythms, relative to healthy controls. It is not however clear if this applies only to simpler rhythms (a so called "beat-based" deficit), or if it is a more generalized deficit that also applies to more complex rhythms. Further insight into how people with PD process and perceive rhythm can refine our understanding of the well known problems of temporal processing in the disease. In this study, we wanted to move beyond simple/complex-dichotomy in previous studies, and further investigate the effect of tempo on the perception of musical rhythms. To this end, we constructed ten musical rhythms with a varied degree of complexity across three different tempi. Nineteen people with PD and 19 healthy controls part-took in an internet based listening survey and rated 10 different musical rhythms for complexity and likeability. In what we believe is the first study to do so, we asked for the participants subjective ratings of individual rhythms and not their capacity to directly compare or discriminate between them. We found an overall between-group difference in complexity judgments that was modulated by tempo, but not level of complexity. People with PD rated all rhythms as more complex across tempi, with significant group differences in complexity ratings at 120 and 150bpm, but not at 90bpm. Our analysis found a uniform elevated baseline for complexity judgments in the PD-group, and a strong association between the two groups' rank-ordering the rhythms for complexity. This indicates a preserved ability to discriminate between relative levels of complexity. Finally, the two groups did not significantly differ in their subjective scoring of likeability, demonstrating a dissimilarity between judgment of complexity and judgment of likeability between the two groups. This indicates different cognitive operations for the two types of judgment, and we speculate that Parkinson's disease affects judgment of complexity but not judgment of likeability.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Geir Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- The Grieg Academy - Department of Music, University of Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
39
|
Vikene K, Skeie GO, Specht K. Compensatory task-specific hypersensitivity in bilateral planum temporale and right superior temporal gyrus during auditory rhythm and omission processing in Parkinson's disease. Sci Rep 2019; 9:12623. [PMID: 31477742 PMCID: PMC6718659 DOI: 10.1038/s41598-019-48791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
Persons with Parkinson's disease have general timing deficits and have difficulties in rhythm discrimination tasks. The basal ganglia, a crucial part of Parkinson's disease pathology, is believed to play an important role in rhythm and beat processing, with a possible modulation of basal ganglia activity by level of rhythmic complexity. As dysfunction in basal ganglia impacts function in other brain areas in Parkinson's disease during temporal processing, investigating the neuronal basis for rhythm processing is important as it could shed light on the nature of basal ganglia dysfunction and compensatory mechanisms. We constructed an auditory beat-omission fMRI paradigm with two levels of rhythm complexity, to investigate if and where persons with Parkinson's disease showed abnormal activation during rhythm and omission processing, and whether such activations were modulated by the level of rhythmic complexity. We found no effect of complexity, but found crucial group differences. For the processing of normal rhythm presentations, the Parkinson-group showed higher bilateral planum temporal activity, an area previously associated with the processing of complex patterns. For the omissions, the Parkinson-group showed higher activity in an area in the right superior temporal gyrus previously associated with detection of auditory omissions. We believe this shows a pattern of "hypersensitive" activity, indicative of task-specific, compensatory mechanisms in the processing of temporal auditory information in persons with Parkinson's disease.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway.
| | - Geir Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- The Grieg Academy - Department of Music, University of Bergen, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Education, The Arctic University of Norway, Tromsø, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Abstract
The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer's disease, Parkinson's disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.
Collapse
Affiliation(s)
- Pan Xu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Ai Chen
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Yipeng Li
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Xuezhi Xing
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Hui Lu
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
41
|
Zhang Q, Jung D, Larson T, Kim Y, Narayanan NS. Scopolamine and Medial Frontal Stimulus-Processing during Interval Timing. Neuroscience 2019; 414:219-227. [PMID: 31299344 DOI: 10.1016/j.neuroscience.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Alzheimer's disease (AD) involve loss of cholinergic neurons in the basal forebrain. Here, we investigate how cholinergic dysfunction impacts the frontal cortex during interval timing, a process that can be impaired in PD and AD patients. Interval timing requires participants to estimate an interval of several seconds by making a motor response, and depends on the medial frontal cortex (MFC), which is richly innervated by basal forebrain cholinergic projections. Past work has shown that scopolamine, a muscarinic cholinergic receptor antagonist, reliably impairs interval timing. We tested the hypothesis that scopolamine would attenuate time-related ramping, a key form of temporal processing in the MFC. We recorded neuronal ensembles from eight mice during performance of a 12-s fixed-interval timing task, which was impaired by the administration of scopolamine. Consistent with past work, scopolamine impaired timing. To our surprise, we found that time-related ramping was unchanged, but stimulus-related activity was enhanced in the MFC. Principal component analyses revealed no consistent changes in time-related ramping components, but did reveal changes in higher components. Taken together, these data indicate that scopolamine changes stimulus processing rather than temporal processing in the MFC. These data could help understand how cholinergic dysfunction affects cortical circuits in diseases such as PD, DLB, and AD.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Dennis Jung
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Travis Larson
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Youngcho Kim
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
42
|
Calabrò RS, Naro A, Filoni S, Pullia M, Billeri L, Tomasello P, Portaro S, Di Lorenzo G, Tomaino C, Bramanti P. Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson's disease. J Neuroeng Rehabil 2019; 16:68. [PMID: 31174570 PMCID: PMC6555981 DOI: 10.1186/s12984-019-0533-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhythmic Auditory Stimulation (RAS) can compensate for the loss of automatic and rhythmic movements in patients with idiopathic Parkinson's disease (PD). However, the neurophysiological mechanisms underlying the effects of RAS are still poorly understood. We aimed at identifying which mechanisms sustain gait improvement in a cohort of patients with PD who practiced RAS gait training. METHODS We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical, kinematic, and electrophysiological effects of both the gait trainings. RESULTS We found a greater improvement in Functional Gait Assessment (p < 0.001), Tinetti Falls Efficacy Scale (p < 0.001), Unified Parkinson Disease Rating Scale (p = 0.001), and overall gait quality index (p < 0.001) following RAS than non_RAS training. In addition, the RAS gait training induced a stronger EEG power increase within the sensorimotor rhythms related to specific periods of the gait cycle, and a greater improvement of fronto-centroparietal/temporal electrode connectivity than the non_RAS gait training. CONCLUSIONS The findings of our study suggest that the usefulness of cueing strategies during gait training consists of a reshape of sensorimotor rhythms and fronto-centroparietal/temporal connectivity. Restoring the internal timing mechanisms that generate and control motor rhythmicity, thus improving gait performance, likely depends on a contribution of the cerebellum. Finally, identifying these mechanisms is crucial to create patient-tailored, RAS-based rehabilitative approaches in PD. TRIAL REGISTRATION NCT03434496 . Registered 15 February 2018, retrospectively registered.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, San Giovanni Rotondo, FG, Italy
| | - Massimo Pullia
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Provvidenza Tomasello
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Giuseppe Di Lorenzo
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Concetta Tomaino
- Institute for Music and Neurologic Function, Mount Vernon, NY, USA
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| |
Collapse
|
43
|
Luft F, Sharifi S, Mugge W, Schouten AC, Bour LJ, van Rootselaar AF, Veltink PH, Heida T. Deficits in tapping accuracy and variability in tremor patients. J Neuroeng Rehabil 2019; 16:54. [PMID: 31064378 PMCID: PMC6505201 DOI: 10.1186/s12984-019-0528-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Background The basal ganglia and cerebellum are brain structures involved in movement initiation, execution and termination. They are thought to be involved in the tremor generation and movement deficits in Parkinson’s disease (PD) and essential tremor (ET). Especially in PD, maintaining cyclic movement, such as walking or tapping can be significantly disturbed. Providing external cues improves timing of these movements in PD but its effect on ET has not yet been studied in depth. The aim of this study is to evaluate the usefulness of a bimanual tapping task as a tool during clinical decision making. Method Hand movements and tremor was recorded using accelerometers and EMG (m. extensor carpi ulnaris) from PD and ET patients and healthy controls during a bimanual tapping task as a way to distinguish PD from ET. All subjects performed the tapping task at two different frequencies, 2 Hz and 4 Hz, with and without the presence of auditory cues. Results No significant intra-group differences were found in the patient groups. Acceleration data revealed significantly less accurate tapping and more variable tapping in PD than in ET and healthy controls. ET subjects tapped less accurate and with a greater variability than healthy controls during the 4 Hz tapping task. Most interestingly the tapping accuracy improved in PD patients when kinetic tremor was recorded with EMG during the task. Conclusion Providing ET and PD patients with an external cue results in different tapping performances between patient groups and healthy controls. Furthermore, the findings suggest that kinetic tremor in PD enables patients to perform the task with a greater accuracy. So far this has not been shown in other studies.
Collapse
Affiliation(s)
- Frauke Luft
- Department of Biomedical Signals and Systems, University of Twente, Enschede, The Netherlands.
| | - Sarvi Sharifi
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Winfred Mugge
- Department of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Department of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Lo J Bour
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter H Veltink
- Department of Biomedical Signals and Systems, University of Twente, Enschede, The Netherlands
| | - Tijtske Heida
- Department of Biomedical Signals and Systems, University of Twente, Enschede, The Netherlands
| |
Collapse
|
44
|
Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR, Oya H, Greenlee JD, Narayanan NS. A human prefrontal-subthalamic circuit for cognitive control. Brain 2019; 141:205-216. [PMID: 29190362 DOI: 10.1093/brain/awx300] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 11/14/2022] Open
Abstract
The subthalamic nucleus is a key site controlling motor function in humans. Deep brain stimulation of the subthalamic nucleus can improve movements in patients with Parkinson's disease; however, for unclear reasons, it can also have cognitive effects. Here, we show that the human subthalamic nucleus is monosynaptically connected with cognitive brain areas such as the prefrontal cortex. Single neurons and field potentials in the subthalamic nucleus are modulated during cognitive processing and are coherent with 4-Hz oscillations in medial prefrontal cortex. These data predict that low-frequency deep brain stimulation may alleviate cognitive deficits in Parkinson's disease patients. In line with this idea, we found that novel 4-Hz deep brain stimulation of the subthalamic nucleus improved cognitive performance. These data support a role for the human hyperdirect pathway in cognitive control, which could have relevance for brain-stimulation therapies aimed at cognitive symptoms of human brain disease.awx300media15660002226001.
Collapse
Affiliation(s)
- Ryan Kelley
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA.,Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Oliver Flouty
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Eric B Emmons
- Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Johnathan Kingyon
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jan R Wessel
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
45
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|
46
|
Vikene K, Skeie GO, Specht K. Abnormal phasic activity in saliency network, motor areas, and basal ganglia in Parkinson's disease during rhythm perception. Hum Brain Mapp 2018; 40:916-927. [PMID: 30375107 PMCID: PMC6587836 DOI: 10.1002/hbm.24421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Behavioral studies indicate that persons with Parkinson's disease have complexity dependent problems with the discrimination of auditory rhythms. Furthermore, neuroimaging studies show that rhythm processing activates many brain areas that overlap with areas affected by Parkinson's disease (PD). This study sought to investigate the neural correlates of rhythm processing in PD and healthy controls, with a particular focus on rhythmic complexity. We further aimed to investigate differences in brain activation during initial phases of rhythm processing. Functional magnetic resonance imaging was used to scan 15 persons with Parkinson's disease and 15 healthy controls while they listened to musical rhythms with two different levels of complexity. Rhythmic complexity had no significant effect on brain activations, but patients and controls showed differences in areas related to temporal auditory processing, notably bilateral planum temporale and inferior parietal lobule. We found indications of a particular sequential or phasic activation pattern of brain activity, where activity in caudate nucleus in the basal ganglia was time‐displaced by activation in the saliency network—comprised of anterior cingulate cortex and bilateral anterior insula—and cortical and subcortical motor areas, during the initial phases of listening to rhythms. We relate our findings to core PD pathology, and discuss the overall, rhythm processing related hyperactivity in PD as a possible dysfunction in specific basal ganglia mechanisms, and the phasic activation pattern in PD as a reflection of a lack of preparatory activation of task‐relevant brain networks for rhythm processing in PD.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Geir-Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Education, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
47
|
Mioni G, Capizzi M, Vallesi A, Correa Á, Di Giacopo R, Stablum F. Dissociating Explicit and Implicit Timing in Parkinson's Disease Patients: Evidence from Bisection and Foreperiod Tasks. Front Hum Neurosci 2018; 12:17. [PMID: 29467632 PMCID: PMC5808217 DOI: 10.3389/fnhum.2018.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
A consistent body of literature reported that Parkinson's disease (PD) is marked by severe deficits in temporal processing. However, the exact nature of timing problems in PD patients is still elusive. In particular, what remains unclear is whether the temporal dysfunction observed in PD patients regards explicit and/or implicit timing. Explicit timing tasks require participants to attend to the duration of the stimulus, whereas in implicit timing tasks no explicit instruction to process time is received but time still affects performance. In the present study, we investigated temporal ability in PD by comparing 20 PD participants and 20 control participants in both explicit and implicit timing tasks. Specifically, we used a time bisection task to investigate explicit timing and a foreperiod task for implicit timing. Moreover, this is the first study investigating sequential effects in PD participants. Results showed preserved temporal ability in PD participants in the implicit timing task only (i.e., normal foreperiod and sequential effects). By contrast, PD participants failed in the explicit timing task as they displayed shorter perceived durations and higher variability compared to controls. Overall, the dissociation reported here supports the idea that timing can be differentiated according to whether it is explicitly or implicitly processed, and that PD participants are selectively impaired in the explicit processing of time.
Collapse
Affiliation(s)
- Giovanna Mioni
- Department of General Psychology, University of Padova, Padua, Italy
| | | | - Antonino Vallesi
- Department of Neuroscience, University of Padova, Padua, Italy
- San Camillo Hospital IRCCS, Venice, Italy
| | - Ángel Correa
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Granada, Spain
- Departamento de Psicología Experimental, University of Granada, Granada, Spain
| | - Raffaella Di Giacopo
- Institute of Neurology, San Bortolo Hospital, Vicenza, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Franca Stablum
- Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
48
|
Shen B, Wang ZR, Wang XP. The Fast Spiking Subpopulation of Striatal Neurons Coding for Temporal Cognition of Movements. Front Cell Neurosci 2017; 11:406. [PMID: 29326553 PMCID: PMC5736568 DOI: 10.3389/fncel.2017.00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Timing dysfunctions occur in a number of neurological and psychiatric disorders such as Parkinson's disease, obsessive-compulsive disorder, autism and attention-deficit-hyperactivity disorder. Several lines of evidence show that disrupted timing processing is involved in specific fronto-striatal abnormalities. The striatum encodes reinforcement learning and procedural motion, and consequently is required to represent temporal information precisely, which then guides actions in proper sequence. Previous studies highlighted the temporal scaling property of timing-relevant striatal neurons; however, it is still unknown how this is accomplished over short temporal latencies, such as the sub-seconds to seconds range. Methods: We designed a task with a series of timing behaviors that required rats to reproduce a fixed duration with robust action. Using chronic multichannel electrode arrays, we recorded neural activity from dorso-medial striatum in 4 rats performing the task and identified modulation response of each neuron to different events. Cell type classification was performed according to a multi-criteria clustering analysis. Results: Dorso-medial striatal neurons (n = 557) were recorded, of which 113 single units were considered as timing-relevant neurons, especially the fast-spiking subpopulation that had trial-to-trial ramping up or ramping down firing modulation during the time estimation period. Furthermore, these timing-relevant striatal neurons had to calibrate the spread of their firing pattern by rewarded experience to express the timing behavior accurately. Conclusion: Our data suggests that the dynamic activities of timing-relevant units encode information about the current duration and recent outcomes, which is needed to predict and drive the following action. These results reveal the potential mechanism of time calibration in a short temporal resolution, which may help to explain the neural basis of motor coordination affected by certain physiological or pathological conditions.
Collapse
Affiliation(s)
- Bo Shen
- Department of Neurology, Shanghai Tong-Ren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zuo-Ren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai Tong-Ren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Frahm S, Melis V, Horsley D, Rickard JE, Riedel G, Fadda P, Scherma M, Harrington CR, Wischik CM, Theuring F, Schwab K. Alpha-Synuclein transgenic mice, h-α-SynL62, display α-Syn aggregation and a dopaminergic phenotype reminiscent of Parkinson's disease. Behav Brain Res 2017; 339:153-168. [PMID: 29180135 DOI: 10.1016/j.bbr.2017.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Alpha-Synuclein (α-Syn) accumulation is considered a major risk factor for the development of synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. We have generated mice overexpressing full-length human α-Syn fused to a membrane-targeting signal sequence under the control of the mouse Thy1-promotor. Three separate lines (L56, L58 and L62) with similar gene expression levels, but considerably heightened protein accumulation in L58 and L62, were established. In L62, there was widespread labelling of α-Syn immunoreactivity in brain including spinal cord, basal forebrain, cortex and striatum. Interestingly, there was no detectable α-Syn expression in dopaminergic neurones of the substantia nigra, but strong human α-Syn reactivity in glutamatergic synapses. The human α-Syn accumulated during aging and formed PK-resistant, thioflavin-binding aggregates. Mice displayed early onset bradykinesia and age progressive motor deficits. Functional alterations within the striatum were confirmed: L62 showed normal basal dopamine levels, but impaired dopamine release (upon amphetamine challenge) in the dorsal striatum measured by in vivo brain dialysis at 9 months of age. This impairment was coincident with a reduced response to amphetamine in the activity test. L62 further displayed greater sensitivity to low doses of the dopamine receptor 1 (D1) agonist SKF81297 but reacted normally to the D2 agonist quinpirole in the open field. Since accumulation of α-Syn aggregates in neurones and synapses and alterations in the dopaminergic tone are characteristics of PD, phenotypes reported for L62 present a good opportunity to further our understanding of motor dysfunction in PD and Lewy body dementia.
Collapse
Affiliation(s)
- Silke Frahm
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - David Horsley
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Janet E Rickard
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Paula Fadda
- University of Cagliari, Department of Neuroscience, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Scherma
- University of Cagliari, Department of Neuroscience, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Franz Theuring
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany.
| | - Karima Schwab
- Charité-Universitätsmedizin Berlin, Institute of Pharmacology, Hessische Str. 3-4, 10115 Berlin, Germany
| |
Collapse
|
50
|
Emmons EB, De Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS. Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum. J Neurosci 2017; 37:8718-8733. [PMID: 28821670 PMCID: PMC5588464 DOI: 10.1523/jneurosci.1376-17.2017] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022] Open
Abstract
Although frontostriatal circuits are critical for the temporal control of action, how time is encoded in frontostriatal circuits is unknown. We recorded from frontal and striatal neurons while rats engaged in interval timing, an elementary cognitive function that engages both areas. We report four main results. First, "ramping" activity, a monotonic change in neuronal firing rate across time, is observed throughout frontostriatal ensembles. Second, frontostriatal activity scales across multiple intervals. Third, striatal ramping neurons are correlated with activity of the medial frontal cortex. Finally, interval timing and striatal ramping activity are disrupted when the medial frontal cortex is inactivated. Our results support the view that striatal neurons integrate medial frontal activity and are consistent with drift-diffusion models of interval timing. This principle elucidates temporal processing in frontostriatal circuits and provides insight into how the medial frontal cortex exerts top-down control of cognitive processing in the striatum.SIGNIFICANCE STATEMENT The ability to guide actions in time is essential to mammalian behavior from rodents to humans. The prefrontal cortex and striatum are critically involved in temporal processing and share extensive neuronal connections, yet it remains unclear how these structures represent time. We studied these two brain areas in rodents performing interval-timing tasks and found that time-dependent "ramping" activity, a monotonic increase or decrease in neuronal activity, was a key temporal signal. Furthermore, we found that striatal ramping activity was correlated with and dependent upon medial frontal activity. These results provide insight into information-processing principles in frontostriatal circuits.
Collapse
Affiliation(s)
| | | | | | - Krystal L Parker
- Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242, and
| | - Matthew S Matell
- Department of Psychological and Brain Sciences, Villanova University, Villanova, Pennsylvania 19085
| | | |
Collapse
|