1
|
Qu H, Wang J, Shirley DJ, Gemmell HM, Christensen D, Orlando A, Romero RA, Zielinski BA, Wang Z. Atypical Postural Control Variability and Coordination Persist Into Middle and Older Adulthood in Autism Spectrum Disorder. Autism Res 2025; 18:752-764. [PMID: 40103348 PMCID: PMC12015802 DOI: 10.1002/aur.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Postural control deviations remain largely unexplored in middle aged and older autistic adults. With the increased prevalence of neurodegenerative conditions and heightened fall risk, precise quantification of postural variability and coordination may provide valuable insights into aging associated neuromotor deviations in autistic adults. Forty-seven autistic and 48 non-autistic individuals completed static stance, anterior-posterior (AP), and mediolateral (ML) postural sway on a force platform. Center of pressure (COP) metrics were derived and interpreted using ANCOVAs for between-group comparisons and multilinear regressions for group × age interaction. Correlations between clinical measures and COP variables that differentiated groups were explored. Compared to non-autistic individuals, autistic adults exhibited greater COP standard deviation (COPSD) and COP trajectory length during static stance and demonstrated significant COPSD-AP reductions in older age. Autistic adults also exhibited decreased COP range of motion (ROM) but increased ROM variability in the target direction during dynamic stance. Autistic adults' postural sway was jerkier during dynamic stance, and increased ROM variability during dynamic AP sway was moderately associated with lower verbal IQ in autistic adults. Our findings highlight persistent postural control deviations in middle aged and older autistic adults. Static and dynamic stance are differentially associated with unique profiles of postural control in ASD. Specifically, autistic adults demonstrated pronounced increases in postural sway variability during static stance, while reducing coordination during dynamic conditions. The extent to which postural control deviations found in autistic adults are predictive to the onset of neurodegenerative conditions and the severity of falls warrants future longitudinal research.
Collapse
Affiliation(s)
- Hang Qu
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Desirae J. Shirley
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Hanna M. Gemmell
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Ann‐Marie Orlando
- Center for Autism and Related Disabilities (CARD)University of FloridaGainesvilleFloridaUSA
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Regilda A. Romero
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of PsychiatryUniversity of FloridaGainesvilleFloridaUSA
| | - Brandon A. Zielinski
- UF Health Center for Autism and Neurodevelopment (UF Health CAN)University of FloridaGainesvilleFloridaUSA
- Department of Pediatrics, Neurology, and NeuroscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Department of PsychologyUniversity of FloridaGainesvilleFloridaUSA
- Rehabilitation Science ProgramUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Qiu Y, Gao S, Ding X, Lu J, Ji X, Hao W, Cheng S, Du H, Gu Y, Yu C, Cheng C, Gao X. Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function. Neurosci Bull 2025; 41:421-433. [PMID: 39688649 DOI: 10.1007/s12264-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 12/18/2024] Open
Abstract
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses. To date, there have been few reports on TNFAIP6 levels in the inner ear. To elucidate the precise mechanism, we generated transgenic mouse models with conditional knockout of Tnfaip6 (Tnfaip6 cKO). Evaluation of hair cell morphology and function revealed no significant differences in hair cell numbers or ribbon synapses between Tnfaip6 cKO and wild-type mice. Moreover, there were no notable variations in hair cell numbers or hearing function in noisy environments. Our results indicate that Tnfaip6 does not have a substantial impact on the auditory system.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Mice
- Mice, Transgenic
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/genetics
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Song Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiong Ding
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Haolinag Du
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
3
|
He T, Xu C, Hu W, Zhang Z, Zhou Z, Cui X, Tang Y, Dong X. Research progress on the main brain network mechanisms of sleep disorders in autism spectrum disorder. CURRENT PSYCHOLOGY 2024; 43:31674-31685. [DOI: 10.1007/s12144-024-06711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 01/03/2025]
|
4
|
Marashli S, Janz P, Redondo RL. Age-dependent deficits of auditory brainstem responses in juvenile Neurexin1α knockout rats. Sci Rep 2024; 14:22614. [PMID: 39349722 PMCID: PMC11443144 DOI: 10.1038/s41598-024-73920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Abnormal sensory processing is core to neuropsychiatric and neurodevelopmental disorders, such as schizophrenia and autism spectrum disorders. Developing efficient therapies requires understanding the basic sensory pathways and identifying circuit abnormalities during early development. Auditory brainstem responses (ABRs) are well-established biomarkers for auditory processing on the brainstem level. Beyond their advantage of being easily applicable in clinics (given their non-invasive nature), ABRs have high reproducibility in rodents and translate well to humans (e.g. wave identity), despite species differences (e.g. wave features). We hypothesized that ABRs would reveal sensory abnormalities in neurodevelopmental models with construct validity, such as Neurexin1α knockout (Nrxn1α KO) rats during their development. In a previous study, adult Nrxn1α KO rats showed altered cortical auditory-evoked potentials and impaired prediction error to auditory stimuli (Janz in Transl Psychiat, 12:455, 2022 ). This study used ABR measurements to assess brainstem physiology during auditory processing in Nrxn1α KO rats and their wild-type littermates. Therefore, we followed the development trajectories of ABRs from the age of 3 weeks to 12 weeks longitudinally. We found that juvenile Nrxn1α KO rats (3 weeks of age) show altered ABRs, which normalized during further development. This alteration was confined to increased latency in waves II, III, and IV of the ABRs, suggesting impaired auditory processing on the level of the superior olivary complex and inferior colliculus. In conclusion, our results suggest that early but transient deficits in the processing of auditory information on the level of the brainstem are present in Nrxn1α KO rats, which may contribute to later cortical auditory processing deficits observed in adulthood. Our study emphasizes the value of ABRs as a functional readout of auditory brainstem circuit function with potential value as a translational biomarker.
Collapse
Affiliation(s)
- Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
5
|
Wilde M, Ghanbari A, Mancienne T, Moran A, Poulsen RE, Constantin L, Lee C, Scholz LA, Arnold J, Qin W, Karle TJ, Petrou S, Favre-Bulle I, Hoffman EJ, Scott EK. Brain-wide circuitry underlying altered auditory habituation in zebrafish models of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611137. [PMID: 39282371 PMCID: PMC11398315 DOI: 10.1101/2024.09.04.611137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Auditory processing is widely understood to occur differently in autism, though the patterns of brain activity underlying these differences are not well understood. The diversity of autism also means brain-wide networks may change in various ways to produce similar behavioral outputs. We used larval zebrafish to investigate auditory habituation in four genetic lines relevant to autism: fmr1, mecp2, scn1lab and cntnap2. In free-swimming behavioral tests, we found each line had a unique profile of auditory hypersensitivity and/or delayed habituation. Combining the optical transparency of larval zebrafish with genetically encoded calcium indicators and light-sheet microscopy, we then observed brain-wide activity at cellular resolution during auditory habituation. As with behavior, each line showed unique alterations in brain-wide spontaneous activity, auditory processing, and adaptation in response to repetitive acoustic stimuli. We also observed commonalities in activity across our genetic lines that indicate shared circuit changes underlying certain aspects of their behavioral phenotypes. These were predominantly in regions involved in sensory integration and sensorimotor gating rather than primary auditory areas. Overlapping phenotypes include differences in the activity and functional connectivity of the telencephalon, thalamus, dopaminergic regions, and the locus coeruleus, and excitatory/inhibitory imbalance in the cerebellum. Unique phenotypes include loss of activity in the habenula in scn1lab, increased activity in auditory regions in fmr1, and differences in network activity over time in mecp2 and cntnap2. Comparing these distinct but overlapping brain-wide auditory networks furthers our understanding of how diverse genetic factors can produce similar behavioral effects through a range of circuit- and network-scale mechanisms.
Collapse
Affiliation(s)
- Maya Wilde
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Anahita Ghanbari
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Tessa Mancienne
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Ailís Moran
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Rebecca E. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Lena Constantin
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Conrad Lee
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Leandro Aluisio Scholz
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Joshua Arnold
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Wei Qin
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Timothy J. Karle
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Itia Favre-Bulle
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Ellen J. Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ethan K. Scott
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| |
Collapse
|
6
|
Mohammad S, Gentreau M, Dubol M, Rukh G, Mwinyi J, Schiöth HB. Association of polygenic scores for autism with volumetric MRI phenotypes in cerebellum and brainstem in adults. Mol Autism 2024; 15:34. [PMID: 39113134 PMCID: PMC11304666 DOI: 10.1186/s13229-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.
Collapse
Affiliation(s)
- Salahuddin Mohammad
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Wadle SL, Ritter TC, Wadle TTX, Hirtz JJ. Topography and Ensemble Activity in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. eNeuro 2024; 11:ENEURO.0396-23.2024. [PMID: 38627066 PMCID: PMC11097631 DOI: 10.1523/eneuro.0396-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca2+ imaging in FMR1 (fragile X messenger ribonucleoprotein 1) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals. We additionally analyzed ensemble AC activity in response to various sounds and found subfield-specific differences. In A1, ensemble correlations were lower in general, while in secondary AC (A2), correlations were higher in response to complex sounds, but not to pure tones. Furthermore, sound specificity of ensemble activity was decreased in AAF. Repeating these experiments 1 week later revealed no major differences regarding representational drift. Nevertheless, we found subfield- and genotype-specific changes in ensemble correlation values between the two times points, hinting at alterations in network stability in FMR1 KO mice. These detailed insights into AC network activity and topography in FMR1 KO mice add to the understanding of auditory processing defects in FXS.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tamara C Ritter
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tatjana T X Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
8
|
Marashli S, Janz P, Redondo RL. Auditory brainstem responses are resistant to pharmacological modulation in Sprague Dawley wild-type and Neurexin1α knockout rats. BMC Neurosci 2024; 25:18. [PMID: 38491350 PMCID: PMC10941391 DOI: 10.1186/s12868-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.
Collapse
Affiliation(s)
- Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
9
|
Haihambo N, Ma Q, Baetens K, Bylemans T, Heleven E, Baeken C, Deroost N, Van Overwalle F. Two is company: The posterior cerebellum and sequencing for pairs versus individuals during social preference prediction. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1482-1499. [PMID: 37821755 PMCID: PMC10684703 DOI: 10.3758/s13415-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Tom Bylemans
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
10
|
Torres EB, Twerski G, Varkey H, Rai R, Elsayed M, Katz MT, Tarlowe J. The time is ripe for the renaissance of autism treatments: evidence from clinical practitioners. Front Integr Neurosci 2023; 17:1229110. [PMID: 37600235 PMCID: PMC10437220 DOI: 10.3389/fnint.2023.1229110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Recent changes in diagnostics criteria have contributed to the broadening of the autism spectrum disorders and left clinicians ill-equipped to treat the highly heterogeneous spectrum that now includes toddlers and children with sensory and motor issues. Methods To uncover the clinicians' critical needs in the autism space, we conducted surveys designed collaboratively with the clinicians themselves. Board Certified Behavioral Analysts (BCBAs) and developmental model (DM) clinicians obtained permission from their accrediting boards and designed surveys to assess needs and preferences in their corresponding fields. Results 92.6% of BCBAs are open to diversified treatment combining aspects of multiple disciplines; 82.7% of DMs also favor this diversification with 21.8% valuing BCBA-input and 40.6% neurologists-input; 85.9% of BCBAs and 85.3% of DMs advocate the use of wearables to objectively track nuanced behaviors in social exchange; 76.9% of BCBAs and 57.0% DMs feel they would benefit from augmenting their knowledge about the nervous systems of Autism (neuroscience research) to enhance treatment and planning programs; 50.0% of BCBAs feel they can benefit for more training to teach parents. Discussion Two complementary philosophies are converging to a more collaborative, integrative approach favoring scalable digital technologies and neuroscience. Autism practitioners seem ready to embrace the Digital-Neuroscience Revolutions under a new cooperative model.
Collapse
Affiliation(s)
- Elizabeth B. Torres
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Rutgers Center for Cognitive Science, Rutgers the State University of New Jersey, Piscataway, NJ, United States
- Department of Computer Science, Rutgers Center for Biomedicine Imaging and Modeling, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | | | - Hannah Varkey
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Richa Rai
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Mona Elsayed
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| | - Miriam Tirtza Katz
- MTK Therapy, Yahalom NJ, Family Advocacy and Support, Agudas Yisroel of America, Lakewood, NJ, United States
| | - Jillian Tarlowe
- Sensory Motor Integration Laboratory, Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
11
|
Finszter CK, Kemecsei R, Zachar G, Holtkamp S, Echevarría D, Adorján I, Ádám Á, Csillag A. Early cellular and synaptic changes in dopaminoceptive forebrain regions of juvenile mice following gestational exposure to valproate. Front Neuroanat 2023; 17:1235047. [PMID: 37603782 PMCID: PMC10435871 DOI: 10.3389/fnana.2023.1235047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
Gestational exposure of mice to valproic acid (VPA) is one currently used experimental model for the investigation of typical failure symptoms associated with autism spectrum disorder (ASD). In the present study we hypothesized that the reduction of dopaminergic source neurons of the VTA, followed by perturbed growth of the mesotelencephalic dopamine pathway (MT), should also modify pattern formation in the dopaminoceptive target regions (particularly its mesoaccumbens/mesolimbic portion). Here, we investigated VPA-evoked cellular morphological (apoptosis-frequency detected by Caspase-3, abundance of Ca-binding proteins, CaBP), as well as synaptic proteomic (western blotting) changes, in selected dopaminoceptive subpallial, as compared to pallial, regions of mice, born to mothers treated with 500 mg/kg VPA on day 13.5 of pregnancy. We observed a surge of apoptosis on VPA treatment in nearly all investigated subpallial and pallial regions; with a non-significant trend of similar increase the nucleus accumbens (NAc) at P7, the age at which the MT pathway reduction has been reported (also supplemented by current findings). Of the CaBPs, calretinin (CR) expression was decreased in pallial regions, most prominently in retrosplenial cortex, but not in the subpallium of P7 mice. Calbindin-D 28K (CB) was selectively reduced in the caudate-putamen (CPu) of VPA exposed animals at P7 but no longer at P60, pointing to a potency of repairment. The VPA-associated overall increase in apoptosis at P7 did not correlate with the abundance and distribution of CaBPs, except in CPu, in which the marked drop of CB was negatively correlated with increased apoptosis. Abundance of parvalbumin (PV) at P60 showed no significant response to VPA treatment in any of the observed regions we did not find colocalization of apoptotic (Casp3+) cells with CaBP-immunoreactive neurons. The proteomic findings suggest reduction of tyrosine hydroxylase in the crude synaptosome fraction of NAc, but not in the CPu, without simultaneous decrease of the synaptic protein, synaptophysin, indicating selective impairment of dopaminergic synapses. The morpho-functional changes found in forebrain regions of VPA-exposed mice may signify dendritic and synaptic reorganization in dopaminergic target regions, with potential translational value to similar impairments in the pathogenesis of human ASD.
Collapse
Affiliation(s)
- Cintia Klaudia Finszter
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sophie Holtkamp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - István Adorján
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Lip-Sosa DL, Pérez-Cruz M, Ahumada-Droguett P, Ribas-Prats T, Puertollano M, García-Gómez MA, Mazarico E, Eixarch E, Escera C, Gómez-Roig MD. Corpus callosum-fastigium and tectal lengths in late-onset small fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:226-233. [PMID: 36722073 DOI: 10.1002/uog.26169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE To investigate measurements on neurosonography of midbrain morphology, including corpus callosum-fastigium length and tectal length, in late-onset small fetuses subclassified as small-for-gestational-age (SGA) or growth-restricted (FGR). METHODS This was a case-control study of consecutive singleton pregnancies delivered at term at a single center between January 2019 and July 2021, including those with late-onset smallness (estimated fetal weight (EFW) < 10th centile) and appropriate-for-gestational-age controls matched by age at neurosonography. Small fetuses were further subdivided into SGA (EFW between 3rd and 9th centile and normal fetoplacental Doppler) and FGR (EFW < 3rd centile or EFW < 10th centile with abnormal cerebroplacental ratio and/or uterine artery Doppler). Transvaginal neurosonography was performed at a mean ± SD gestational age of 33 ± 1 weeks in all fetuses to evaluate corpus callosum-fastigium length and tectal length in the midsagittal plane. Intra- and interobserver agreement was evaluated using the intraclass correlation coefficient and Bland-Altman plots. RESULTS A total of 70 fetuses with late-onset smallness (29 with SGA and 41 with FGR) and 70 controls were included. Compared with controls, small fetuses showed significantly shorter corpus callosum-fastigium length (median (interquartile range), 44.7 (43.3-46.8) mm vs 43.7 (42.4-45.5) mm, P < 0.001) and tectal length (mean ± SD, 10.5 ± 0.9 vs 9.6 ± 1.0 mm, P < 0.001). These changes were more prominent in FGR fetuses, with a linear trend across groups according to severity of smallness. Corpus callosum-fastigium length and tectal length measurements showed excellent intra- and interobserver reliability. CONCLUSIONS Small fetuses exhibited shorter corpus callosum-fastigium length and tectal length compared with controls, and these differences were more pronounced in fetuses with more severe smallness. These findings illustrate the potential value of midbrain measurements assessed on neurosonography as biomarkers for brain development in a high-risk population. However, further studies correlating these parameters with postnatal functional tests and follow-up are needed. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- D L Lip-Sosa
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - M Pérez-Cruz
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - P Ahumada-Droguett
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - T Ribas-Prats
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - M Puertollano
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - M A García-Gómez
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - E Mazarico
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - E Eixarch
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - C Escera
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - M D Gómez-Roig
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Wada M, Hayashi K, Seino K, Ishii N, Nawa T, Nishimaki K. Qualitative and quantitative analysis of self-care regarding sensory issues among people with neurodevelopmental disorders. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2023; 2:1177075. [PMID: 39816897 PMCID: PMC11731913 DOI: 10.3389/frcha.2023.1177075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 01/18/2025]
Abstract
Introduction Issues in sensory processing (hereafter, sensory issues) associated with neurodevelopmental disorders are known to be particularly prominent from 6 to 9 years of age and are a critical issue in school life. These issues affect each individual's quality of life. Some of the issues are known to be relieved by self-care while some are not. Methods To clarify the sensory issues that cannot be managed by self-care, this study examined self-care for sensory issues among people with neurodevelopmental disorders using a web survey. The survey encompassed questions about neurodevelopmental disorders, the sensory issues individuals experience, and the kind of self-care they perform. In the qualitative analysis, each was categorized by the type of sensory modality; we further scrutinized the descriptions of self-care, which were collected simultaneously, and examined how each problem was addressed. Results Self-care was categorized as "physically blocking," "leaving from," "relaxing," "devising," "help from others," "taking medication," "coping with body," "others," or "could not cope." Based on these findings, we quantitatively compared the frequency of sensory issues that could and could not be managed by self-care. Consequently, significantly higher percentages of the participants stated that they experienced difficulties in managing problems about "body representations," "contact with humans," "selective listening," and "force control." In contrast, significantly more participants stated that they could manage problems related to "loud sound" and "dazzling". Conclusion In this study, qualitative analysis allowed us to categorize methods of self-care for sensory issues, and quantitative research allowed us to identify issues that were difficult to manage. While it was possible to manage strong light and sound using sunglasses, earplugs, and so on, problems related to the senses of proprioception, selective attention, and so on were clearly difficult to manage.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Katsuya Hayashi
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kai Seino
- Psychological Experiment Section, Department of Social Rehabilitation, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Naomi Ishii
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Taemi Nawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kengo Nishimaki
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Hospital of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Pediatrics, Niigata National Hospital, National Hospital Organization, Kashiwazaki, Japan
| |
Collapse
|
14
|
Torres EB, Varkey H, Vero J, London E, Phan H, Kittler P, Gordon A, Delgado RE, Delgado CF, Simpson EA. Sensing echoes: temporal misalignment in auditory brainstem responses as the earliest marker of neurodevelopmental derailment. PNAS NEXUS 2023; 2:pgac315. [PMID: 36798622 PMCID: PMC9927073 DOI: 10.1093/pnasnexus/pgac315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 02/16/2023]
Abstract
Neurodevelopmental disorders are on the rise worldwide, with diagnoses that detect derailment from typical milestones by 3 to 4.5 years of age. By then, the circuitry in the brain has already reached some level of maturation that inevitably takes neurodevelopment through a different course. There is a critical need then to develop analytical methods that detect problems much earlier and identify targets for treatment. We integrate data from multiple sources, including neonatal auditory brainstem responses (ABR), clinical criteria detecting autism years later in those neonates, and similar ABR information for young infants and children who also received a diagnosis of autism spectrum disorders, to produce the earliest known digital screening biomarker to flag neurodevelopmental derailment in neonates. This work also defines concrete targets for treatment and offers a new statistical approach to aid in guiding a personalized course of maturation in line with the highly nonlinear, accelerated neurodevelopmental rates of change in early infancy.
Collapse
Affiliation(s)
| | - Hannah Varkey
- Psychology Department, Rutgers University, 152 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Joe Vero
- Psychology Department, Rutgers University, 152 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Eric London
- New York State Office for People with Developmental Disabilities (OPWDD), Institute for Basic Research in Developmental Disabilities (IBR), 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Ha Phan
- New York State Office for People with Developmental Disabilities (OPWDD), Institute for Basic Research in Developmental Disabilities (IBR), 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Phyllis Kittler
- New York State Office for People with Developmental Disabilities (OPWDD), Institute for Basic Research in Developmental Disabilities (IBR), 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Anne Gordon
- New York State Office for People with Developmental Disabilities (OPWDD), Institute for Basic Research in Developmental Disabilities (IBR), 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Rafael E Delgado
- Intelligent Hearing Systems Corp, 6860 SW 81st St, Miami, FL, 33143, USA
| | - Christine F Delgado
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL 33124, USA
| | - Elizabeth A Simpson
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL 33124, USA
| |
Collapse
|
15
|
Iacono D, Murphy EK, Stimpson CD, Leonessa F, Perl DP. Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci 2023; 13:286. [PMID: 36831830 PMCID: PMC9954059 DOI: 10.3390/brainsci13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100β, PDGF) and genomic (DNA polymerase-β, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100β, DNA-polymerase-β, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Neurodegenerative Clinics, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20814, USA
| | - Erin K. Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Cheryl D. Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Fabio Leonessa
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
| | - Daniel P. Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD 20814, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Wada M, Hayashi K, Seino K, Ishii N, Nawa T, Nishimaki K. Qualitative and quantitative analysis of self-reported sensory issues in individuals with neurodevelopmental disorders. Front Psychiatry 2023; 14:1077542. [PMID: 36846233 PMCID: PMC9948627 DOI: 10.3389/fpsyt.2023.1077542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Individuals with neurodevelopmental disorders, such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and specific learning disorders (SLD) have various types of sensory characteristics. METHODS This study investigated sensory issues in individuals with neurodevelopmental disorders using a web-based questionnaire for qualitative and quantitative analysis, categorized the contents of their three most distressful sensory issues, and evaluated their order of priority. RESULTS Auditory problems were reported as the most distressing sensory issue among the participants. In addition to auditory problems, individuals with ASD frequently reported more tactile problems, and individuals with SLD reported more visual problems. Among the individual sensory issues, in addition to aversion to sudden, strong, or specific stimuli, some participants reported confusions regarding multiple stimuli presenting concurrently. Additionally, the sensory issues related to foods (i.e., taste) was relatively more common in the minor group. CONCLUSION These results suggest that the diversity of sensory issues experienced should be carefully considered when aiding persons with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Katsuya Hayashi
- Information and Support Center for Persons With Developmental Disorders, National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Kai Seino
- Psychological Experiment Section, Department of Social Rehabilitation, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Naomi Ishii
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Taemi Nawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Kengo Nishimaki
- Information and Support Center for Persons With Developmental Disorders, National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan.,Hospital of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| |
Collapse
|
17
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Zhao X, Zhu S, Cao Y, Cheng P, Lin Y, Sun Z, Li Y, Jiang W, Du Y. Regional homogeneity of adolescents with high-functioning autism spectrum disorder and its association with symptom severity. Brain Behav 2022; 12:e2693. [PMID: 35816591 PMCID: PMC9392530 DOI: 10.1002/brb3.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have revealed abnormal regional homogeneity (ReHo) in individuals with autism spectrum disorder (ASD); however, there is little consistency across the findings within these studies, partly due to small sample size and great heterogeneity among participants between studies. Additionally, few studies have explored the association between ReHo aberrance and clinical symptoms in individuals with ASD. METHODS Forty-eight adolescents with high-functioning ASD and 63 group-matched typically developing (TD) controls received functional magnetic resonance imaging at rest. Group-level analysis was performed to detect differences in ReHo between ASD and TD. Evaluation of symptom severity in individuals with ASD was based on the Autism Behavior Checklist (ABC). Voxel-wise correlation analysis was undergone to examine the correlations between the symptom severity and ReHo map in individuals with ASD within brain areas with ReHo abnormalities. RESULTS Compared with the TD controls, individuals with ASD exhibited increased ReHo in the bilateral anterior cingulate cortex, left caudate, right posterior cerebellum (cerebellar tonsil), and bilateral brainstem and decreased ReHo in the left precentral gyrus, left inferior parietal lobule, bilateral postcentral gyrus, and right anterior cerebellum (culmen). The correlation analysis indicated that the ReHo value in the brainstem was negatively associated with the ABC total scores and the scores of Relating factor, respectively. CONCLUSIONS Our findings indicated that widespread ReHo abnormalities occurred in ASD, shedding light on the underlying neurobiology of pathogenesis and symptomatology of ASD.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyi Zhu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Cao
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, China
| | - Peipei Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiong Lin
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixin Sun
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Jiang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yasong Du
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|