1
|
Varley TF, Sporns O, Stevenson NJ, Yrjölä P, Welch MG, Myers MM, Vanhatalo S, Tokariev A. Emergence of a synergistic scaffold in the brains of human infants. Commun Biol 2025; 8:743. [PMID: 40360743 PMCID: PMC12075868 DOI: 10.1038/s42003-025-08082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The human brain is a complex organ comprising billions of interconnected neurons, which enables interaction with both physical and social environments. Neural dynamics of the whole brain go far beyond just the sum of its individual elements; a property known as "synergy". Previously it has been shown that synergy is crucial for many complex brain functions and cognition, however, it remains unknown how and when the large number of discrete neurons evolve into the unified system able to support synergistic interactions. Here we analyzed high-density electroencephalography data from the late fetal period to one month after term age. We found that the human brain transitions from a redundancy-dominated to a synergy-dominated system around birth. Frontal regions lead the emergence of a synergistic scaffold comprised of overlapping subsystems, while the integration of sensory areas developed gradually, from occipital to central regions. Strikingly, early developmental trajectories of brain synergy were modulated by environmental enrichment associated with enhanced mother-infant interactions, and the level of synergy near term equivalent age was associated with later neurocognitive development.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Anton Tokariev
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA.
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.
- Early Brain Activity, Systems, and Health Group, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Risk B, Li L, Jones W, Shultz S. Dynamics of infant white matter maturation from birth to 6 months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638114. [PMID: 39990497 PMCID: PMC11844443 DOI: 10.1101/2025.02.13.638114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The first months after a baby's birth encompass the most rapid period of postnatal change in the human lifespan, but longitudinal trajectories of white matter maturation in this period remain uncharted. Using densely sampled diffusion tensor images collected longitudinally at a mean rate of 1 scan per 1.55 days, we measured non-linear growth and growth rate trajectories of major white matter tracts from birth to 6 months. Growth rates at birth were 6 to 11 times faster than at 6 months, with tracts less mature at birth developing fastest. When matched on chronological age, shorter gestation infants had less mature white matter at birth but faster growth rates than their longer gestation peers; however, growth trajectories were highly similar when corrected for gestational age. This is the first study to estimate white matter trajectories using dense sampling in the first 6 post-natal months, which can inform the study of neurodevelopmental disorders beginning in infancy.
Collapse
Affiliation(s)
- Benjamin Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Warren Jones
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Shultz
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Ribic A, McCoy E, Pendala V, Fariborzi M, Demir L, Buell O, Fedde S, Stinger J, Elbaum L, Holsworth T, Awude PA. Adolescent-like Processing of Behaviorally Salient Cues in Sensory and Prefrontal Cortices of Adult Preterm-Born Mice. RESEARCH SQUARE 2024:rs.3.rs-5529783. [PMID: 39711564 PMCID: PMC11661414 DOI: 10.21203/rs.3.rs-5529783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using in vivo electrophysiology, we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence. Moreover, the non-rewarded cue fails to robustly activate the V1 and V1-projecting ACC neurons during error trials, in contrast to prefrontal fast-spiking (FS) interneurons which show elevated error-related activity, suggesting that preterm birth impairs the function of prefrontal circuits for error monitoring. Finally, environmental enrichment, a well-established paradigm that promotes sensory maturation, failed to improve the performance of preterm mice, suggesting limited capacity of early interventions for reducing the risk of cognitive deficits after preterm birth. Altogether, our study for the first time identifies potential circuit mechanisms of cognitive atypicalities in the preterm population and highlights the vulnerability of prefrontal circuits to advanced onset of extrauterine experience.
Collapse
|
4
|
McCoy E, Pendala V, Fariborzi M, Demir LY, Buell O, Fedde S, Stinger J, Elbaum L, Holsworth TD, Amenyo-Awude P, Ribic A. Adolescent-like Processing of Behaviorally Salient Cues in Sensory and Prefrontal Cortices of Adult Preterm-Born Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625455. [PMID: 39651152 PMCID: PMC11623638 DOI: 10.1101/2024.11.26.625455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using in vivo electrophysiology , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence. Moreover, the non-rewarded cue fails to robustly activate the V1 and V1-projecting ACC neurons during error trials, in contrast to prefrontal fast-spiking (FS) interneurons which show elevated error-related activity, suggesting that preterm birth impairs the function of prefrontal circuits for error monitoring. Finally, environmental enrichment, a well-established paradigm that promotes sensory maturation, failed to improve the performance of preterm mice, suggesting limited capacity of early interventions for reducing the risk of cognitive deficits after preterm birth. Altogether, our study for the first time identifies potential circuit mechanisms of cognitive atypicalities in the preterm population and highlights the vulnerability of prefrontal circuits to advanced onset of extrauterine experience.
Collapse
|
5
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Stanyard RA, Mason D, Ellis C, Dickson H, Short R, Batalle D, Arichi T. Aperiodic and Hurst EEG exponents across early human brain development: A systematic review. Dev Cogn Neurosci 2024; 68:101402. [PMID: 38917647 PMCID: PMC11254951 DOI: 10.1016/j.dcn.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
In electroencephalographic (EEG) data, power-frequency slope exponents (1/f_β) can provide non-invasive markers of in vivo neural activity excitation-inhibition (E:I) balance. E:I balance may be altered in neurodevelopmental conditions; hence, understanding how 1/fβ evolves across infancy/childhood has implications for developing early assessments/interventions. This systematic review (PROSPERO-ID: CRD42023363294) explored the early maturation (0-26 yrs) of resting-state EEG 1/f measures (aperiodic [AE], power law [PLE] and Hurst [HE] exponents), including studies containing ≥1 1/f measures and ≥10 typically developing participants. Five databases (including Embase and Scopus) were searched during March 2023. Forty-two studies were identified (Nparticipants=3478). Risk of bias was assessed using the Quality Assessment with Diverse Studies tool. Narrative synthesis of HE data suggests non-stationary EEG activity occurs throughout development. Age-related trends were complex, with rapid decreases in AEs during infancy and heterogenous changes thereafter. Regionally, AE maxima shifted developmentally, potentially reflecting spatial trends in maturing brain connectivity. This work highlights the importance of further characterising the development of 1/f measures to better understand how E:I balance shapes brain and cognitive development.
Collapse
Affiliation(s)
- R A Stanyard
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - D Mason
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - C Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - H Dickson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - R Short
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - D Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - T Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom; Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, United Kingdom; Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
7
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|