1
|
Bahdar ZI, Abu-El-Rub E, Almazari R, Alzu'bi A, Al-Zoubi RM. The molecular mechanism of nitric oxide in memory consolidation and its role in the pathogenesis of memory-related disorders. Neurogenetics 2025; 26:22. [PMID: 39853459 PMCID: PMC11762006 DOI: 10.1007/s10048-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx. NO is known to regulate many signaling pathways including those related to memory consolidation. To throw light on the precise molecular mechanism of nitric oxide (NO) in memory consolidation and the possibility of targeting NO pathways as a therapeutic approach to scale down cognitive impairments. We conducted a search of the PubMed MEDLINE database, maintained by the US National Library of Medicine. The search strategy utilized Medical Subject Headings (MeSH) terms, including "nitric oxide and memory," "nitric oxide synthesis in the brain," "nitric oxide and Alzheimer's," "nitric oxide and Parkinson's," and "nitric oxide, neurodegenerative disorders, and psychiatric disorders." Additionally, relevant keywords such as "nitric oxide," "memory," and "cognitive disorders" were employed. We included the most recent preclinical and clinical studies pertinent to the review topic and limited the selection to articles published in English. NO exerts its role in memory consolidation by diffusing between neurons to promote synaptic plasticity, especially long-term potentiation (LTP). It acts as a retrograde messenger, neurotransmitter release modulator, and synaptic protein modifier. The dysregulation of NO balance in the brain can contribute to the pathogenesis of various neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and psychiatric disorders. The disturbance in NO signaling is strongly correlated with synaptic signaling dysfunction and oxidative stress. NO plays a fundamental role in memory consolidation, and its dysregulation contributes to cognitive impairment-a hallmark of numerous neurodegenerative and psychiatric disorders. Future research should aim to deepen our understanding of the mechanisms underlying NO's involvement in memory consolidation and to explore therapeutic strategies targeting the NO pathway to mitigate cognitive decline in affected individuals.
Collapse
Affiliation(s)
- Zainab I Bahdar
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Raed M Al-Zoubi
- Department of Surgery, Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
2
|
Kulbe JR, Nguyen L, Le AA, Laird AE, Taffe MA, Nguyen JD, Fields JA. Nicotine, THC, and Dolutegravir Modulate E-Cigarette-Induced Changes in Addiction- and Inflammation-Associated Genes in Rat Brains and Astrocytes. Brain Sci 2023; 13:1556. [PMID: 38002516 PMCID: PMC10670019 DOI: 10.3390/brainsci13111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
E-cigarette use has been marketed as a safer alternative to traditional cigarettes, as a means of smoking cessation, and are used at a higher rate than the general population in people with HIV (PWH). Early growth receptor 2 (EGR2) and Activity-Regulated Cytoskeleton-Associated Protein (ARC) have a role in addiction, synaptic plasticity, inflammation, and neurodegeneration. This study showed that 10 days of exposure to e-cigarette vapor altered gene expression in the brains of 6-month-old, male, Sprague Dawley rats. Specifically, the e-cigarette solvent vapor propylene glycol (PG) downregulated EGR2 and ARC mRNA expression in frontal cortex, an effect which was reversed by nicotine (NIC) and THC, suggesting that PG could have a protective role against NIC and cannabis dependence. However, in vitro, PG upregulated EGR2 and ARC mRNA expression at 18 h in cultured C6 rat astrocytes suggesting that PG may have neuroinflammatory effects. PG-induced upregulation of EGR2 and ARC mRNA was reversed by NIC but not THC. The HIV antiretroviral DTG reversed the effect NIC had on decreasing PG-induced upregulation of EGR2, which is concerning because EGR2 has been implicated in HIV latency reversal, T-cell apoptosis, and neuroinflammation, a process that underlies the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Jacqueline Renee Kulbe
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Lauren Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Alexandra Anh Le
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Michael A. Taffe
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| | - Jacques D. Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA;
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (J.R.K.); (L.N.); (A.A.L.); (A.E.L.); (M.A.T.)
| |
Collapse
|
3
|
Shepilov D, Osadchenko I, Kovalenko T, Yamada C, Chereshynska A, Smozhanyk K, Ostrovska G, Groppa S, Movila A, Skibo G. Maternal antibiotic administration during gestation can affect the memory and brain structure in mouse offspring. Front Cell Neurosci 2023; 17:1176676. [PMID: 37234915 PMCID: PMC10206017 DOI: 10.3389/fncel.2023.1176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Maternal antibiotics administration (MAA) is among the widely used therapeutic approaches in pregnancy. Although published evidence demonstrates that infants exposed to antibiotics immediately after birth have altered recognition memory responses at one month of age, very little is known about in utero effects of antibiotics on the neuronal function and behavior of children after birth. Therefore, this study aimed to evaluate the impact of MAA at different periods of pregnancy on memory decline and brain structural alterations in young mouse offspring after their first month of life. To study the effects of MAA on 4-week-old offspring, pregnant C57BL/6J mouse dams (2-3-month-old; n = 4/group) were exposed to a cocktail of amoxicillin (205 mg/kg/day) and azithromycin (51 mg/kg/day) in sterile drinking water (daily/1 week) during either the 2nd or 3rd week of pregnancy and stopped after delivery. A control group of pregnant dams was exposed to sterile drinking water alone during all three weeks of pregnancy. Then, the 4-week-old offspring mice were first evaluated for behavioral changes. Using the Morris water maze assay, we revealed that exposure of pregnant mice to antibiotics at the 2nd and 3rd weeks of pregnancy significantly altered spatial reference memory and learning skills in their offspring compared to those delivered from the control group of dams. In contrast, no significant difference in long-term associative memory was detected between offspring groups using the novel object recognition test. Then, we histologically evaluated brain samples from the same offspring individuals using conventional immunofluorescence and electron microscopy assays. To our knowledge, we observed a reduction in the density of the hippocampal CA1 pyramidal neurons and hypomyelination in the corpus callosum in groups of mice in utero exposed to antibiotics at the 2nd and 3rd weeks of gestation. In addition, offspring exposed to antibiotics at the 2nd or 3rd week of gestation demonstrated a decreased astrocyte cell surface area and astrocyte territories or depletion of neurogenesis in the dentate gyrus and hippocampal synaptic loss, respectively. Altogether, this study shows that MAA at different times of pregnancy can pathologically alter cognitive behavior and brain development in offspring at an early age after weaning.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Tetiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anastasiia Chereshynska
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Galyna Ostrovska
- Department of Cytology, Histology, and Reproductive Medicine, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
- Department of Neurology, State University of Medicine and Pharmacy “Nicolae Testemiţanu”, Chisinau, Moldova
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Electroacupuncture Increases the Hippocampal Synaptic Transmission Efficiency and Long-Term Plasticity to Improve Vascular Cognitive Impairment. Mediators Inflamm 2022; 2022:5985143. [PMID: 35784174 PMCID: PMC9246579 DOI: 10.1155/2022/5985143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Studies have shown that electroacupuncture (EA) can effectively improve vascular cognitive impairment (VCI), but its mechanisms have not been clearly elucidated. This study is aimed at investigating the mechanisms underlying the effects of EA treatment on hippocampal synaptic transmission efficiency and plasticity in rats with VCI. Methods. Sprague–Dawley rats were subjected to VCI with bilateral common carotid occlusion (2VO). EA stimulation was applied to Baihui (GV20) and Shenting (GV24) acupoints for 30 min once a day, five times a week, for four weeks. Our study also included nonacupoint groups to confirm the specificity of EA therapy. The Morris water maze (MWM) was used to assess cognitive function. Electrophysiological techniques were used to detect the field characteristics of the hippocampal CA3–CA1 circuit in each group of rats, including input-output (I/O), paired-pulse facilitation ratios (PPR), field excitatory postsynaptic potential (fEPSP), and excitatory postsynaptic current (EPSC). The expression of synapse- and calcium-mediated signal transduction associated proteins was detected through western blotting. Results. The MWM behavioural results showed that EA significantly improved cognitive function in VCI model rats. EA increased the I/O curve of VCI model rats from 20 to 90 μA. No significant differences were observed in hippocampal PPR. The fEPSP of the hippocampal CA3–CA1 circuit was significantly increased after EA treatment compared with that after nonacupuncture treatment. We found that EA led to an increase in the EPSC amplitude and frequency, especially in the decay and rise times. In addition, the protein expression and phosphorylation levels of N-methyl-D-aspartate receptor 2B, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 1, and Ca2+-calmodulin-dependent protein kinase II increased to varying degrees in the hippocampus of VCI model rats. Conclusion. EA at GV20 and GV24 acupoints increased the basic synaptic transmission efficiency and synaptic plasticity of the hippocampal CA3–CA1 circuit, thereby improving learning and memory ability in rats with VCI.
Collapse
|
5
|
Role of hippocampal NF-κB and GluN2B in the memory acquisition impairment of experiences gathered prior to cocaine administration in rats. Sci Rep 2021; 11:20033. [PMID: 34625609 PMCID: PMC8501066 DOI: 10.1038/s41598-021-99448-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cocaine can induce severe neurobehavioral changes, among others, the ones involved in learning and memory processes. It is known that during drug consumption, cocaine-associated memory and learning processes take place. However, much less is known about the effects of this drug upon the mechanisms involved in forgetting.The present report focuses on the mechanisms by which cocaine affects memory consolidation of experiences acquired prior to drug administration. We also study the involvement of hippocampus in these processes, with special interest on the role of Nuclear factor kappa B (NF-κB), N-methyl-D-aspartate glutamate receptor 2B (GluN2B), and their relationship with other proteins, such as cyclic AMP response element binding protein (CREB). For this purpose, we developed a rat experimental model of chronic cocaine administration in which spatial memory and the expression or activity of several proteins in the hippocampus were assessed after 36 days of drug administration. We report an impairment in memory acquisition of experiences gathered prior to cocaine administration, associated to an increase in GluN2B expression in the hippocampus. We also demonstrate a decrease in NF-κB activity, as well as in the expression of the active form of CREB, confirming the role of these transcription factors in the cocaine-induced memory impairment.
Collapse
|
6
|
Soares CB, Daré LR, Lima KR, Lopes LF, Santos AGD, Schimidt HL, Carpes FP, Lloret A, Viña J, Mello-Carpes PB. Multicomponent Training Prevents Memory Deficit Related to Amyloid-β Protein-Induced Neurotoxicity. J Alzheimers Dis 2021; 83:143-154. [PMID: 34275902 DOI: 10.3233/jad-210424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the accumulation of the amyloid-β peptide in the brain, leading to early oxidative stress and neurotoxicity. It has been suggested that physical exercise could be beneficial in preventing AD, but studies with multicomponent training are scanty. OBJECTIVE Verify the effects of multicomponent exercise training to prevent deficits in recognition memory related to Aβ neurotoxicity. METHODS We subjected Wistar rats to multicomponent training (including aerobic and anaerobic physical exercise and cognitive exercise) and then infused amyloid-β peptide into their hippocampus. RESULTS We show that long-term multicomponent training prevents the amyloid-β-associated neurotoxicity in the hippocampus. It reduces hippocampal lipid peroxidation, restores antioxidant capacity, and increases glutathione levels, finally preventing recognition memory deficits. CONCLUSION Multicomponent training avoids memory deficits related to amyloid-β neurotoxicity on an animal model.
Collapse
Affiliation(s)
| | - Leticia Rossi Daré
- Federal University of Pampa, campus Uruguaiana, Uruguaiana, RS, Brazil.,Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | | | | | | | | | | | | | - Jose Viña
- University of Valencia, Valencia, Spain
| | | |
Collapse
|
7
|
Saleh RA, Eissa TF, Abdallah DM, Saad MA, El-Abhar HS. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl 3-induced Alzheimer-like pathology model. Sci Rep 2021; 11:12040. [PMID: 34103557 PMCID: PMC8187628 DOI: 10.1038/s41598-021-90545-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Peganum harmala (P. harmala) is a folk medicinal herb used in the Sinai Peninsula (Egypt) as a remedy for central disorders. The main constituents, harmine and harmaline, have displayed therapeutic efficacy against Alzheimer's disease (AD); however, the P. harmala potential on sensitizing central insulin to combat AD remains to be clarified. An AD-like rat model was induced by aluminum chloride (AlCl3; 50 mg/kg/day for six consecutive weeks; i.p), whereas a methanolic standardized P. harmala seed extract (187.5 mg/kg; p.o) was given to AD rats starting 2 weeks post AlCl3 exposure. Two additional groups of rats were administered either the vehicle to serve as the normal control or the vehicle + P. harmala seed extract to serve as the P. harmala control group. P. harmala enhanced cognition appraised by Y-maze and Morris water maze tests and improved histopathological structures altered by AlCl3. Additionally, it heightened the hippocampal contents of glucagon-like peptide (GLP)-1 and insulin, but abated insulin receptor substrate-1 phosphorylation at serine 307 (pS307-IRS-1). Besides, P. harmala increased phosphorylated Akt at serine 473 (pS473-Akt) and glucose transporter type (GLUT)4. The extract also curtailed the hippocampal content of beta amyloid (Aβ)42, glycogen synthase (GSK)-3β and phosphorylated tau. It also enhanced Nrf2, while reduced lipid peroxides and replenished glutathione. In conclusion, combating insulin resistance by P. harmala is a novel machinery in attenuating the insidious progression of AD by enhancing both insulin and GLP-1 trajectories in the hippocampus favoring GLUT4 production.
Collapse
Affiliation(s)
- Rofida A Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology and Toxicology, School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
8
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
9
|
Chintamaneni PK, Krishnamurthy PT, Pindiprolu SKSS. Polysorbate-80 surface modified nano-stearylamine BQCA conjugate for the management of Alzheimer's disease. RSC Adv 2021; 11:5325-5334. [PMID: 35423107 PMCID: PMC8694636 DOI: 10.1039/d1ra00049g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Acetylcholinesterase (AChE) inhibitors such as donepezil, galantamine and rivastigmine are used for the management of dementia in Alzheimer's Disease (AD). These drugs elevate endogenous acetylcholine (ACh) levels at the M1 muscarinic receptor in the brain to achieve therapeutic benefits. However, their side effects, such as nausea, vomiting, dizziness, insomnia, loss of appetite, altered heart rate, etc., are related to non-specific peripheral activation of M2-M5 muscarinic subtypes. It is logical, therefore, to develop drugs that selectively activate brain M1 receptors. Unfortunately, the orthosteric site homology among the receptor subtypes does not permit this approach. An alternative approach is to use positive allosteric modulator (PAM) of M1 receptors like benzyl quinolone carboxylic acid (BQCA). PAMs although devoid of M1 agonist activity, however, when bound, enhance the binding affinity of orthosteric ligand, Ach. The current challenge with PAMS is their low brain half-life, permeability, and higher elimination rates. This study reports active targeting of brain M1 receptors using surface modified nano lipid-drug conjugates (LDC) of M1 PAM, BQCA, to treat AD. Polysorbate-80 (P-80) surface modified stearylamine (SA)-BQCA conjugated nanoparticles (BQCA-SA-P80-NPs) were prepared by conjugating BQCA to SA, followed by the formation of nanoparticles (NPs) using P-80 by solvent injection method. The BQCA-SA-P80-NPs are near-spherical with a particle size (PS) of 166.62 ± 1.24 nm and zeta potential (ZP) of 23.59 ± 0.37 mV. In the in vitro cytotoxicity (SH-SY5Y cells) and hemolysis assays, BQCA-SA-P80-NPs, show acceptable safety and compatibility. In mice, Alzheimer's model, BQCA-SA-P80-NPs significantly prevent STZ induced changes in memory, neuronal Aβ1-42, p-Tau, APP, NF-κB, and BACE levels and neuronal cell death, when compared to untreated disease control and naïve BQCA treated group. Further, BQCA-SA-P80-NPs significantly improve the therapeutic efficacy of AChE inhibitor, donepezil (DPZ), indicating its potentiating effects. In vivo biodistribution studies in mice show selective accumulation of BQCA-SA-P80-NPs in the brain, suggesting an improved brain bioavailability and reduced peripheral side effects of BQCA. The study results demonstrate that BQCA-SA-P80-NPs can improve brain bioavailability and therapeutic efficacy of BQCA in AD.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research) Ooty, The Nilgiris Tamil Nadu-643001 India +91-7598223850
- Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) Anantapuramu 51572 Andhra Pradesh India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research) Ooty, The Nilgiris Tamil Nadu-643001 India +91-7598223850
| | - Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research) Ooty, The Nilgiris Tamil Nadu-643001 India +91-7598223850
- Department of Pharmacology, Aditya Pharmacy College Surampalem East Godavari 533 437 Andhra Pradesh India
| |
Collapse
|
10
|
Niu Y, Wan C, Zhang J, Zhang S, Zhao Z, Zhu L, Wang X, Ren X, Wang J, Lei P. Aerobic exercise improves VCI through circRIMS2/miR-186/BDNF-mediated neuronal apoptosis. Mol Med 2021; 27:4. [PMID: 33413076 PMCID: PMC7792181 DOI: 10.1186/s10020-020-00258-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is a common cognitive disorder caused by cerebrovascular disease, ranging from mild cognitive impairment to dementia. Studies have shown that aerobic exercise might alleviate the pathological development of VCI, and our previous study observed that aerobic exercise could alleviate VCI through NF-κB/miR-503/BDNF pathway. However, there are few studies on the mechanism. Therefore, it is of great significance to fill the gaps in the mechanism for the early diagnosis of VCI and the clinical prevention and treatment of vascular dementia. METHODS CircRNA microarray analysis and quantitative real-time PCR were used to detect the expression of circRNA regulating synaptic be exocytosis 2 (RIMS2) (circRIMS2). Cell apoptosis was determined by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The dual-luciferase reporter assay was performed to verify the interaction between circRIMS2 and miR-186, as well as miR-186 and BDNF. RNA pull-down assay detected the binding between circRIMS2 and miR-186. A VCI mouse model was established by repeated ligation of bilateral common carotid arteries (2VO). The lentiviral interfering vector was injected into the VCI mice through the lateral ventricle. The mice in the aerobic exercise group performed 30 min (12 m/min) running for 5 days a week. A Morris water maze test was performed after 4 weeks. RESULTS The expression of circRIMS2 and BDNF in the serum of VCI patients was significantly reduced, miR-186 expression was increased, and the expression of circRIMS2 was increased in the 2VO group of mice undergoing aerobic exercise. The expression levels of circRIMS2 and BDNF in the oxygen and glucose deprivation-treated (OGD-treated) cells were decreased, the miR-186 expression and cell apoptosis were increased, while the effect was weakened after transfection with the lentiviral vector pLO-ciR-RIMS2. CircRIMS2 could bind to miR-186, and after interference with circRIMS2 in HT22 cells, the expression of miR-186 was increased. Besides, miR-186 could bind to BDNF, and BDNF expression was decreased because of the overexpression of miR-186 in HT22 cells. The expression level of BDNF in the pLO-ciR-RIMS2 group was increased, and apoptosis was decreased, but the miR-186 mimic weakened the effect of pLO-ciR-RIMS2. Aerobic exercise could shorten the average time that mice reached the platform in the Morris water maze, increase the expression level of circRIMS2 and BDNF, reduce miR-186 expression, and inhibit neuronal apoptosis. However, the interference with circRIMS2 weakened this effect. CONCLUSION The expression of circRIMS2 was down-regulated in VCI and aerobic exercise reduced neuronal apoptosis, and circRIMS2 improved VCI through the circRIMS2/miR-186/BDNF axis.
Collapse
Affiliation(s)
- Yali Niu
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Chunxiao Wan
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Jing Zhang
- Medical Imaging Department, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Shu Zhang
- Institute of Neurology, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Zilong Zhao
- Neurosurgery, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Leshan Zhu
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaodong Wang
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaodong Ren
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Jing Wang
- Rehabilitation, The General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, 154 Anshan Rd., Tianjin, 300052, People's Republic of China.
| |
Collapse
|
11
|
The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion 2020; 57:63-75. [PMID: 33378713 DOI: 10.1016/j.mito.2020.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Hyperammonemia is very toxic to the brain, leading to inflammation, disruption of brain cellular energy metabolism and cognitive function. However, the underlying mechanism(s) for these impairments is still not fully understood. This study investigated the effects of ammonia in hippocampal astroglia derived from C57BL/6 mice. Parameters measured included oxygen consumption rates (OCR), ATP, cytochrome c oxidase (COX) activity, alterations in oxidative phosphorylation (OXPHOS), nuclear factor kappa B (NF-κB) subunits, key regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), calcium/calmodulin-dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), early growth response (Egr) factor family of proteins, and mitochondrial transcription factor A (TFAM). Ammonia was found to decrease mitochondrial numbers, potentially through a CaMKII-CREB-PGC1α-Nrf2 pathway in astroglia. Ammonia did not alter the levels of Egrs and TFAM in astroglia. Ammonia decreased OCR, ATP, COX, and OXPHOS levels in astroglia. To assess whether energy metabolism is reduced by ammonia through NF-κB associated pathways, astroglia were treated with ammonia alone or with NF-κB inhibitors such as Bay11-7082 or SN50. Mitochondrial OCR levels were reduced in the presence of NF-κB inhibitors; however co-treatment of NF-κB inhibitors and ammonia reversed mitochondrial deficits. Further, ammonia increased translocation of the NF-κB p65 into the nucleus of astroglia that correlates with an increased activity of NF-κB. These findings suggest that the NF-κB signaling pathway is putatively involved in ammonia-induced changes in bioenergetics in astroglia. Such research has critical implications for the treatment of disorders in which brain bioenergetics is compromised.
Collapse
|
12
|
Snow WM, Cadonic C, Cortes-Perez C, Adlimoghaddam A, Roy Chowdhury SK, Thomson E, Anozie A, Bernstein MJ, Gough K, Fernyhough P, Suh M, Albensi BC. Sex-Specific Effects of Chronic Creatine Supplementation on Hippocampal-Mediated Spatial Cognition in the 3xTg Mouse Model of Alzheimer's Disease. Nutrients 2020; 12:nu12113589. [PMID: 33238473 PMCID: PMC7700653 DOI: 10.3390/nu12113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
The creatine (Cr) energy system has been implicated in Alzheimer’s disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8–9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid β (Aβ) species, whereas Aβ trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.
Collapse
Affiliation(s)
- Wanda M. Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Centre for the Advancement of Teaching and Learning, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Subir K. Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Research Institute in Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Adama Anozie
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Michael J. Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, PA 19001, USA;
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| |
Collapse
|
13
|
Wang J, Niu Y, Tao H, Xue M, Wan C. Knockdown of lncRNA TUG1 inhibits hippocampal neuronal apoptosis and participates in aerobic exercise-alleviated vascular cognitive impairment. Biol Res 2020; 53:53. [PMID: 33213523 PMCID: PMC7678210 DOI: 10.1186/s40659-020-00320-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Our previous study indicated that aerobic exercise relieves cognitive impairment in patients with vascular cognitive impairment (VCI) via regulating brain-derived neurotrophic factor (BDNF), but the mechanism is not yet clear. This study aimed to explore whether lncRNA taurine upregulated gene 1 (TUG1) participates in the process of VCI by regulating BDNF. Methods The expressions of TUG1 and BDNF in the serum of VCI patients were detected. The potential molecular mechanisms of TUG1 in regulating hippocampal neuronal apoptosis were explored in oxygen and glucose deprivation-induced (OGD-induced) hippocampal cell line HT22. The VCI mouse model was established, and TUG1 and BDNF were overexpressed via lentivirus injection. The cognitive impairment of mice was detected by the Morris water maze experiment after the aerobic exercise. Results The level of TUG1 was elevated in the serum of VCI patients compared with the control group. The knockdown of TUG1 in OGD-induced HT22 cells increased BDNF level and decreased cell apoptosis, and the downregulation of BDNF restored the decreased cell apoptosis. RNA immunoprecipitation and RNA pull-down assays showed that TUG1 could bind to BDNF protein. The aerobic exercise alleviated cognitive impairment and inhibited hippocampal apoptosis in VCI mice. Meanwhile, the overexpression of TUG1 reversed the therapeutic effects of aerobic exercise on cognitive impairment. Conclusions The knockdown of TUG1 reduced hippocampal neuronal apoptosis and participates in the aerobic exercise-alleviated VCI, which was partly through regulating BDNF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Peace District, Tianjin, 300070, People's Republic of China
| | - Yali Niu
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Peace District, Tianjin, 300070, People's Republic of China
| | - Huaying Tao
- Department of Neurophysiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Mina Xue
- Department of Medical Imaging, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Peace District, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
14
|
Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, Bernstein MJ, Suh M, Fernyhough P, Albensi BC. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. ACTA ACUST UNITED AC 2018; 25:54-66. [PMID: 29339557 PMCID: PMC5772392 DOI: 10.1101/lm.046284.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, Pennsylvania 19001, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| |
Collapse
|
15
|
Sarfert KS, Knabe ML, Gunawansa NS, Blythe SN. Western-style diet induces object recognition deficits and alters complexity of dendritic arborization in the hippocampus and entorhinal cortex of male rats. Nutr Neurosci 2017; 22:344-353. [PMID: 29039252 DOI: 10.1080/1028415x.2017.1388557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kathryn S. Sarfert
- Department of Neuroscience, Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
| | - Melina L. Knabe
- Department of Neuroscience, Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
| | - Nicole S. Gunawansa
- Department of Neuroscience, Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
| | - Sarah N. Blythe
- Department of Neuroscience, Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
- Department of Biology, Washington and Lee University, 204 W. Washington St., Lexington, VA 24450, USA
| |
Collapse
|
16
|
Griñan-Ferré C, Puigoriol-Illamola D, Palomera-Ávalos V, Pérez-Cáceres D, Companys-Alemany J, Camins A, Ortuño-Sahagún D, Rodrigo MT, Pallàs M. Environmental Enrichment Modified Epigenetic Mechanisms in SAMP8 Mouse Hippocampus by Reducing Oxidative Stress and Inflammaging and Achieving Neuroprotection. Front Aging Neurosci 2016; 8:241. [PMID: 27803663 PMCID: PMC5067530 DOI: 10.3389/fnagi.2016.00241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
With the increase in life expectancy, aging and age-related cognitive impairments are becoming one of the most important issues for human health. At the same time, it has been shown that epigenetic mechanisms are emerging as universally important factors in life expectancy. The Senescence Accelerated Mouse P8 (SAMP8) strain exhibits age-related deterioration evidenced in learning and memory abilities and is a useful model of neurodegenerative disease. In SAMP8, Environmental Enrichment (EE) increased DNA-methylation levels (5-mC) and reduced hydroxymethylation levels (5-hmC), as well as increased histone H3 and H4 acetylation levels. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme genes, such as Dnmt3b. Hdac1. Hdac2. Sirt2, and Sirt6. Subsequently, we assessed the effects of EE on neuroprotection-related transcription factors, such as the Nuclear regulatory factor 2 (Nrf2)-Antioxidant Response Element pathway and Nuclear Factor kappa Beta (NF-κB), which play critical roles in inflammation. We found that EE produces an increased expression of antioxidant genes, such as Hmox1. Aox1, and Cox2, and reduced the expression of inflammatory genes such as IL-6 and Cxcl10, all of this within the epigenetic context modified by EE. In conclusion, EE prevents epigenetic changes that promote or drive oxidative stress and inflammaging.
Collapse
Affiliation(s)
- Christian Griñan-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - David Pérez-Cáceres
- Animal Experimentation Unit, Faculty of Pharmacy, University of Barcelona Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Antonio Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| | - M Teresa Rodrigo
- Animal Experimentation Unit, Faculty of Pharmacy, University of Barcelona Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona Barcelona, Spain
| |
Collapse
|
17
|
Wang D, Yu Y, Liu Z, Li S, Wang Z, Xiang F. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:30-39. [PMID: 27457981 DOI: 10.1016/j.plantsci.2016.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 05/05/2023]
Abstract
NAC membrane-bound transcription factors (NTM1-like, NTL proteins) participate in the regulation of plant development and the abiotic stress response. While their function has been thoroughly explored in Arabidopsis thaliana, this is not the case in maize. Seven ZmNTL genes were identified by an in silico scan of relevant genome sequence. All seven included a NAC domain at their N terminus, and an α-helical membrane-bound structure domain in their C terminal region. Based on their gene structure and content of conserved motifs, the seven sequences were distributed into four clades. Six of the seven ZmNTLs were associated with the plasma membrane, and the remaining one with the endoplasmic reticulum. ZmNTL2-7 were more strongly transcribed in the stem than in either the leaf or root, while ZmNTL1 transcript abundance was highest in the leaf. When the plants were exposed to either abscisic acid or hydrogen peroxide treatment, all seven genes were up-regulated in the root and stem and down-regulated in the leaf. The heterologous expression of ZmNTL1-ΔTM, 2-ΔTM and 5-ΔTM in A. thaliana reduced the level of sensitivity of the plant to hydrogen peroxide.
Collapse
Affiliation(s)
- Dexin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Shanda South Road 27, Jinan 250100, Shandong, China; The State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Taian 271018, Shandong, China; Department of Resources and Environment, Heze University, Daxue Road 2269, Heze 274000, Shandong, China
| | - Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Shanda South Road 27, Jinan 250100, Shandong, China
| | - Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Shanda South Road 27, Jinan 250100, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Shanda South Road 27, Jinan 250100, Shandong, China
| | - Zeli Wang
- The State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Taian 271018, Shandong, China.
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Shanda South Road 27, Jinan 250100, Shandong, China.
| |
Collapse
|