1
|
Huikang W, Shiya C, Di P, Kiani FA, Hao L, Sha N, Xuan L, Abouelfetouh MM, Ahmed Z, Mingxing D, Yi D. Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway. J Cell Mol Med 2025; 29:e70372. [PMID: 40099662 PMCID: PMC11915118 DOI: 10.1111/jcmm.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025] Open
Abstract
Neuropathic pain (NP), resulting from nerve damage, is difficult to manage and often requires long-term treatment. However, prolonged use of pain medications can lead to addiction and reduced effectiveness over time. Understanding drug tolerance is essential for developing improved pain management strategies. Dexmedetomidine (DEX) is effective in targeting the α2-adrenergic receptor, providing relief from pain, especially NP. However, its extended use leads to tolerance and hinders its clinical utility. Herein, we investigated tolerance mechanisms and potential applications of this drug in managing NP. Adult C57BL/6 mice (male) were distributed into DEX Dosage Groups (n = 48), DEX Tolerance Model Groups (n = 32), SGK1 Inhibitor GSK650394 Groups (n = 48), and NF-κB Inhibitor PDTC Groups (n = 32) to explore dexmedetomidine's effects on NP and tolerance mechanisms. NP was established via selective ligation of the sciatic nerve branch (SNI), followed by administration of DEX. The results revealed a dose-dependent analgesic effect of DEX, with significant increases in pain thresholds observed compared to the sham group (p < 0.05). Optimal efficacy was found at a dose of 30 μg/kg, indicating its potential as an effective treatment for NP (p < 0.05). However, continuous administration of DEX over 13 days induced analgesic tolerance, evidenced by an initial increase in pain thresholds followed by a gradual decrease (p < 0.05). Despite an initial efficacy in elevating pain thresholds, the analgesic effect of DEX diminished over time, returning to pre-dose levels after 5 days (p < 0.05). Transcriptome sequencing of spinal cord samples from mice receiving multiple DEX injections revealed differential gene expression patterns, notably upregulation of SGK1, NR2A, and NR2B subunits (p < 0.05). Inhibiting SGK1 mitigated DEX-induced tolerance, suggesting its involvement in tolerance development (p < 0.05). Moreover, NF-κB inhibition reversed DEX-induced tolerance and implicated the SGK1-NF-κB pathway in the mediation of analgesic tolerance. To sum up, these findings revealed the molecular mechanism underlying DEX-induced analgesic tolerance in the NP model and offer potential avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Wang Huikang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cao Shiya
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pan Di
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan, Pakistan
| | - Li Hao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Nan Sha
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Xuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Benha, Egypt
| | - Zulfiqar Ahmed
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Livestock Production, Faculty of Veterinary & Animal Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Ding Mingxing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ding Yi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Zeng J, Gao WW, Yang H, Wang YN, Mei Y, Liu TT, Wang M, Tang L, Ma DC, Li W. Sodium tanshinone IIA sulfonate suppresses microglia polarization and neuroinflammation possibly via regulating miR-125b-5p/STAT3 axis to ameliorate neuropathic pain. Eur J Pharmacol 2024; 972:176523. [PMID: 38552937 DOI: 10.1016/j.ejphar.2024.176523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
The spinal cord microglia play a pivotal role in neuroinflammation and neuropathic pain (NP). Sodium tanshinone IIA sulfonate (STS), a derivative of tanshinone IIA, has anti-inflammatory and anti-hyperalgesic effects. However, its underlying mechanism in NP remains unclear. This study aimed to investigate the effect of STS and elucidate possible mechanisms in a rat model of spared nerve injury. In vivo experiments, STS and AG490 were administered intraperitoneally once daily for 14 consecutive days after surgery. The results showed that the expression of miR-125b-5p in the spinal dorsal horn was substantially reduced, whereas signal transducer and activator of transcription 3 (STAT3) signaling was increased. After treatment with STS, the mechanical thresholds, expression of miR-125b-5p, and microglial M2 marker such as Arg-1 in the spinal cord horn increased significantly, whereas multiple pro-inflammatory cytokines and apoptosis were significantly reduced. Moreover, STAT3 pathway-related proteins and expression of the microglial M1 marker, CD68, were appreciably inhibited. In vitro, lipopolysaccharide (LPS) was used to induce an inflammatory response in BV-2 microglial cells. STS pretreatment inhibited LPS-stimulated pro-inflammatory cytokine secretion, reduced STAT3 pathway related-proteins and apoptosis, increased miR-125b-5p and proopiomelanocortin expression, and enhanced microglia transformation from M1 to M2 phenotype in BV-2 cells. These effects were reversed after the inhibition of miR-125b-5p expression in BV-2 cells. A dual-luciferase reporter assay confirmed that STAT3 binds to miR-125b-5p. In summary, these results suggest that STS exerts anti-hyperalgesic and anti-neuroinflammatory effects in rats with NP possibly via the miR-125b-5p/STAT3 axis.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Wei-Wei Gao
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hao Yang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ya-Nang Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yang Mei
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ting-Ting Liu
- Department of Pain Medicine, Affiliated Shapingba Hospital, Chongqing University, Chongqing, China
| | - Min Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Li Tang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dong-Chuan Ma
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wei Li
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| |
Collapse
|
3
|
Tiwari V, Hemalatha S. Sida cordifolia L. attenuates behavioral hypersensitivity by interfering with KIF17-NR2B signaling in rat model of neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117085. [PMID: 37640257 DOI: 10.1016/j.jep.2023.117085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sida cordifolia L., a perennial subshrub belonging to the Malvaceae family, holds noteworthy significance in the Indian Ayurvedic System and global texts. Roots of this plant are reported to be useful in neurodegenerative disorders, facial paralysis, and treating several neuropathic pain conditions such as neuralgia, and sciatica. However, despite these claims, there remains a dearth of experimental evidence showcasing the effectiveness of Sida cordifolia L. roots in mitigating neuropathic pain. AIM OF THE STUDY The primary objective of this study was to assess the analgesic properties of the whole extract (SCE) obtained from the roots of Sida cordifolia L., as well as its aqueous fraction (SAF) in rat model of chronic constriction injury (CCI)-induced neuropathic pain. Furthermore, in-depth phytochemical and molecular biology studies were conducted to identify the potential phytoconstituents and unveil the underlying mechanisms of action. MATERIAL AND METHODS DCM: Methanol (1:1) was used to extract the roots of Sida cordifolia L. to get whole extract (SCE) and was subjected to phytochemical investigations including LC-MS analysis. Analgesic potential of SCE was evaluated in chronic constriction injury (CCI) model of neuropathic pain in rats followed by its bioactivity guided fractionation using in-vitro anti-inflammatory assay and assessment of most potent fraction (SAF) in in-vivo pain model. We have also performed the detailed phytochemical and molecular biology investigations to delineate the mechanism of action of Sida cordifolia root extract. RESULTS Chronic constriction injury leads to significant decrease in paw withdrawal threshold and paw withdrawal latency indicating development of hypersensitivity in rodents. Treatment with SCE and its most potent aqueous fraction (SAF) leads to significant and dose-dependent reduction in pain-like behavior of nerve injured rats. Pro-inflammatory cytokines (TNF-α, IL-1β), glia cell markers (Iba1, ICAM1), neuropeptides (CGRP and Substance P), KIF-17 and NR2B expressions were found to be significantly upregulated in DRG and spinal cord of nerve injured rats. Treatment with SCE and SAF suppressed oxido-inflammatory cascade along with attenuation of KIF-17 mediated NR2B trafficking and neuroinflammation in DRG and spinal tissues of neuropathic rats. HPTLC and HR-MS analysis suggest betaine as major constituent in SAF which along with other phytoconstituents. CONCLUSIONS Both the whole extract (SCE) and the aqueous fraction (SAF) demonstrate a significant reduction in mechanical and thermal hypersensitivity by inhibiting KIF-17 mediated NR2B signaling in nerve injured rats and may be used as a potential alternative for the treatment of chronic pain. Our findings support the use of roots of Sida cordifolia L. in neuropathic pain conditions as acclaimed by its traditional use.
Collapse
Affiliation(s)
- Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:496-508. [PMID: 37517892 DOI: 10.1016/j.joim.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats. METHODS The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA. RESULTS APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05). CONCLUSION EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ya-Feng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lin-Lin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shi-Qian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lu-Lin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Tian-Hao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Jing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiang-Dong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
5
|
Chu Y, Wu Y, Jia S, Xu K, Liu J, Mai L, Fan W, Huang F. Single-nucleus transcriptome analysis reveals transcriptional profiles of circadian clock and pain related genes in human and mouse trigeminal ganglion. Front Neurosci 2023; 17:1176654. [PMID: 37250405 PMCID: PMC10210144 DOI: 10.3389/fnins.2023.1176654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Clinical studies have revealed the existence of circadian rhythms in pain intensity and treatment response for chronic pain, including orofacial pain. The circadian clock genes in the peripheral ganglia are involved in pain information transmission by modulating the synthesis of pain mediators. However, the expression and distribution of clock genes and pain-related genes in different cell types within the trigeminal ganglion, the primary station of orofacial sensory transmission, are not yet fully understood. Methods In this study, data from the normal trigeminal ganglion in the Gene Expression Omnibus (GEO) database were used to identify cell types and neuron subtypes within the human and mouse trigeminal ganglion by single nucleus RNA sequencing analysis. In the subsequent analyses, the distribution of the core clock genes, pain-related genes, and melatonin and opioid-related genes was assessed in various cell clusters and neuron subtypes within the human and mouse trigeminal ganglion. Furthermore, the statistical analysis was used to compare the differences in the expression of pain-related genes in the neuron subtypes of trigeminal ganglion. Results The present study provides comprehensive transcriptional profiles of core clock genes, pain-related genes, melatonin-related genes, and opioid-related genes in different cell types and neuron subtypes within the mouse and human trigeminal ganglion. A comparative analysis of the distribution and expression of the aforementioned genes was conducted between human and mouse trigeminal ganglion to investigate species differences. Discussion Overall, the results of this study serve as a primary and valuable resource for exploring the molecular mechanisms underlying oral facial pain and pain rhythms.
Collapse
Affiliation(s)
- Yanhao Chu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ke Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinyue Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Meng Y, Shen HL. Role of N-Methyl-D-Aspartate Receptor NR2B Subunit in Inflammatory Arthritis-Induced Chronic Pain and Peripheral Sensitized Neuropathic Pain: A Systematic Review. J Pain Res 2022; 15:2005-2013. [PMID: 35880050 PMCID: PMC9307865 DOI: 10.2147/jpr.s367982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Arthritis is a common clinical disease that affects millions of people in the world. The most common types of arthritis are osteoarthritis and rheumatoid arthritis. Inflammatory arthritis (IA), a chronic painful disease, is characterized by synovitis and cartilage destruction in the early stages. Pathologically, IA causes inflammatory changes in the joints and eventually leads to joint destruction. Pain is associated with inflammation and abnormal regulation of the nervous system pathways involved in pain promotion and inhibition. In addition, the occurrence of pain is associated with depression and anxiety. We found that there are many factors affecting pain, in addition to inflammatory factors, glutamate receptor may be the possible cause of long-term chronic pain caused by IA. N-methyl-d-aspartate receptor subunit 2B (NR2B) has been reported to involved in IA and nervous system diseases, especially peripheral neuropathic pain. In this review, we summarized the mechanisms of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in peripheral nerve sensitization during IA and chronic pain.
Collapse
Affiliation(s)
- Yu Meng
- Department of Pain, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hai Li Shen
- Department of Rheumatology and Immunology, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Xu Z, Xie W, Feng Y, Wang Y, Li X, Liu J, Xiong Y, He Y, Chen L, Liu G, Wu Q. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflammation 2022; 19:164. [PMID: 35729568 PMCID: PMC9215054 DOI: 10.1186/s12974-022-02524-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing remain unknown. Increasing evidence suggests that sex oestrogen differences play a role in pain sensitivity, but few studies have focused on the oestrogen receptor which may be an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of oestrogen receptors on the nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods We intrathecally (i.t.) administered a class of oestrogen receptor antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we assessed genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitization and neuroinflammatory responses in neuropathic pain. The excitability of DRG neurons was detected using the patch-clamp technique. Primary culture was used to extract microglia and DRG neurons, and siRNA transfection was used to silence receptor protein expression. Immunofluorescence, Western blotting, RT-PCR and behavioural testing were used to assess the expression, cellular distribution, and actions of the main receptor and its related signalling molecules. Results Increasing the expression and function of G protein-coupled oestrogen receptor (GPER), but not oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ), in the DRG neuron and microglia, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitization. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by simultaneously downregulating iNOS, IL-1β and IL-6 expression and restoring GABAα2 expression. Additionally, the positive interaction between GPER and β-alanine and subsequent β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion GPER activation in the DRG induces a positive association between β-alanine with iNOS, IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG neurons and microglia may prevent neuropathic pain development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02524-9.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Modulation of KIF17/NR2B crosstalk by tozasertib attenuates inflammatory pain in rats. Inflammopharmacology 2022; 30:549-563. [PMID: 35243557 DOI: 10.1007/s10787-022-00948-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
Abstract
Chronic pain is among the most burdensome and devastating disorders affecting millions of people worldwide. Recent studies suggest the role of kinesin nanomotors in development and maintenance of chronic pain. KIF17 is a member of kinesin superfamily that binds to NR2B cargo system via mLin10 scaffolding protein and makes the NMDARs functional at cell surface. NMDA receptor activation is known to induce the central sensitization and excitotoxicity which can be recognized by the glial cells followed by the release of cytokine storm at spinal and supraspinal level leading to chronic pain. In this study, we have investigated the role of aurora kinase in the regulation of KIF17 and NR2B trafficking in the animal model of chronic inflammatory pain. Tozasertib (10, 20, and 40 mg/kg i.p.), a pan aurora kinase inhibitor, significantly attenuates acute inflammatory pain and suppresses enhanced pain hypersensitivity to heat, cold, and mechanical stimuli in CFA-injected rats. Molecular investigations suggest enhanced expression of KIF17/mLin10/NR2B in L4-L5 dorsal root ganglion (DRG) and spinal cord of CFA-injected rats which was significantly attenuated on treatment with tozasertib. Moreover, tozasertib treatment significantly attenuated CFA-induced oxido-nitrosative stress and macrophage activation in DRG and microglia activation in spinal cord of rats. Findings from the current study suggest that tozasertib mediates anti-nociceptive activity by inhibiting aurora kinase-mediated KIF17/mLin10/NR2B signaling.
Collapse
|
9
|
Wang X, Zhang B, Li X, Liu X, Wang S, Xie Y, Pi J, Yang Z, Li J, Jia Q, Zhang Y. Mechanisms Underlying Gastrodin Alleviating Vincristine-Induced Peripheral Neuropathic Pain. Front Pharmacol 2022; 12:744663. [PMID: 34975470 PMCID: PMC8716817 DOI: 10.3389/fphar.2021.744663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrodin (GAS) is the main bioactive ingredient of Gastrodia, a famous Chinese herbal medicine widely used as an analgesic, but the underlying analgesic mechanism is still unclear. In this study, we first observed the effects of GAS on the vincristine-induced peripheral neuropathic pain by alleviating the mechanical and thermal hyperalgesia. Further studies showed that GAS could inhibit the current density of NaV1.7 and NaV1.8 channels and accelerate the inactivation process of NaV1.7 and NaV1.8 channel, thereby inhibiting the hyperexcitability of neurons. Additionally, GAS could significantly reduce the over-expression of NaV1.7 and NaV1.8 on DRG neurons from vincristine-treated rats according to the analysis of Western blot and immunofluorescence results. Moreover, based on the molecular docking and molecular dynamic simulation, the binding free energies of the constructed systems were calculated, and the binding sites of GAS on the sodium channels (NaV1.7 and NaV1.8) were preliminarily determined. This study has shown that modulation of NaV1.7 and NaV1.8 sodium channels by GAS contributing to the alleviation of vincristine-induced peripheral neuropathic pain, thus expanding the understanding of complex action of GAS as a neuromodulator.
Collapse
Affiliation(s)
- Xiangyu Wang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Boxuan Zhang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xingang Liu
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Songsong Wang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Xie
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jialing Pi
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Zhiyuan Yang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jincan Li
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qingzhong Jia
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China.,School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Uniyal A, Thakur V, Rani M, Tiwari V, Akhilesh, Gadepalli A, Ummadisetty O, Modi A, Tiwari V. Kinesin Nanomotors Mediated Trafficking of NMDA-Loaded Cargo as A Novel Target in Chronic Pain. ACS Chem Neurosci 2021; 12:2956-2963. [PMID: 34324307 DOI: 10.1021/acschemneuro.1c00319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is among the most prevalent burdensome disorders worldwide. The N-methyl-d-aspartate (NMDA) receptor system plays a critical role in central sensitization, a primary feature of chronic pain. Despite the proven efficacy of exogenous ligands to this receptor system in preclinical studies, evidence for the clinical efficacy of NMDA antagonists for the treatment of chronic pain is weak. Researchers are studying alternate approaches, rather than direct inhibition of the NMDA receptors in pain processing neurons. This indirect approach utilizes the modulation of molecular switches that regulates the synthesis, maturation, and transport of receptors from cellular organelles to the synaptic membrane. Kinesins are nanomotors that anterogradely transport the cargo using microtubule tracks across the neurons. Various members of the kinesin family, including KIF17, KIF11, KIF5b, and KIF21a, regulate the intracellular transport of NMDA receptors. Pharmacological targeting of these ATP-driven nanomotors could be a useful tool for manipulating the NMDAR functioning. It could provide the potential for the development of a novel strategy for the management of chronic pain.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vaibhav Thakur
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Mousmi Rani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| |
Collapse
|
11
|
Peterson CD, Kitto KF, Verma H, Pflepsen K, Delpire E, Wilcox GL, Fairbanks CA. Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Mol Pain 2021; 17:17448069211029171. [PMID: 34210178 PMCID: PMC8255568 DOI: 10.1177/17448069211029171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine’s alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Harsha Verma
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Liang Y, Ma Y, Wang J, Nie L, Hou X, Wu W, Zhang X, Tian Y. Leptin Contributes to Neuropathic Pain via Extrasynaptic NMDAR-nNOS Activation. Mol Neurobiol 2021; 58:1185-1195. [PMID: 33099751 PMCID: PMC7878206 DOI: 10.1007/s12035-020-02180-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
Leptin is an adipocytokine that is primarily secreted by white adipose tissue, and it contributes to the pathogenesis of neuropathic pain in collaboration with N-methyl-D-aspartate receptors (NMDARs). Functional NMDARs are a heteromeric complex that primarily comprise two NR1 subunits and two NR2 subunits. NR2A is preferentially located at synaptic sites, and NR2B is enriched at extrasynaptic sites. The roles of synaptic and extrasynaptic NMDARs in the contribution of leptin to neuropathic pain are not clear. The present study examined whether the important role of leptin in neuropathic pain was related to synaptic or extrasynaptic NMDARs. We used a rat model of spared nerve injury (SNI) and demonstrated that the intrathecal administration of the NR2A-selective antagonist NVP-AAM077 and the NR2B-selective antagonist Ro25-6981 prevented and reversed mechanical allodynia following SNI. Administration of exogenous leptin mimicked SNI-induced behavioral allodynia, which was also prevented by NVP-AAM077 and Ro25-6981. Mechanistic studies showed that leptin enhanced NR2B- but not NR2A-mediated currents in spinal lamina II neurons of naïve rats. Leptin also upregulated the expression of NR2B, which was blocked by the NR2B-selective antagonist Ro25-6981, in cultured dorsal root ganglion (DRG) neurons. Leptin enhanced neuronal nitric oxide synthase (nNOS) expression, which was also blocked by Ro25-6981, in cultured DRG cells. However, leptin did not change NR2A expression, and the NR2A-selective antagonist NVP-AAM077 had no effect on leptin-enhanced nNOS expression. Our data suggest an important cellular link between the spinal effects of leptin and the extrasynaptic NMDAR-nNOS-mediated cellular mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Yanling Liang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China
| | - Yuxin Ma
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieqin Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
| | - Lei Nie
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Xusheng Hou
- Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenyu Wu
- Target and Interventional Therapy Department of Oncology, First People's Hospital of Foshan, Foshan, 528000, China
| | - Xingmei Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China.
| | - Yinghong Tian
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 DOI: 10.1016/j.bbi.2020.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
14
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 PMCID: PMC8922412 DOI: 10.1016/j.bbi.2020.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
15
|
Xu ZZ, Chen QY, Deng SY, Zhang M, Tan CY, Yang Wang, Ma KT, Li L, Si JQ, Zhu LC. 17β-Estradiol Attenuates Neuropathic Pain Caused by Spared Nerve Injury by Upregulating CIC-3 in the Dorsal Root Ganglion of Ovariectomized Rats. Front Neurosci 2019; 13:1205. [PMID: 31787875 PMCID: PMC6856564 DOI: 10.3389/fnins.2019.01205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol plays a role in pain sensitivity, analgesic drug efficacy, and neuropathic pain prevalence, but the underlying mechanisms remain unclear. Here, we investigated whether voltage-gated chloride channel-3 (ClC-3) impacts the effects of 17β-estradiol (E2) on spared nerve injury (SNI)-induced neuropathic pain in ovariectomized (OVX) female Sprague Dawley rats that were divided into OVX, OVX + SNI, OVX + SNI + E2, OVX + SNI + E2 + DMSO (vehicle, dimethyl sulfoxide), or OVX + SNI + E2+Cltx (ClC-3-blocker chlorotoxin) groups. Changes in ClC-3 protein expression were monitored by western blot analysis. Behavioral testing used the paw withdrawal threshold to acetone irritation and paw withdrawal thermal latency (PWTL) to thermal stimulation. Immunofluorescence indicated the localization and protein expression levels of ClC-3. OVX + SNI + E2 rats were subcutaneously injected with 17β-estradiol once daily for 7 days; a sheathed tube was implanted, and chlorotoxin was injected for 4 days. Intrathecal Cltx to OVX and OVX + SNI rats was administered for 4 consecutive days (days 7–10 after SNI) to further determine the contribution of ClC-3 to neuropathic pain. Patch clamp technology in current clamp mode was used to measure the current threshold (rheobase) dorsal root ganglion (DRG) neurons and the minimal current that evoked action potentials (APs) as excitability parameters. The mean number of APs at double-strength rheobase verified neuronal excitability. There was no difference in behaviors and ClC-3 expression after OVX. Compared with OVX + SNI rats, OVX + SNI + E2 rats showed a lower paw withdrawal threshold to the acetone stimulus, but the PWTL was not significantly different, indicating increased sensitivity to cold but not to thermal pain. Co-immunofluorescent data revealed that ClC-3 was mainly distributed in A- and C-type nociceptive neurons, especially in medium/small-sized neurons. 17β-estradiol administration was associated with increased expression of ClC-3. 17β-estradiol-induced increase in ClC-3 expression was blocked by co-administration of Cltx. Cltx causes hyperalgesia and decreased expression of ClC-3 in OVX rats. Patch clamp results suggested that 17β-estradiol attenuated the excitability of neurons induced by SNI by up-regulating the expression of ClC-3 in the DRG of OVX rats. 17β-estradiol administration significantly improved cold allodynia thresholds in OVX rats with SNI. The mechanism for this decreased sensitivity may be related to the upregulation of ClC-3 expression in the DRG.
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Qin-Yi Chen
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Shi-Yu Deng
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Chao-Yang Tan
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Yang Wang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Li-Cang Zhu
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
16
|
Intrathecal Injection of miR-133b-3p or miR-143-3p Prevents the Development of Persistent Cold and Mechanical Allodynia Following a Peripheral Nerve Injury in Rats. Neuroscience 2018; 386:223-239. [PMID: 30018017 DOI: 10.1016/j.neuroscience.2018.06.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 12/24/2022]
Abstract
In DRG an increase in miR-133b-3p, miR-143-3p, and miR-1-3p correlates with the lack of development of neuropathic pain following a peripheral nerve injury. Using lentiviral (LV) vectors we found that a single injection of LV-miR-133b-3p or LV-miR-143-3p immediately after a peripheral nerve injury prevented the development of sustained mechanical and cold allodynia. Injection of LV-miR-133b-3p or LV-miR-143-3p by themselves or in combination, on day 3 post-injury produced a partial and transient reduction in mechanical allodynia and a sustained decrease in cold allodynia. Injection of LV-miR-1-3p has no effect. Co-injection of LV-miR-1a with miR-133b-3p or miR-143-3p on day 3 post-injury produced a sustained decrease in mechanical and cold allodynia. In DRG cultures, miR-133b-3p and miR-143-3p but not miR-1-3p, enhanced the depolarization-evoked cytoplasmic calcium increase. Using 3'UTR target clones containing a Gaussian luciferase reporter gene we found that with the 3'UTR-Scn2b, miR-133-3p and miR-143-3p reduced the expression while miR-1-3p enhanced the expression of the reporter gene. With the 3'UTR-TRPM8, miR-133-3p and miR-143-3p reduced the expression and miR-1-3p had no effect. With the 3'UTR-Piezo2, miR-133-3p increased the expression while miR-143-3p and miR-1-3p had no effect. LV-miR133b-3p, LV-miR-143-3p and LV-miR1a-3p reduced Scn2b-mRNA and Piezo2-mRNA. LV-miR133b-3p and LV-miR-143-3p reduced TRPM8-mRNA. LV-miR-133b-3p and LV-miR-143-3p prevent the development of chronic pain when injected immediately after the injury, but are only partially effective when injected at later times. LV-miR-1a-3p had no effect on pain, but complemented the actions of LV-miR-133b-3p or LV-miR-143-3p resulting in a sustained reversal of pain when co-injected 3 days following nerve injury.
Collapse
|
17
|
Pérez Armendariz EM, Norcini M, Hernández-Tellez B, Castell-Rodríguez A, Coronel-Cruz C, Alquicira RG, Sideris A, Recio-Pinto E. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36. Acta Histochem 2018; 120:168-178. [PMID: 29224922 DOI: 10.1016/j.acthis.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury.
Collapse
Affiliation(s)
- E Martha Pérez Armendariz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Monica Norcini
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Beatriz Hernández-Tellez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Raquel Guerrero Alquicira
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, Colonia Universidad Nacional Autónoma de México, CU, D.F., 04510, Mexico.
| | - Alexandra Sideris
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA.
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014, USA; Departments of Anesthesiology, Biochemistry & Molecular Pharmacology, NYULMC, 180 Varick Street, Room 677, New York, NY 10014 USA.
| |
Collapse
|