1
|
Işık M, Köse F, Budak Ö, Özbayer C, Kaya RK, Aydın S, Küçük AC, Demirci MA, Doğanay S, Bağcı C. Probiotic Bactolac alleviates depression-like behaviors by modulating BDNF, NLRP3 and MC4R levels, reducing neuroinflammation and promoting neural repair in rat model. Pflugers Arch 2025:10.1007/s00424-025-03084-6. [PMID: 40281288 DOI: 10.1007/s00424-025-03084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Depression, a prevalent psychiatric disorder, exerts severe and debilitating impacts on an individual's mental and physical well-being, and it is considered a chronic mental illness. Chronic stress plays an important role in the pathophysiology of depression. Lactobacillus plantarum and Streptococcus thermophilus are psychobiotic bacteria and synthesize some neurotransmitters that play a role in the pathogenesis of depression. In this study, we aimed to investigate the therapeutic effects of Bactolac (Lactobacillus plantarum NBIMCC 8767 + Streptococcus thermophilus NBIMCC 8258) on chronic stress-induced depression in rats. Behavioral tests, including the sucrose preference test, elevated plus maze test, forced swim test, and three-chamber sociability test, were employed to assess depressive and anxiety-like behaviors. The expression level of the 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1, NLRP3 and MC4R; BDNF levels, glial activity and intestinal permeability were determined in chronic stress-induced depression in rats. In conclusions, chronic stress decreased the expression levels of 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1 and BDNF level; increased the expression levels of NLRP3 and MC4R, caused neurodegeneration and glial activity, ultimately led to depressive effects. Bactolac was effective in reducing depressive-like behaviors according to the results of behavioral tests. Bactolac treatment provided high neuronal survival rate increasing BDNF level, prevented the excessive release of pro-inflammatory cytokines by reducing the expression levels of NLRP3 and MC4R, therefore, prevented the excessive activation of the hypothalamus-pituitary-adrenal (HPA) axis and accordingly, reduced neurodegeneration and glial cell activation in depressed rats. We can suggest that Bactolac supplementation may be beneficial in coping with stress, alleviate the effects of chronic stress and help to protect mental health.
Collapse
Affiliation(s)
- Musab Işık
- Department of Physiology, İstanbul Aydın University Medical Faculty, Istanbul, Turkey.
| | - Fadime Köse
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Özcan Budak
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Medical Faculty, Kütahya Health Sciences University, Kutahya, Turkey
| | - Rumeysa Keleş Kaya
- Department of Medical Pharmacology, University of Health Sciences Hamidiye International School of Medicine, Istanbul, Turkey.
| | - Sevda Aydın
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Aleyna Ceren Küçük
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Mehmet Arif Demirci
- Department of Health Systems Management, Muş Alparslan University, Faculty of Health Sciences, Muş, Turkey
| | - Songül Doğanay
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cahit Bağcı
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| |
Collapse
|
2
|
Nelke A, García-López S, Caso JR, Pereira MP. The therapeutic use of clonal neural stem cells in experimental Parkinson´s disease. Stem Cell Res Ther 2024; 15:356. [PMID: 39385216 PMCID: PMC11465761 DOI: 10.1186/s13287-024-03965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established. The purpose of this study was to examine the effects of the transplantation of hVM1 clone 32 cells, a bankable line of human neural stem cells (hNSCs), in a PD mouse model at four months post-transplant. METHODS Adult (five month-old) C57BL/6JRccHsd male mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and subsequently transplanted with hVM1 clone 32 cells, or buffer, in the left striatum. Four months post-transplant, behavioral effects were explored using the open field and paw print tests, and histological analyses were performed. RESULTS Transplantation of hVM1 clone 32 cells rescued dopaminergic nigrostriatal populations in adult Parkinsonian mice. Motor and neurological deterioration were observed in buffer-treated mice, the latter of which had a tendency to improve in hNSC-transplanted mice. Detection of mast cell migration to the superficial cervical lymph nodes in cell-transplanted mice denoted a peripheral effect. Transplantation of hNSCs also rescued neuroblast neurogenesis in the subgranular zone, which was correlated with dopaminergic recovery and is indicative of local recovery mechanisms. CONCLUSIONS In this proof-of-concept study, the transplantation of hVM1 clone 32 cells provided neuroprotection in adult Parkinsonian mice by restoring the dopaminergic nigrostriatal pathway and hippocampal neurogenesis, demonstrating the efficacy of cell replacement therapy as a treatment for PD.
Collapse
Affiliation(s)
- Anna Nelke
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| | - Silvia García-López
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Avda. Complutense s/n, Madrid, 28040, Spain
| | - Marta P Pereira
- Unit of Molecular Neuropathology, Physiological and pathological processes Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Calle Nicolás Cabrera, 1, Madrid, 28049, Spain.
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain.
- Institute for Molecular Biology - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
3
|
Wang S, Zhang H, Liu R, Han P, Yang Q, Cheng C, Chen Y, Rong Z, Su C, Li F, Wei G, Zhao M, Yang L. Influenza A Virus PB1-F2 Induces Affective Disorder by Interfering Synaptic Plasticity in Hippocampal Dentate Gyrus. Mol Neurobiol 2024; 61:8293-8306. [PMID: 38488981 DOI: 10.1007/s12035-024-04107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Influenza A virus (IAV) infection, which leads to millions of new cases annually, affects many tissues and organs of the human body, including the central nervous system (CNS). The incidence of affective disorders has increased after the flu pandemic; however, the potential mechanism has not been elucidated. PB1-F2, a key virulence molecule of various influenza virus strains, has been shown to inhibit cell proliferation and induce host inflammation; however, its role in the CNS has not been studied. In this study, we constructed and injected PB1-F2 into the hippocampal dentate gyrus (DG), a region closely associated with newborn neurons and neural development, to evaluate its influence on negative affective behaviors and learning performance in mice. We observed anxiety- and depression-like behaviors, but not learning impairment, in mice injected with PB1-F2. Furthermore, pull-down and mass spectrometry analyses identified several potential PB1-F2 binding proteins, and enrichment analysis suggested that the most affected function was neural development. Morphological and western blot studies revealed that PB1-F2 inhibited cell proliferation and oligodendrocyte development, impaired myelin formation, and interfered with synaptic plasticity in DG. Taken together, our results demonstrated that PB1-F2 induces affective disorders by inhibiting oligodendrocyte development and regulating synaptic plasticity in the DG after IAV infection, which lays the foundation for developing future cures of affective disorders after IAV infection.
Collapse
Affiliation(s)
- Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haijun Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Caiyan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yue Chen
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zheng Rong
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chang Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Li P, Wang T, Guo H, Liu Y, Zhao H, Ren T, Tang Y, Wang Y, Zou M. Pramipexole improves depression-like behavior in diabetes mellitus with depression rats by inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing impaired neuroplasticity. J Affect Disord 2024; 356:586-596. [PMID: 38657764 DOI: 10.1016/j.jad.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.
Collapse
Affiliation(s)
- Ping Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Haipeng Guo
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingxi Liu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Hongqing Zhao
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Ren
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingjuan Tang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yuhong Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| | - Manshu Zou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
5
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Qiao CM, Zhou Y, Quan W, Ma XY, Zhao LP, Shi Y, Hong H, Wu J, Niu GY, Chen YN, Zhu S, Cui C, Zhao WJ, Shen YQ. Fecal Microbiota Transplantation from Aged Mice Render Recipient Mice Resistant to MPTP-Induced Nigrostriatal Degeneration Via a Neurogenesis-Dependent but Inflammation-Independent Manner. Neurotherapeutics 2023; 20:1405-1426. [PMID: 37596429 PMCID: PMC10480387 DOI: 10.1007/s13311-023-01420-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
Accumulating data support a crucial role of gut microbiota in Parkinson's disease (PD). However, gut microbiota vary with age and, thus, will affect PD in an age-dependent, but unknown manner. We examined the effects of fecal microbiota transplantation (FMT) pretreatment, using fecal microbiota from young (7 weeks) or aged mice (23 months), on MPTP-induced PD model. Motor function, pathological changes, striatal neurotransmitters, neuroinflammation, gut inflammation and gut permeability were examined. Gut microbiota composition and metabolites, namely short-chain fatty acids (SCFAs), were analyzed. Neurogenesis was also evaluated by measuring the number of doublecortin-positive (DCX+) neurons and Ki67-positive (Ki67+) cells in the hippocampus. Expression of Cd133 mRNA, a cellular stemness marker, in the hippocampus was also examined. Mice who received FMT from young mice showed MPTP-induced motor dysfunction, and reduction of striatal dopamine (DA), dopaminergic neurons and striatal tyrosine hydroxylase (TH) levels. Interestingly and unexpectedly, mice that received FMT from aged mice showed recovery of motor function and rescue of dopaminergic neurons and striatal 5-hydroxytryptamine (5-HT), as well as decreased DA metabolism after MPTP challenge. Further, they showed improved metabolic profiling and a decreased amount of fecal SCFAs. High-throughput sequencing revealed that FMT remarkably reshaped the gut microbiota of recipient mice. For instance, levels of genus Akkermansia and Candidatus Saccharimonas were elevated in fecal samples of recipient mice receiving aged microbiota (AM + MPTP mice) than YM + MPTP mice. Intriguingly, both young microbiota and aged microbiota had no effect on neuroinflammation, gut inflammation or gut permeability. Notably, AM + MPTP mice showed a marked increase in DCX+ neurons, as well as Ki67+ cells and Cd133 expression in the hippocampal dentate gyrus (DG) compared to YM + MPTP mice. These results suggest that FMT from aged mice augments neurogenesis, improves motor function and restores dopaminergic neurons and neurotransmitters in PD model mice, possibly through increasing neurogenesis.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Zhou
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Quan
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Ping Zhao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yun Shi
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Hong
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Wu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Gu-Yu Niu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu-Nuo Chen
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Zhu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Cui
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
8
|
A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson's disease model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1349-1364. [PMID: 36082935 PMCID: PMC9909460 DOI: 10.3724/abbs.2022126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R.
Collapse
|
9
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
10
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
11
|
Acute MPTP Treatment Impairs Dendritic Spine Density in the Mouse Hippocampus. Brain Sci 2021; 11:brainsci11070833. [PMID: 34201837 PMCID: PMC8301854 DOI: 10.3390/brainsci11070833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Among the animal models of Parkinson’s disease (PD), the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model has shown both dopaminergic (DA) damage and related motor control defects, as observed in patients with PD. Recent studies have suggested that the DA system interacts with the synaptic plasticity of the hippocampus in PD. However, little is known about how alterations in the hippocampal structural plasticity are affected by the DA damage in MPTP-lesioned models. In the present study, we investigated alterations in dendritic complexity and spine density in the mouse hippocampus following acute MPTP treatment (22 mg/kg, intraperitoneally, four times/day, 2-h intervals). We confirmed that acute MPTP treatment significantly decreased initial motor function and persistently reduced the number of tyrosine hydroxylase-positive DA neurons in the substantia nigra. Golgi staining showed that acute MPTP treatment significantly reduced the spine density of neuronal dendrites in the cornu ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions of the mouse hippocampus at 8 and 16 days after treatment, although it did not affect dendritic complexity (e.g., number of crossing dendrites, total dendritic length, and branch points per neuron) in both CA1 and DG subregions at all time points after treatment. Therefore, the present study provides anatomical evidence that acute MPTP treatment affects synaptic structure in the hippocampus during the late phase after acute MPTP treatment in mice, independent of any changes in the dendritic arborization of hippocampal neurons. These findings offer data for the ability of the acute MPTP-lesioned mouse model to replicate the non-nigrostriatal lesions of clinical PD.
Collapse
|
12
|
Bang Y, Lim J, Choi HJ. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment. Arch Pharm Res 2021; 44:588-604. [PMID: 34145553 PMCID: PMC8254697 DOI: 10.1007/s12272-021-01337-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by movement dysfunction due to selective degeneration of dopaminergic neurons in the substantia nigra pars compacta. Non-motor symptoms of PD (e.g., sensory dysfunction, sleep disturbance, constipation, neuropsychiatric symptoms) precede motor symptoms, appear at all stages, and impact the quality of life, but they frequently go unrecognized and remain untreated. Even when identified, traditional dopamine replacement therapies have little effect. We discuss here the pathology of two PD-associated non-motor symptoms: olfactory dysfunction and depression. Olfactory dysfunction is one of the earliest non-motor symptoms in PD and predates the onset of motor symptoms. It is accompanied by early deposition of Lewy pathology and neurotransmitter alterations. Because of the correlation between olfactory dysfunction and an increased risk of progression to PD, olfactory testing can potentially be a specific diagnostic marker of PD in the prodromal stage. Depression is a prevalent PD-associated symptom and is often associated with reduced quality of life. Although the pathophysiology of depression in PD is unclear, studies suggest a causal relationship with abnormal neurotransmission and abnormal adult neurogenesis. Here, we summarize recent progress in the pathology of the non-motor symptoms of PD, aiming to provide better guidance for its effective management.
Collapse
Affiliation(s)
- Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Juhee Lim
- College of Pharmacy, Woosuk University, Wanju, Jeollabuk-do, 55338, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
13
|
Zhang T, Ding H, Wang Y, Yuan Z, Zhang Y, Chen G, Xu Y, Chen L. Akt3-mTOR regulates hippocampal neurogenesis in adult mouse. J Neurochem 2021; 159:498-511. [PMID: 34077553 DOI: 10.1111/jnc.15441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023]
Abstract
Akt signaling has been associated with adult neurogenesis in the hippocampal dentate gyrus (DG). We reported cognitive dysfunction in Akt3 knockout (Akt3-KO) mice with the down-regulation of mTOR activation. However, little is known about the effects of Akt3 signaling on hippocampal neurogenesis. Herein, we show that progenitor cells, neuroblasts, and mature newborn neurons in hippocampal DG expressed Akt3 protein. The Akt3 phosphorylation in hippocampal DG was increased after voluntary wheel running for 7 days in wild-type mice (running WT mice), but not in Akt3-KO mice (running Akt3-KO mice). Subsequently, we observed that the proliferation of progenitor cells was suppressed in Akt3-KO mice and the mTOR inhibitor rapamycin-treated mice, whereas enhanced in running WT mice rather than running Akt3-KO mice. Neurite growth of neuroblasts was impaired in Akt3-KO mice and rapamycin-treated mice. In contrast, neither differentiation of progenitor cells nor migrating of newly generated neurons was altered in Akt3-KO mice or running WT mice. The levels of p70S6K and 4EBP1 phosphorylation were declined in Akt3-KO mice and elevated in running WT mice depending on mTOR activation. Furthermore, telomerase activity, telomere length, and expression of telomerase reverse transcriptase (TERT) were decreased in Akt3-KO mice but increased in running WT mice rather than running Akt3-KO mice, which required the mTOR activation. The study provides in vivo evidence that Akt3-mTOR signaling plays an important role in the proliferation of progenitor cells and neurite growth through positive regulated TERT expression and activation of p70S6K and 4EBP1.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hong Ding
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zihao Yuan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
15
|
Di T, Wang Y, Zhang Y, Sha S, Zeng Y, Chen L. Dopaminergic afferents from midbrain to dorsolateral bed nucleus of stria terminalis inhibit release and expression of corticotropin-releasing hormone in paraventricular nucleus. J Neurochem 2020; 154:218-234. [PMID: 32096869 DOI: 10.1111/jnc.14992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 01/21/2023]
Abstract
Dopaminergic (DAergic) neurons of the midbrain ventral tegmental area (VTA) are known to regulate the hypothalamic-pituitary-adrenal (HPA) axis but have no direct projections to the paraventricular nucleus (PVN) of the hypothalamus. This study investigated whether VTA DAergic afferents modulate glutamatergic transmission-dependent GABAergic neurons in dorsolateral bed nucleus of stria terminalis (dlBNST) to affect the activity of the HPA-axis. Herein, we demonstrate that systemic administration of the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or the VTA-injection of 1-methyl-4-phenylpyridinium ion (MPP+) in male mice (MPTP-mice and MPP+mice) caused a decline of tyrosine hydroxylase positive (TH+) cells in VTA with a reduction in TH+fibers in the dlBNST. MPTP-mice and MPP+mice displayed a clear increase in serum levels of corticosterone (CORT) and adrenocorticotropic hormone, corticotropin-releasing hormone (CRH) expression, and CRH neuron activity in PVN. The presynaptic glutamate release, glutamatergic synaptic transmission and induction of long-term potentiation in dlBNST of MPTP-mice were suppressed, and these effects were rescued by a D1-like DAergic receptor (D1R) agonist and mimicked in control dlBNST by blockade of D1R. MPTP-mice exhibited low expression of glutamic acid decarboxylase and dysfunction of the excitatory-dependent GABAergic circuit in dlBNST, and these effects were recovered by the administration of D1R agonist. Furthermore, either dlBNST-injection of D1R agonist or PVN-injection of GABAA receptor (GABAA R) agonist could correct the increased secretion and expression of CRH in MPTP-mice. The results indicate that the DAergic afferents from VTA enhance excitatory-dependent activation of GABAergic neurons in dlBNST, which suppress the activity of the HPA-axis.
Collapse
Affiliation(s)
- Tingting Di
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yanying Zeng
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, Shin CH, Ohnishi YN, Hanada Y, Miyakawa T, Kim Y, Greengard P, Nishi A. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry 2020; 25:1229-1244. [PMID: 30531938 PMCID: PMC7244404 DOI: 10.1038/s41380-018-0316-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.
Collapse
Affiliation(s)
- Takahide Shuto
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Mahomi Kuroiwa
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Naoki Sotogaku
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yukie Kawahara
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yong-Seok Oh
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Chang-Hoon Shin
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoshinori N. Ohnishi
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yuuki Hanada
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- 0000 0004 1761 798Xgrid.256115.4Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Yong Kim
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Mishra A, Singh S, Tiwari V, Bano S, Shukla S. Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson's disease. Behav Brain Res 2019; 378:112304. [PMID: 31626851 DOI: 10.1016/j.bbr.2019.112304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmitter act on dopamine receptors (D1-D5) to regulate motor functions, reward, addiction and cognitive behavior. The depletion of DA in midbrain due to degeneration of nigral dopaminergic (DAergic) neurons leads to Parkinson's disease (PD). DA agonist and levodopa (L-DOPA) are the only therapies used for symptomatic relief in PD. However, the role of DA receptors in PD pathogenesis and how they are associated with mitochondrial functions and DAergic neurogenesis is still not known. Here, we investigated the mechanistic aspect of DA D1 receptor mediated control of DAergic neurogenesis, motor behavior and mitochondrial functions in rat PD model. The pharmacological activation of D1 receptors markedly improved motor deficits, mitochondrial biogenesis, ATP levels, mitochondrial membrane potential and defended nigral DAergic neurons against 6-hydroxydopamine (6-OHDA) induced neurotoxicity in adult rats. However, the D1 agonist mediated effects were abolished following D1 receptor antagonist treatment in 6-OHDA lesioned rats. Interestingly, pharmacological inhibition of dynamin related protein-1 (Drp-1) by Mdivi-1 in D1 antagonist treated PD rats, significantly restored behavioral deficits, mitochondrial functions, mitochondrial biogenesis and increased the number of newborn DAergic neurons in substantia nigra pars compacta (SNpc). Drp-1 inhibition mediated neuroprotective effects in PD rats were associated with increased level of protein kinase-B/Akt and extracellular-signal-regulated kinase (ERK). Taken together, our data suggests that dopamine D1 receptor mediated reduction in mitochondrial fission and enhanced DAergic neurogenesis may involve Drp-1 inhibition which led to improved behavioral recovery in PD rats.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow (U.P.), India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow (U.P.), India; L4078, Department of Neuroscience, School of Medicine, University of Connecticut (Uconn) Health Center, 263 Farmington Avenue
| | - Virendra Tiwari
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow (U.P.), India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Shameema Bano
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow (U.P.), India
| | - Shubha Shukla
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow (U.P.), India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
18
|
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2019; 49:3-16. [PMID: 31568602 DOI: 10.1111/ahe.12496] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.
Collapse
Affiliation(s)
- Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
19
|
Okano M, Takahata K, Sugimoto J, Muraoka S. Selegiline Recovers Synaptic Plasticity in the Medial Prefrontal Cortex and Improves Corresponding Depression-Like Behavior in a Mouse Model of Parkinson's Disease. Front Behav Neurosci 2019; 13:176. [PMID: 31427934 PMCID: PMC6688712 DOI: 10.3389/fnbeh.2019.00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
In patients with Parkinson’s disease (PD), non-motor symptoms (NMS) including depression and anxiety are often recognized before motor symptoms develop. Monoamine oxidase (MAO)-B inhibitors are therapeutically effective for motor symptoms; however, their effects on NMS in PD are yet to be fully assessed. Here, we aimed to explore the antidepressant-like effects of propargyl MAO-B inhibitors, selegiline and rasagiline, in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a PD model, and to elucidate the mechanisms underlying these effects. Four repeated intraperitoneal injections of MPTP at 17.5 mg/kg to C57BL/6 mice led to a partial reduction in the number of nigrostriatal tyrosine hydroxylase-positive neurons and to the extension of immobility time during the tail suspension test (TST), without any obvious induction of motor deficits. A single subcutaneous administration of selegiline at 10 mg/kg shortened the extended immobility time of MPTP mice in the TST, without any increase in motor activities, suggesting that selegiline exerts antidepressant-like effects. In this test, rasagiline did not produce antidepressant-like effects, although the inhibitory effect of 3 mg/kg rasagiline on brain MAO activity was comparable to that of 10 mg/kg selegiline. The shortened immobility time in the TST correlated with reduced cortical dopamine (DA) turnover rates in MPTP mice treated with selegiline, but not in MPTP mice treated with rasagiline. These results suggest that MAO inhibition does not entirely account for the antidepressant-like effects of selegiline. Administration of selegiline (10 mg/kg), but not rasagiline (1 mg/kg), to MPTP mice restored the impaired long-term potentiation induced by high-frequency stimulation in the medial prefrontal cortex (mPFC), and normalized the reduced phosphorylation of Ca2+/calmodulin-dependent protein kinase IIα, which is known to be involved in neuroplasticity, in the frontal cortex. In MPTP mice, the antiparkinsonian drug pramipexole (0.3 mg/kg), a DA D2 and D3 receptor agonist, that has been shown to be effective in treating depression in PD, ameliorated depression-like behavior and synaptic dysfunction in the mPFC. Taken together, the antidepressant-like effects of selegiline in MPTP mice are attributable to the restoration of impaired synaptic plasticity in the mPFC, suggesting its potential for treating depression in early PD.
Collapse
Affiliation(s)
- Motoki Okano
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Junya Sugimoto
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Osaka, Japan
| |
Collapse
|
20
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
21
|
Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 2019; 129:104463. [PMID: 31078578 DOI: 10.1016/j.neuint.2019.104463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
Nigral dopaminergic (DAergic) cell degeneration and depletion of dopamine neurotransmitter in the midbrain are cardinal features of Parkinson's disease (PD). Dopamine system regulates different aspects of behavioural phenotypes such as motor control, reward, anxiety and depression via acting on dopamine receptors (D1-D5). Recent studies have shown the potential effects of dopamine on modulation of neurogenesis, a process of newborn neuron formation from neural stem cells (NSCs). Reduced proliferative capacity of NSCs and net neurogenesis has been reported in subventricular zone, olfactory bulb and hippocampus of patients with PD. However, the molecular and cellular mechanism of dopamine mediated modulation of DAergic neurogenesis is not defined. In this study, we attempted to investigate the molecular mechanism of dopamine receptors mediated control of DAergic neurogenesis and whether it affects mitochondrial biogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. Unilateral administration of 6-OHDA into medial forebrain bundle potentially reduced tyrosine hydroxylase immunoreactivity, dopamine content in substantia nigra pars compacta (SNpc) and striatum region and impaired motor functions in adult rats. We found decreased D1 receptor expression, mitochondrial biogenesis, mitochondrial functions and DAergic differentiation associated with down-regulation of Wnt/β-catenin signalling in SNpc of 6-OHDA lesioned rats. Pharmacological stimulation of D1 receptor enhanced mitochondrial biogenesis, mitochondrial functions and DAergic neurogenesis that lead to improved motor functions in 6-OHDA lesioned rats. D1 agonist induced effects were attenuated following administration of D1 antagonist, whereas shRNA mediated knockdown of Axin-2, a negative regulator of Wnt signalling significantly abolished D1 antagonist induced impairment in mitochondrial biogenesis and DAergic neurogenesis in 6-OHDA lesioned rats. Our results suggest that dopamine receptor regulates DAergic neurogenesis and mitochondrial functions by activation of Wnt/β-catenin signaling in rat model of PD-like phenotypes.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; National Institute of Child Health and Human Development, Bethesda, MD, 20814, USA
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - M Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
22
|
Mishra A, Singh S, Tiwari V, Parul, Shukla S. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease. Neurochem Int 2018; 122:170-186. [PMID: 30500462 DOI: 10.1016/j.neuint.2018.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is primarily characterized by midbrain dopamine depletion. Dopamine acts through dopamine receptors (D1 to D5) to regulate locomotion, motivation, pleasure, attention, cognitive functions and formation of newborn neurons, all of which are likely to be impaired in PD. Reduced hippocampal neurogenesis associated with dopamine depletion has been demonstrated in patients with PD. However, the precise mechanism to regulate multiple steps of adult hippocampal neurogenesis by dopamine receptor(s) is still unknown. In this study, we tested whether pharmacological agonism and antagonism of dopamine D1 and D2 receptor regulate nonmotor symptoms, neural stem cell (NSC) proliferation and fate specification and explored the cellular mechanism(s) underlying dopamine receptor (D1 and D2) mediated adult hippocampal neurogenesis in rat model of PD-like phenotypes. We found that single unilateral intra-medial forebrain bundle administration of 6-hydroxydopamine (6-OHDA) reduced D1 receptor level in the hippocampus. Pharmacological agonism of D1 receptor exerts anxiolytic and antidepressant-like effects as well as enhanced NSC proliferation, long-term survival and neuronal differentiation by positively regulating Wnt/β-catenin signaling pathway in hippocampus in PD rats. shRNA lentivirus mediated knockdown of Axin-2, a negative regulator of Wnt/β-catenin signaling potentially attenuated D1 receptor antagonist induced anxiety and depression-like phenotypes and impairment in adult hippocampal neurogenesis in PD rats. Our results suggest that improved nonmotor symptoms and hippocampal neurogenesis in PD rats controlled by D1-like receptors that involve the activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Parul
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
23
|
Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage. Neurochem Res 2018; 44:1306-1322. [PMID: 30357653 DOI: 10.1007/s11064-018-2662-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
The hippocampus is not a homogeneous brain area, and the complex organization of this structure underlies its relevance and functional pleiotropism. The new data related to the involvement of the ventral hippocampus in the cognitive function, behavior, stress response and its association with brain pathology, in particular, depression, are analyzed with a focus on neuroplasticity, specializations of the intrinsic neuronal network, corticosteroid signaling through mineralocorticoid and glucocorticoid receptors and neuroinflammation in the hippocampus. The data on the septo-temporal hippicampal gradient are analyzed with particular emphasis on the ventral hippocampus, a region where most important alteration underlying depressive disorders occur. According to the recent data, the existing simple paradigm "learning (dorsal hippocampus) versus emotions (ventral hippocampus)" should be substantially revised and specified. A new hypothesis is suggested on the principal involvement of stress response mechanisms (including interaction of released glucocorticoids with hippocampal receptors and subsequent inflammatory events) in the remote hippocampal damage underlying delayed dementia and depression induced by focal brain damage (e.g. post-stroke and post-traumatic). The translational validity of this hypothesis comprising new approaches in preventing post-stroke and post-trauma depression and dementia can be confirmed in experimental and clinical studies.
Collapse
|
24
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
25
|
Cao XY, Hua X, Xiong JW, Zhu WT, Zhang J, Chen L. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice. Front Mol Neurosci 2018; 11:6. [PMID: 29403355 PMCID: PMC5780345 DOI: 10.3389/fnmol.2018.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.
Collapse
Affiliation(s)
- Xin-Yuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jian-Wei Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Wen-Ting Zhu
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Kim S, Shou J, Abera S, Ziff EB. Sucrose withdrawal induces depression and anxiety-like behavior by Kir2.1 upregulation in the nucleus accumbens. Neuropharmacology 2017; 130:10-17. [PMID: 29191750 DOI: 10.1016/j.neuropharm.2017.11.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/02/2023]
Abstract
Dieting induces depression and anxiety among other emotional symptoms. Animal models indicate that repeated access to palatable foods such as sugar induces depression and anxiety-like behavior when the food is no longer available. However, the neurobiological mechanisms of how dietary restriction influences mood have not been fully understood. We used the two-bottle sucrose choice paradigm as an overeating and withdrawal model. Withdrawal after lengthy sucrose overeating elicited depression and anxiety-like behavior, which was reversed by sucrose reinstatement. In the nucleus accumbens (NAc) of sucrose withdrawal animals, dopamine levels and cAMP response element binding protein (CREB) activity were significantly reduced, while the inwardly rectifying K+ channel, Kir2.1, was significantly elevated. In addition, overexpression of Kir2.1 selectively in neurons expressing dopamine D1 receptors was sufficient to induce negative mood-linked behavior in the absence of sucrose overeating experience. As elevated K+ channels reduce neuronal excitability, a sucrose withdrawal-induced increase in Kir2.1 expression is able to decrease NAc activity, which provides a cellular basis for depression and anxiety-like behavior in animals.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States; Molecular Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, United States.
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University Lagnone Medical Center, New York, NY 10016, United States
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Lagnone Medical Center, New York, NY 10016, United States
| |
Collapse
|
27
|
Zhang T, Chen T, Chen P, Zhang B, Hong J, Chen L. MPTP-Induced Dopamine Depletion in Basolateral Amygdala via Decrease of D2R Activation Suppresses GABA A Receptors Expression and LTD Induction Leading to Anxiety-Like Behaviors. Front Mol Neurosci 2017; 10:247. [PMID: 28824377 PMCID: PMC5545577 DOI: 10.3389/fnmol.2017.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders commonly occur in Parkinson’s disease. Using field potential recording and patch-clamp recording, we evaluated influence of MPTP-reduced dopaminergic afferent in basolateral amygdala (BLA), a main region for affective regulation, on excitatory–inhibitory circuits and synaptic plasticity. Field excitatory post-synaptic potential (fEPSP) slopes at external capsule-BLA synapses were increased in MPTP-mice with decreases in paired-pulse facilitation and long-term potentiation amplitude, which were corrected by bath-application of D2R agonist quinpirole or cannabinoid type 1 receptors agonist WIN55,212-2, but not D1R agonist SKF38393. Compared to single waveform fEPSP in control mice, a multi-spike waveform fEPSP was observed in MPTP-mice with prolongation of duration and an increase in paired-pulse inhibition, which were recovered by BLA-injection of quinpirole for 2 days rather than bath-application. Density of GABA-evoked current (IGABA) in BLA principal neurons and GABAAR-α2 subunit expression were reduced in MPTP-mice, which were recovered by administration of quinpirole. Decline of PKC phosphorylation in BLA of MPTP-mice was corrected by bath-application of quinpirole, but not SKF38393. In MPTP-mice, BLA-injection of quinpirole or PKC activator PMA could recover GABAAR expression, which was sensitive to PKC inhibitor GF109203X. The impairment of long-term depression (LTD) in MPTP-mice was rescued by bath-application of GABAAR agonist muscimol or BLA-injection of quinpirole and PMA. Finally, BLA-injection of muscimol, quinpirole or PMA relieved anxiety-like behaviors in MPTP-mice. The results indicate that the MPTP-induced dopamine depletion in BLA principal neurons through reducing D2R-mediated PKC phosphorylation suppresses GABAAR expression and activity, which impairs GABAAR-mediated inhibition and LTD induction leading to anxiety-like behaviors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Tingting Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Peipei Chen
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
28
|
Staples MC, Fannon MJ, Mysore KK, Dutta RR, Ongjoco AT, Quach LW, Kharidia KM, Somkuwar SS, Mandyam CD. Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers. Brain Res 2017; 1663:59-65. [PMID: 28284897 DOI: 10.1016/j.brainres.2017.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/04/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.
Collapse
Affiliation(s)
- Miranda C Staples
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Rahul R Dutta
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alexandria T Ongjoco
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Khush M Kharidia
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|