1
|
Ben Zaken K, Bouhnik R, Omer N, Bloch N, Samson AO. Polyoxometalates bind multiple targets involved in Alzheimer's disease. J Biol Inorg Chem 2025; 30:299-309. [PMID: 40119889 PMCID: PMC11965166 DOI: 10.1007/s00775-025-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by brain aggregates of amyloid-β (Aβ) plaques and Tau tangles. Despite extensive research, effective therapy for AD remains elusive. Polyoxometalates (POMs), a class of inorganic compounds with diverse chemical structures and properties, are emerging as potential candidates for AD treatment due to their ability to target key molecular players implicated in disease pathogenesis, such as Aβ, acetylcholinesterase (AChE) and butyryl acetylcholinesterase (BChE). Here, we use molecular docking to predict the binding pose and affinities of POMs to 10 top targets associated with AD. First, we validate our method by replicating experimentally known binding of POMs to Aβ (ΔG = - 9.67 kcal/mol), AChE (ΔG = - 9.39 kcal/mol) and BChE (ΔG = - 10.86 kcal/mol). Then, using this method, we show that POM can also bind β-secretase 1 (BACE1, ΔG = - 10.14 kcal/mol), presenilin 1 (PSEN1, ΔG = - 10.65 kcal/mol), presenilin 2 (PSEN2, ΔG = - 7.94 kcal/mol), Amyloid Precursor Protein (APP, ΔG = - 7.26 kcal/mol), Apolipoprotein E (APOE4, ΔG = - 10.05 kcal/mol), Microtubule-Associated Protein Tau (MAPT, ΔG = - 5.28 kcal/mol) depending on phosphorylation, and α-synuclein (SNCA, ΔG = - 7.64 kcal/mol). Through such binding, POMs offer the potential to mitigate APP cleavage, Aβ oligomer neurotoxicity, Aβ aggregation, thereby attenuating disease progression. Overall, our molecular docking study represents a powerful tool in the discovery of POM-based therapeutics for AD, facilitating the development of novel treatments for AD.
Collapse
Affiliation(s)
- Karin Ben Zaken
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Rivka Bouhnik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Naama Omer
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Naamah Bloch
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Abraham O Samson
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
2
|
Rabah Y, Berwick JP, Sagar N, Pasquer L, Plaçais PY, Preat T. Astrocyte-to-neuron H 2O 2 signalling supports long-term memory formation in Drosophila and is impaired in an Alzheimer's disease model. Nat Metab 2025; 7:321-335. [PMID: 39856222 PMCID: PMC11860231 DOI: 10.1038/s42255-024-01189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/21/2024] [Indexed: 01/27/2025]
Abstract
Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron H2O2 signalling cascade in Drosophila that is essential for long-term memory formation. Stimulation of astrocytes by acetylcholine induces an increase in intracellular calcium ions, which triggers the generation of extracellular superoxide (O2•-) by astrocytic NADPH oxidase. Astrocyte-secreted superoxide dismutase 3 (Sod3) converts O2•- to hydrogen peroxide (H2O2), which is imported into neurons of the olfactory memory centre, the mushroom body, as revealed by in vivo H2O2 imaging. Notably, Sod3 activity requires copper ions, which are supplied by neuronal amyloid precursor protein. We also find that human amyloid-β peptide, implicated in Alzheimer's disease, inhibits the nAChRα7 astrocytic cholinergic receptor and impairs memory formation by preventing H2O2 synthesis. These findings may have important implications for understanding the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Jean-Paul Berwick
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Nisrine Sagar
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Pasquer
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
3
|
López-Guerrero V, Posadas Y, Sánchez-López C, Smart A, Miranda J, Singewald K, Bandala Y, Juaristi E, Den Auwer C, Perez-Cruz C, González-Mariscal L, Millhauser G, Segovia J, Quintanar L. A Copper-Binding Peptide with Therapeutic Potential against Alzheimer's Disease: From the Blood-Brain Barrier to Metal Competition. ACS Chem Neurosci 2025; 16:241-261. [PMID: 39723808 PMCID: PMC11741003 DOI: 10.1021/acschemneuro.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu2+ and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu2+-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu2+ binding to the cellular prion protein (PrPC). Therefore, in addition to metal selectivity and blood-brain barrier (BBB) permeability, an emerging challenge for copper chelators is to prevent the formation of neurotoxic Cu2+-Aβ species without perturbing the neuroprotective Cu2+-PrPC interaction. Previously, we reported the design of a tetrapeptide (TP) that withdraws Cu2+ from Aβ(1-16) and impacts the Cu2+-induced aggregation of Aβ(1-40). In this study, we improved the drug-like properties of TP in a BBB model, evaluated the metal selectivity of the optimized peptide (TP*), and tested its effect on Cu2+ coordination to PrPC and proteins involved in copper trafficking, such as copper transporter 1 and albumin. Our results show that changing the stereochemistry of the first residue prevents TP degradation in the BBB model and coadministration of TP with a peptide that increases BBB permeability allows its passage through the BBB model. TP* is highly selective toward Cu2+ in the presence of Zn2+ ions, transfers Cu2+ to copper-trafficking proteins, and forms a ternary TP*-Cu2+-PrP species that does not perturb the physiological conformation of PrP and displays only a minor impact in the neuroprotective Cu2+-dependent interaction of PrPC with the N-methyl-d-aspartate receptor. Overall, these results show that TP* displays desirable features for a copper chelator with therapeutic potential against AD. Moreover, this is the first study that explores the effect of a Cu2+ chelator with therapeutic potential for AD on Cu2+ coordination to PrPC (an emerging key player in AD pathology), integrating recent knowledge about metalloproteins involved in AD with the design of copper chelators against AD.
Collapse
Affiliation(s)
- Victor
E. López-Guerrero
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Yanahi Posadas
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Carolina Sánchez-López
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| | - Amanda Smart
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jael Miranda
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Kevin Singewald
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Yamir Bandala
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Eusebio Juaristi
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- El Colegio
Nacional, Mexico City 06020, Mexico
| | | | - Claudia Perez-Cruz
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Lorenza González-Mariscal
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Glenn Millhauser
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jose Segovia
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Liliana Quintanar
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| |
Collapse
|
4
|
August A, Hartmann S, Schilling S, Müller-Renno C, Begic T, Pierik AJ, Ziegler C, Kins S. Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein. Biol Chem 2024; 405:701-710. [PMID: 39425975 DOI: 10.1515/hsz-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.
Collapse
Affiliation(s)
- Alexander August
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Sabrina Hartmann
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Christine Müller-Renno
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Tarik Begic
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Antonio J Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - Christiane Ziegler
- Department of Physics, Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Krupa P, La Penna G, Li MS. Amyloid- β Tetramers and Divalent Cations at the Membrane/Water Interface: Simple Models Support a Functional Role. Int J Mol Sci 2023; 24:12698. [PMID: 37628878 PMCID: PMC10454299 DOI: 10.3390/ijms241612698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Charge polarization at the membrane interface is a fundamental process in biology. Despite the lower concentration compared to the abundant monovalent ions, the relative abundance of divalent cations (Ca2+, Mg2+, Zn2+, Fe2+, Cu2+) in particular spaces, such as the neuron synapse, raised many questions on the possible effects of free multivalent ions and of the required protection of membranes by the eventual defects caused by the free forms of the cations. In this work, we first applied a recent realistic model of divalent cations to a well-investigated model of a polar lipid bilayer, di-myristoyl phosphatidyl choline (DMPC). The full atomistic model allows a fairly good description of changes in the hydration of charged and polar groups upon the association of cations to lipid atoms. The lipid-bound configurations were analyzed in detail. In parallel, amyloid-β 1-42 (Aβ42) peptides assembled into tetramers were modeled at the surface of the same bilayer. Two of the protein tetramers' models were loaded with four Cu2+ ions, the latter bound as in DMPC-free Aβ42 oligomers. The two Cu-bound models differ in the binding topology: one with each Cu ion binding each of the monomers in the tetramer; one with pairs of Cu ions linking two monomers into dimers, forming tetramers as dimers of dimers. The models here described provide hints on the possible role of Cu ions in synaptic plasticity and of Aβ42 oligomers in storing the same ions away from lipids. The release of structurally disordered peptides in the synapse can be a mechanism to recover ion homeostasis and lipid membranes from changes in the divalent cation concentration.
Collapse
Affiliation(s)
- Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland; (P.K.); (M.S.L.)
| | - Giovanni La Penna
- Institute of Chemistry of Organometallic Compounds, National Research Council, 50019 Sesto Fiorentino, Italy
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland; (P.K.); (M.S.L.)
- Institute for Computational Science and Technology, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
8
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
9
|
Molecular Characteristics of Amyloid Precursor Protein (APP) and Its Effects in Cancer. Int J Mol Sci 2021; 22:ijms22094999. [PMID: 34066808 PMCID: PMC8125876 DOI: 10.3390/ijms22094999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer's disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.
Collapse
|
10
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kazdal F, Bahadori F, Celik B, Ertas A, Topcu G. Inhibition of Amyloid β Aggregation Using Optimized Nano-Encapsulated Formulations of Plant Extracts with High Metal Chelator Activities. Curr Pharm Biotechnol 2020; 21:681-701. [DOI: 10.2174/1389201021666191210125851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Background:
The role of Fe+2, Cu+2 and Zn+2 in facilitating aggregation of Amyloid β (Aβ)
and consequently, the progression of Alzheimer's disease (AD) is well established.
Objective:
Development of non-toxic metal chelators is an emerging era in the treatment of AD, in
which complete success has not been fully achieved. The purpose of this study was to determine plant
extracts with high metal chelator and to encapsulate them in nano-micellar systems with the ability to
pass through the Blood Brain Barrier (BBB).
Method:
Extracts of 36 different Anatolian plants were prepared, total phenolic and flavonoid contents
were determined, and the extracts with high content were examined for their Fe+2, Cu+2 and Zn+2
chelating activities. Apolipoprotein E4 (Apo E) decorated nano-formulations of active extracts were
prepared using Poly (Lactide-co-Glycolide) (PLGA) (final product ApoEPLGA) to provide BBB penetrating
property.
Results:
Verbascum flavidum aqueous extract was found as the most active sample, incubation of
which, with Aβ before and after metal-induced aggregation, resulted in successful inhibition of aggregate
formation, while re-solubilization of pre-formed aggregates was not effectively achieved. The
same results were obtained using ApoEPLGA.
Conclusion:
An optimized metal chelator nano-formulation with BBB penetrating ability was prepared
and presented for further in-vivo studies.
Collapse
Affiliation(s)
- Fatma Kazdal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Burak Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, 21280 Diyarbakır, Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih- Istanbul, Turkey
| |
Collapse
|
12
|
Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, Matsumura R, Yokota Y, Ishida I, Matsuo J, Yoshida S, Ota M, Kunugi H. Cerebrospinal fluid neuroplasticity-associated protein levels in patients with psychiatric disorders: a multiplex immunoassay study. Transl Psychiatry 2020; 10:161. [PMID: 32439851 PMCID: PMC7242469 DOI: 10.1038/s41398-020-0843-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
To examine the role of neuroplasticity in the pathology of psychiatric disorders, we measured cerebrospinal fluid (CSF) neuroplasticity-associated protein levels. Participants were 94 patients with schizophrenia, 68 with bipolar disorder (BD), 104 with major depressive disorder (MDD), and 118 healthy controls, matched for age, sex, and ethnicity (Japanese). A multiplex immunoassay (22-plex assay) was performed to measure CSF neuroplasticity-associated protein levels. Among 22 proteins, 11 were successfully measured in the assay. CSF amyloid precursor protein (APP) and glial cell-derived neurotrophic factor (GDNF) levels were significantly lower in patients with schizophrenia, and CSF APP and neural cell adhesion molecule (NCAM)-1 levels were significantly lower in patients with BD, than in healthy controls (all p < 0.05). Positive and Negative Syndrome Scale total, positive, and general scores were significantly and positively correlated with CSF hepatocyte growth factor (HGF) (p < 0.01) and S100 calcium-binding protein B (S100B) (p < 0.05) levels in patients with schizophrenia. Young mania-rating scale score was significantly and positively correlated with CSF S100B level in patients with BD (p < 0.05). Hamilton Depression Rating Scale, core, sleep, activity, somatic anxiety, and delusion subscale scores were significantly and positively correlated with CSF HGF level, while sleep subscale score was positively correlated with CSF S100B and VEGF receptor 2 levels in patients with MDD (p < 0.05). Our results suggest that CSF APP, GDNF, and NCAM-1 levels are associated with psychiatric disorders, and that CSF HGF, S100B, and VEGF receptor 2 levels are related to psychiatric symptoms.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Kotaro Hattori
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Daimei Sasayama
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Takuya Tsumagari
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Tomoko Miyakawa
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Ryo Matsumura
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Yuuki Yokota
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Ikki Ishida
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Junko Matsuo
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Sumiko Yoshida
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan ,grid.419280.60000 0004 1763 8916Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Miho Ota
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
13
|
Huy Pham DQ, Krupa P, Nguyen HL, La Penna G, Li MS. Computational Model to Unravel the Function of Amyloid-β Peptides in Contact with a Phospholipid Membrane. J Phys Chem B 2020; 124:3300-3314. [DOI: 10.1021/acs.jpcb.0c00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dinh Quoc Huy Pham
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 00133 Ho Chi Minh City, Vietnam
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, 00186 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
14
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|
15
|
Santos G, Borges JMP, Avila-Rodriguez M, Gaíno SB, Barreto GE, Rúbio ÉP, Aguiar RM, Galembeck E, Bromochenkel CB, de Oliveira DM. Copper and Neurotoxicity in Autism Spectrum Disorder. Curr Pharm Des 2019; 25:4747-4754. [PMID: 31845627 DOI: 10.2174/1381612825666191217091939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/08/2019] [Indexed: 12/23/2022]
Abstract
Free radicals (FR) act on living organisms and present unpaired electrons in the molecular orbitals of oxygen or nitrogen species. They are classified as redox reactions and account for a wide range of processes in biological systems. Genetic and environmental factors may alter the levels of FR in the cell, leading to deleterious consequences such as membrane lipid peroxidation, protein nitration, enzyme, carbohydrate and DNA damage, ultimately resulting in premature aging and a pro-inflammatory microenvironment as observed in Alzheimer's disease (AD) and autism spectrum disorder (ASD). O2 radical ability to act as a Lewis base and to form a complex with metal transition such as iron and copper (Lewis acids) leads to biomolecules oxidation at physiological pH, thus increasing the possibility of injury and oxidative damage in biological tissues. In this review, we discuss the role of metals, like copper, and the amyloid precursor protein (APP) derivative (s-APP-alpha) as an antioxidant and a possible adjuvant in the treatment of some autistic spectrum disorder symptoms (ASD).
Collapse
Affiliation(s)
- Gesivaldo Santos
- Department of Biological Science, State University of Southwestern of Bahia, Bahia, Brazil
| | - Julita M P Borges
- Department of Science and Technology, State University of Southwestern of Bahia, Bahia, Brazil
| | | | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Érika P Rúbio
- Department of Science and Technology, State University of Southwestern of Bahia, Bahia, Brazil
| | - Rosane M Aguiar
- Department of Science and Technology, State University of Southwestern of Bahia, Bahia, Brazil
| | - Eduardo Galembeck
- Institute of Biology, State University of Campinas-São Paulo, São Paulo, Brazil
| | | | - Djalma M de Oliveira
- Department of Science and Technology, State University of Southwestern of Bahia, Bahia, Brazil
| |
Collapse
|
16
|
Is brain iron trafficking part of the physiology of the amyloid precursor protein? J Biol Inorg Chem 2019; 24:1171-1177. [PMID: 31578640 DOI: 10.1007/s00775-019-01684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein is so named, because a proteolytic fragment of it was found associated with a neuropathic disorder now known as Alzheimer's disease. This fragment, Aβ, along with tau makes up the plaques and tangles that are the hallmark of AD. Iron (and other first-row transition metals) is found associated with these proteinaceous deposits. Much research has focused on the relationship of the plaques and iron to the etiology of the disease. This commentary asks another question, one only more recently addressed namely, what is the physiologic function of the amyloid precursor protein (APP) and of its secretase-generated soluble species? Overall, the data make clear that APP and its products have neurotrophic functions and some data indicate one of these may be to modulate the trafficking of iron in the brain.
Collapse
|
17
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
18
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
August A, Schmidt N, Klingler J, Baumkötter F, Lechner M, Klement J, Eggert S, Vargas C, Wild K, Keller S, Kins S. Copper and zinc ions govern the trans‐directed dimerization of APP family members in multiple ways. J Neurochem 2019; 151:626-641. [DOI: 10.1111/jnc.14716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander August
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Nadine Schmidt
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Johannes Klingler
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Frederik Baumkötter
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Marius Lechner
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Jessica Klement
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Simone Eggert
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Carolyn Vargas
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH) University of Heidelberg Heidelberg Germany
| | - Sandro Keller
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Stefan Kins
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| |
Collapse
|
20
|
Young TR, Wedd AG, Xiao Z. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition. Metallomics 2019; 10:108-119. [PMID: 29215101 DOI: 10.1039/c7mt00291b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Collapse
Affiliation(s)
- Tessa R Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
21
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
22
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Young TR, Pukala TL, Cappai R, Wedd AG, Xiao Z. The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain. Biochemistry 2018; 57:4165-4176. [DOI: 10.1021/acs.biochem.8b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tessa R. Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
25
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
27
|
Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SKTS. Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7:14423. [PMID: 29089568 PMCID: PMC5663743 DOI: 10.1038/s41598-017-13759-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is a significant risk factor for Alzheimer's disease (AD), which is associated with extracellular brain deposits of amyloid plaques containing aggregated amyloid-β (Aβ) peptides. Aβ aggregation occurs via multiple pathways that can be influenced by various compounds. Here, we used AFM imaging and NMR, fluorescence, and mass spectrometry to monitor in vitro how Aβ aggregation is affected by the cigarette-related compounds nicotine, polycyclic aromatic hydrocarbons (PAHs) with one to five aromatic rings, and the metal ions Cd(II), Cr(III), Pb(II), and Pb(IV). All PAHs and metal ions modulated the Aβ aggregation process. Cd(II), Cr(III), and Pb(II) ions displayed general electrostatic interactions with Aβ, whereas Pb(IV) ions showed specific transient binding coordination to the N-terminal Aβ segment. Thus, Pb(IV) ions are especially prone to interact with Aβ and affect its aggregation. While Pb(IV) ions affected mainly Aβ dimer and trimer formation, hydrophobic toluene mainly affected formation of larger aggregates such as tetramers. The uncharged and hydrophilic nicotine molecule showed no direct interactions with Aβ, nor did it affect Aβ aggregation. Our Aβ interaction results suggest a molecular rationale for the higher AD prevalence among smokers, and indicate that certain forms of lead in particular may constitute an environmental risk factor for AD.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jinghui Luo
- Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford Ox, 1 3TA, UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St.Göran Hospital, St.Göransplan 1, 112 19, Stockholm, Sweden
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
28
|
Dunsing V, Mayer M, Liebsch F, Multhaup G, Chiantia S. Direct evidence of amyloid precursor-like protein 1 trans interactions in cell-cell adhesion platforms investigated via fluorescence fluctuation spectroscopy. Mol Biol Cell 2017; 28:3609-3620. [PMID: 29021345 PMCID: PMC5706989 DOI: 10.1091/mbc.e17-07-0459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 01/25/2023] Open
Abstract
The amyloid precursor–like protein 1 (APLP1) plays a role in synaptic adhesion and synaptogenesis. In this work, we use quantitative fluorescence microscopy to demonstrate the existence of APLP1–APLP1 trans interaction across cell–cell junctions and propose a model explaining the molecular mechanism driving APLP1 multimerization. The amyloid precursor–like protein 1 (APLP1) is a type I transmembrane protein that plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein–protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1–APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigated APLP1 interactions and dynamics directly in living human embryonic kidney cells using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy and number and brightness analysis. Our results show that APLP1 forms homotypic trans complexes at cell–cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from giant plasma membrane vesicles suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1–APLP1 trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and allow a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms.
Collapse
Affiliation(s)
- Valentin Dunsing
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Magnus Mayer
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Filip Liebsch
- Department of Pharmacology and Therapeutics/Integrated Program in Neuroscience, McGill University, Montreal, QC H3G 1Y63, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics/Integrated Program in Neuroscience, McGill University, Montreal, QC H3G 1Y63, Canada
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
29
|
Safadi ME, Bhadbhade M, Shimmon R, Baker AT, McDonagh AM. Cyclen-based chelators for the inhibition of Aβ aggregation: Synthesis, anti-oxidant and aggregation evaluation. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Wang SW, Liu DQ, Zhang LX, Ji M, Zhang YX, Dong QX, Liu SY, Xie XX, Liu RT. A vaccine with Aβ oligomer-specific mimotope attenuates cognitive deficits and brain pathologies in transgenic mice with Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:41. [PMID: 28592267 PMCID: PMC5461751 DOI: 10.1186/s13195-017-0267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Background β-Amyloid peptide (Aβ) oligomers are initial factors used to induce Alzheimer’s disease (AD) development, and Aβ monomers have normal physiological function. The antibodies or vaccines against Aβ monomers have serious problems, such as side effects and low curative effects. Therefore, it is essential to specifically target Aβ oligomers rather than monomers for the treatment of AD. Methods The mimotopes of Aβ oligomers were obtained by panning the phage-displayed random peptide libraries using oligomer-specific antibodies as targets and expressed on the surface of EBY100 Saccharomyces cerevisiae to generate yeast cell base vaccines. One vaccine (AOE1) induced antibodies specifically against Aβ oligomers and was selected for further study. The APP/PS1 mice were subcutaneously immunized with AOE1 eight times. The levels and characteristics of antibodies induced by AOE1 were determined by enzyme-linked immunosorbent assay. The effect of AOE1 on the cognitive deficits of AD mice was tested by novel object recognition (NOR) and Y-maze. Dot blot analysis, Western blot analysis, and immunohistochemistry were applied to measure the effects of AOE1 on Aβ pathologies, neuroinflammation, and microhemorrhages in the brains of AD mice. Results Eight mimotope candidates of Aβ oligomers were selected and expressed on EBY100 S. cerevisiae. Only AOE1 vaccine containing mimotope L2 induced antibodies that specifically recognized Aβ42 oligomers rather than monomers. AOE1 immunization significantly increased the AD mice’s exploration times for the novel object in the NOR test and the choices for new arms in the Y-maze test, and it reduced levels of Aβ oligomers and glial activation in the AD mouse brains. No activation of Aβ-specific T cells and microhemorrhages was observed in their brains following AOE1 vaccination. Conclusions AOE1 is the first vaccine applying the oligomer-specific mimotope as an immunogen, which could induce antibodies with high specificity to Aβ oligomers. AOE1 immunization attenuated Aβ pathologies and cognitive deficits in AD mice, decreased the overactivation of glial cells, and did not induce microhemorrhage in the brains of AD mice. These findings suggest that AOE1 may be a safer and more effective vaccine for AD treatment.
Collapse
Affiliation(s)
- Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Dong-Qun Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Ling-Xiao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Yang-Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Quan-Xiu Dong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Shu-Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|