1
|
Zhang S, Chen X, Li J, Xu A, Bode AM, Luo X. The role of cryptochrome (CRY) in cancer: molecular mechanisms and Clock-based therapeutic strategies. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109093 DOI: 10.3724/abbs.2025025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The circadian rhythm is a phenomenon in which physiological, behavioral, and biochemical processes within an organism naturally fluctuate over a period of approximately 24 hours. This phenomenon is ubiquitous in living organisms. Disruption of circadian rhythms in mammals leads to different diseases, such as cancer, and neurodegenerative and metabolic disorders. In specific tissues, numerous genes have been found to have circadian oscillations, suggesting a broad role for rhythm genes in the regulation of gene expression. This review systematically summarizes the role of cryptochromes (CRYs) in the initiation and progression of different types of cancer and discusses the relationships between Clock genes and the tumor microenvironment (TME), as well as clock-based therapeutic strategies.
Collapse
Affiliation(s)
- Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiayi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Anan Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Tyszka A, Szypulski K, Pyza E, Damulewicz M. Autophagy in the retina affects photoreceptor synaptic plasticity and behavior. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104741. [PMID: 39662838 DOI: 10.1016/j.jinsphys.2024.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The visual system is a sensory system which is sensitive to light and detects photic stimuli. It plays many important functions, such as vision, circadian clock entrainment and regulation of sleep-wake behavior. The interconnection between the visual system and clock network is precisely regulated. The outer layer of the visual system called the retina, is composed of opsin-based photoreceptors that, in addition to visual information, provide photic information for the circadian clock, which in turn, regulates daily rhythms, such as activity and sleep patterns. The retina houses its own circadian oscillators (belonging to peripheral oscillators), however, they are also controlled by the main clock (pacemaker). Photoreceptor cells show many clock and light-dependent rhythms, such as the rhythms in synaptic plasticity or rhodopsin turnover, but their precise regulation is still not completely understood. In this study, we provided evidence that one of the mechanisms involved in the regulation of retinal rhythms is autophagy. We showed that autophagy is rhythmic in photoreceptors, with a specific daily pattern of autophagosome levels in different cells. Moreover, our data suggest that rhythmic autophagy-dependent degradation of the presynaptic protein Bruchpilot or photosensitive rhodopsin is involved in the regulation of daily rhythms observed in the retina. In effect, autophagy disruption in the photoreceptors, which affects photic signal transmission to the main clock neurons, causes changes in sleep level and pattern.
Collapse
Affiliation(s)
- Aleksandra Tyszka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Kornel Szypulski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
Damulewicz M, Mazzotta GM. A one-day journey to the suburbs: circadian clock in the Drosophila visual system. FEBS J 2025; 292:727-739. [PMID: 39484992 PMCID: PMC11839939 DOI: 10.1111/febs.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Living organisms, which are constantly exposed to cyclical variations in their environment, need a high degree of plasticity in their visual system to respond to daily and seasonal fluctuations in lighting conditions. In Drosophila melanogaster, the visual system is a complex tissue comprising different photoreception structures that exhibit daily rhythms in gene expression, cell morphology, and synaptic plasticity, regulated by both the central and peripheral clocks. In this review, we briefly summarize the structure of the circadian clock and the visual system in Drosophila and comprehensively describe circadian oscillations in visual structures, from molecules to behaviors, which are fundamental for the fine-tuning of visual sensitivity. We also compare some features of the rhythmicity in the visual system with that of the central pacemaker and hypothesize about the differences in the regulatory signals and mechanisms that control these two clocks.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and ImagingJagiellonian UniversityKrakówPoland
| | | |
Collapse
|
4
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
5
|
Attallah A, Ardourel M, Gallazzini F, Lesne F, De Oliveira A, Togbé D, Briault S, Perche O. Lack of FMRP in the retina: Evidence of a retinal specific transcriptomic profile. Exp Eye Res 2024; 246:110015. [PMID: 39089568 DOI: 10.1016/j.exer.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.
Collapse
Affiliation(s)
- Amir Attallah
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Maryvonne Ardourel
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Felix Gallazzini
- University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Fabien Lesne
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Anthony De Oliveira
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Dieudonnée Togbé
- Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France
| | - Sylvain Briault
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Olivier Perche
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France.
| |
Collapse
|
6
|
Bhattacharya D, Górska-Andrzejak J, Abaquita TAL, Pyza E. Effects of adenosine receptor overexpression and silencing in neurons and glial cells on lifespan, fitness, and sleep of Drosophila melanogaster. Exp Brain Res 2023:10.1007/s00221-023-06649-y. [PMID: 37335362 DOI: 10.1007/s00221-023-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
A single adenosine receptor gene (dAdoR) has been detected in Drosophila melanogaster. However, its function in different cell types of the nervous system is mostly unknown. Therefore, we overexpressed or silenced the dAdoR gene in eye photoreceptors, all neurons, or glial cells and examined the fitness of flies, the amount and daily pattern of sleep, and the influence of dAdoR silencing on Bruchpilot (BRP) presynaptic protein. Furthermore, we examined the dAdoR and brp gene expression in young and old flies. We found that a higher level of dAdoR in the retina photoreceptors, all neurons, and glial cells negatively influenced the survival rate and lifespan of male and female Drosophila in a cell-dependent manner and to a different extent depending on the age of the flies. In old flies, expression of both dAdoR and brp was higher than in young ones. An excess of dAdoR in neurons improved climbing in older individuals. It also influenced sleep by lengthening nighttime sleep and siesta. In turn, silencing of dAdoR decreased the lifespan of flies, although it increased the survival rate of young flies. It hindered the climbing of older males and females, but did not change sleep. Silencing also affected the daily pattern of BRP abundance, especially when dAdoR expression was decreased in glial cells. The obtained results indicate the role of adenosine and dAdoR in the regulation of fitness in flies that is based on communication between neurons and glial cells, and the effect of glial cells on synapses.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Jagellonian University, Kraków, Poland.
| |
Collapse
|
7
|
Jarabo P, de Pablo C, González-Blanco A, Casas-Tintó S. Circadian Gene cry Controls Tumorigenesis through Modulation of Myc Accumulation in Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23042043. [PMID: 35216153 PMCID: PMC8874709 DOI: 10.3390/ijms23042043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GB) is the most frequent malignant brain tumor among adults and currently there is no effective treatment. This aggressive tumor grows fast and spreads through the brain causing death in 15 months. GB cells display a high mutation rate and generate a heterogeneous population of tumoral cells that are genetically distinct. Thus, the contribution of genes and signaling pathways relevant for GB progression is of great relevance. We used a Drosophila model of GB that reproduces the features of human GB and describe the upregulation of the circadian gene cry in GB patients and in a Drosophila GB model. We studied the contribution of cry to the expansion of GB cells and the neurodegeneration and premature death caused by GB, and we determined that cry is required for GB progression. Moreover, we determined that the PI3K pathway regulates cry expression in GB cells, and in turn, cry is necessary and sufficient to promote Myc accumulation in GB. These results contribute to understanding the mechanisms underlying GB malignancy and lethality, and describe a novel role of Cry in GB cells.
Collapse
|
8
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
The expression of circadian clock genes in Daphnia magna diapause. Sci Rep 2020; 10:19928. [PMID: 33199823 PMCID: PMC7669902 DOI: 10.1038/s41598-020-77065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
Diapause is a mechanism necessary for survival in arthropods. Often diapause induction and resurrection is light-dependent and therefore dependent on the photoperiod length and on the number of consecutive short-days. In many organisms, including the microcrustacean Daphnia magna, one functional entity with the capacity to measure seasonal changes in day-length is the circadian clock. There is a long-standing discussion that the circadian clock also controls photoperiod-induced diapause. We tested this hypothesis in D. magna, an organism which goes into a state of suspended animation with the shortening of the photoperiod. We measured gene expression of clock genes in diapause-destined embryos of D. magna in the initiation, resting and resurrection phases and checked it against gene expression levels of continuously developing embryos. We demonstrate that some genes of the clock are differentially expressed during diapause induction but not during its maintenance. Furthermore, the photoreceptor gene cry2 and the clock-associated gene brp are highly expressed during induction and early diapause, probably in order to produce excess mRNA to prepare for immediate resurrection. After resurrection, both types of embryos show a similar pattern of gene expression during development. Our study contributes significantly to the understanding of the molecular basis of diapause induction, maintenance and termination.
Collapse
|
10
|
Damulewicz M, Woźnicka O, Jasińska M, Pyza E. CRY-dependent plasticity of tetrad presynaptic sites in the visual system of Drosophila at the morning peak of activity and sleep. Sci Rep 2020; 10:18161. [PMID: 33097794 PMCID: PMC7585400 DOI: 10.1038/s41598-020-74442-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Tetrad synapses are formed between the retina photoreceptor terminals and postsynaptic cells in the first optic neuropil (lamina) of Drosophila. They are remodelled in the course of the day and show distinct functional changes during activity and sleep. These changes result from fast degradation of the presynaptic scaffolding protein Bruchpilot (BRP) by Cryptochrome (CRY) in the morning and depend on BRP-170, one of two BRP isoforms. This process also affects the number of synaptic vesicles, both clear and dense-core, delivered to the presynaptic elements. In cry01 mutants lacking CRY and in brpΔ170, the number of synaptic vesicles is lower in the morning peak of activity than during night-sleep while in wild-type flies the number of synaptic vesicles is similar at these two time points. CRY may also set phase of the circadian rhythm in plasticity of synapses. The process of synapse remodelling stimulates the formation of clear synaptic vesicles in the morning. They carry histamine, a neurotransmitter in tetrad synapses and seem to be formed from glial capitate projections inside the photoreceptor terminals. In turn dense-core vesicles probably carry synaptic proteins building the tetrad presynaptic element.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
11
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Damulewicz M, Ispizua JI, Ceriani MF, Pyza EM. Communication Among Photoreceptors and the Central Clock Affects Sleep Profile. Front Physiol 2020; 11:993. [PMID: 32848895 PMCID: PMC7431659 DOI: 10.3389/fphys.2020.00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Light is one of the most important factors regulating rhythmical behavior of Drosophila melanogaster. It is received by different photoreceptors and entrains the circadian clock, which controls sleep. The retina is known to be essential for light perception, as it is composed of specialized light-sensitive cells which transmit signal to deeper parts of the brain. In this study we examined the role of specific photoreceptor types and peripheral oscillators located in these cells in the regulation of sleep pattern. We showed that sleep is controlled by the visual system in a very complex way. Photoreceptors expressing Rh1, Rh3 are involved in night-time sleep regulation, while cells expressing Rh5 and Rh6 affect sleep both during the day and night. Moreover, Hofbauer-Buchner (HB) eyelets which can directly contact with s-LN v s and l-LN v s play a wake-promoting function during the day. In addition, we showed that L2 interneurons, which receive signal from R1-6, form direct synaptic contacts with l-LN v s, which provides new light input to the clock network.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Juan I. Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
14
|
Czypionka T, Fields PD, Routtu J, van den Berg E, Ebert D, De Meester L. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol Ecol 2019; 28:998-1008. [PMID: 30592346 DOI: 10.1111/mec.15001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
Diapause is a feature of the life cycle of many invertebrates by which unfavourable environmental conditions can be outlived. The seasonal timing of diapause allows organisms to adapt to seasonal changes in habitat suitability and thus is key to their fitness. In the planktonic crustacean Daphnia, various cues can induce the production of diapause stages that are resistant to heat, drought or freezing and contain one to two embryos in developmental arrest. Daphnia is a keystone species of many freshwater ecosystems, where it acts as the main link between phytoplankton and higher trophic levels. The correct seasonal timing of diapause termination is essential to maintain trophic interactions and is achieved via a genetically based interpretation of environmental cues like photoperiod and temperature. Field monitoring and modelling studies raised concerns on whether populations can advance their seasonal release from diapause to advances in spring phenology under global change, or if a failure to adapt will cause trophic mismatches negatively affecting ecosystem functioning. Our capacity to understand and predict the evolution of diapause timing requires information about the genetic architecture underlying this trait. In this study, we identified eight quantitative trait loci (QTLs) and four epistatic interactions that together explained 66.5% of the variation in diapause termination in Daphnia magna using QTL mapping. Our results suggest that the most significant QTL is modulating diapause termination dependent on photoperiod and is involved in three of the four detected epistatic interactions. Candidate genes at this QTL could be identified through the integration with genome data and included the presynaptic active zone protein bruchpilot. Our findings contribute to understanding the genomic control of seasonal diapause timing in an ecological relevant species.
Collapse
Affiliation(s)
- Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Abstract
CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY's best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY's various circadian and noncircadian functions in fruit flies.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
16
|
Levels of Par-1 kinase determine the localization of Bruchpilot at the Drosophila neuromuscular junction synapses. Sci Rep 2018; 8:16099. [PMID: 30382129 PMCID: PMC6208417 DOI: 10.1038/s41598-018-34250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Functional synaptic networks are compromised in many neurodevelopmental and neurodegenerative diseases. While the mechanisms of axonal transport and localization of synaptic vesicles and mitochondria are relatively well studied, little is known about the mechanisms that regulate the localization of proteins that localize to active zones. Recent finding suggests that mechanisms involved in transporting proteins destined to active zones are distinct from those that transport synaptic vesicles or mitochondria. Here we report that localization of BRP-an essential active zone scaffolding protein in Drosophila, depends on the precise balance of neuronal Par-1 kinase. Disruption of Par-1 levels leads to excess accumulation of BRP in axons at the expense of BRP at active zones. Temporal analyses demonstrate that accumulation of BRP within axons precedes the loss of synaptic function and its depletion from the active zones. Mechanistically, we find that Par-1 co-localizes with BRP and is present in the same molecular complex, raising the possibility of a novel mechanism for selective localization of BRP-like active zone scaffolding proteins. Taken together, these data suggest an intriguing possibility that mislocalization of active zone proteins like BRP might be one of the earliest signs of synapse perturbation and perhaps, synaptic networks that precede many neurological disorders.
Collapse
|
17
|
Mansilla A, Jordán-Álvarez S, Santana E, Jarabo P, Casas-Tintó S, Ferrús A. Molecular mechanisms that change synapse number. J Neurogenet 2018; 32:155-170. [DOI: 10.1080/01677063.2018.1506781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Schlichting M, Rieger D, Cusumano P, Grebler R, Costa R, Mazzotta GM, Helfrich-Förster C. Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in Drosophila melanogaster. Front Mol Neurosci 2018; 11:238. [PMID: 30072870 PMCID: PMC6058042 DOI: 10.3389/fnmol.2018.00238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.
Collapse
Affiliation(s)
- Matthias Schlichting
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA, United States
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | - Rudi Grebler
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Moehlman AT, Casey AK, Servage K, Orth K, Krämer H. Adaptation to constant light requires Fic-mediated AMPylation of BiP to protect against reversible photoreceptor degeneration. eLife 2018; 7:e38752. [PMID: 30015618 PMCID: PMC6066327 DOI: 10.7554/elife.38752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in response to stress. After 72 hr of constant light, photoreceptors of fic-null and AMPylation-resistant BiPT366A mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hr once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.
Collapse
Affiliation(s)
- Andrew T Moehlman
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Amanda K Casey
- Department of Molecular BiologyUT Southwestern Medical CenterDallasUnited States
| | - Kelly Servage
- Department of Molecular BiologyUT Southwestern Medical CenterDallasUnited States
- Department of BiochemistryUT Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical InstituteDallasUnited States
| | - Kim Orth
- Department of Molecular BiologyUT Southwestern Medical CenterDallasUnited States
- Department of BiochemistryUT Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical InstituteDallasUnited States
| | - Helmut Krämer
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
- Department of Cell BiologyUT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
20
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|