1
|
Neumann E, Cramer T, Acuña MA, Scheurer L, Beccarini C, Luscher B, Wildner H, Zeilhofer HU. γ1 GABA A Receptors in Spinal Nociceptive Circuits. J Neurosci 2024; 44:e0591242024. [PMID: 39137998 PMCID: PMC11466064 DOI: 10.1523/jneurosci.0591-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two β, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernhard Luscher
- Departments of Biology, Biochemistry and Molecular Biology, and Psychiatry and Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
2
|
Koehler CC, Almassri LS, Tokar N, Mafi AM, O’Hara MJ, Young JW, Mellott JG. Age-related Changes of GAD1 mRNA Expression in the Central Inferior Colliculus. TRANSLATIONAL MEDICINE OF AGING 2023; 7:20-32. [PMID: 38111912 PMCID: PMC10727507 DOI: 10.1016/j.tma.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Encoding sounds with a high degree of temporal precision is an essential task for the inferior colliculus (IC) to perform and maintain the accurate processing of sounds and speech. However, the age-related reduction of GABAergic neurotransmission in the IC interrupts temporal precision and likely contributes to presbycusis. As presbycusis often manifests at high or low frequencies specifically, we sought to determine if the expression of mRNA for glutamic decarboxylase 1 (GAD1) is downregulated non-uniformly across the tonotopic axis or cell size range in the aging IC. Using single molecule in situ fluorescent hybridization across young, middle age and old Fisher Brown Norway rats (an aging model that acquires low frequency presbycusis) we quantified individual GAD1 mRNA in small, medium and large GABAergic cells. Our results demonstrate that small GABAergic cells in low frequency regions had ~58% less GAD1 in middle age and continued to decline into old age. In contrast, the amount of GAD1 mRNA in large cells in low frequency regions significantly increased with age. As several studies have shown that downregulation of GAD1 decreases the release of GABA, we interpret our results in two ways. First, the onset of presbycusis may be driven by small GABAergic cells downregulating GAD1. Second, as previous studies demonstrate that GAD67 expression is broadly downregulated in the old IC, perhaps the translation of GAD1 to GAD67 is interrupted in large GABAergic IC cells during aging. These results point to a potential genetic mechanism explaining reduced temporal precision in the aging IC, and in turn, presbycusis.
Collapse
Affiliation(s)
- Christina C. Koehler
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Amir M. Mafi
- The Ohio State College of Medicine The Ohio State Columbus, OH USA
| | - Mitchell J. O’Hara
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| |
Collapse
|
3
|
Mu K, Zhang J, Feng X, Zhang D, Li K, Li R, Yang P, Mao S. Sedative-hypnotic effects of Boropinol-B on mice via activation of GABAA receptors. J Pharm Pharmacol 2023; 75:57-65. [PMID: 36385301 DOI: 10.1093/jpp/rgac077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Boropinol-B is a phenylpropanoid compound originally isolated from Boronia pinnata Sm. (Rutaceae). This study aimed to evaluate the sedative-hypnotic effects of Boropinol-B and explore the underlying mechanisms. METHODS Pentobarbital sodium-induced sleep mouse model and caffeine-induced insomnia mouse model were used to investigate the sedative effects of Boropinol-B. Pharmacokinetics profiles of Boropinol-B in rats were evaluated by high-performance liquid chromatography. The effects of Boropinol-B on the γ-aminobutyric acid (GABA)ergic system were investigated using ELISA assay and patch-clamp technique. Immunohistochemistry and immunofluorescence were carried out to assess the effects of Boropinol-B on sleep-related brain nucleus. KEY FINDINGS Boropinol-B showed significant sedative effects, including reduced sleep latency, increased sleep duration in pentobarbital sodium-treated mice and decreased locomotor activity in insomnia mice. Pharmacokinetics studies demonstrated that Boropinol-B had a rapid onset of action, a short half-life and no accumulation. It increased the GABA level in mice's brain, and promoted chloride ions influx mediated by the γ-aminobutyric acid type A (GABAA) receptors in neurons. Also, it increased the c-Fos positive ratio of GABAergic neurons in ventrolateral preoptic nucleus and decreased c-Fos expression in tuberomammillary nucleus. CONCLUSION Boropinol-B showed significant sedative-hypnotic effects in mice by activating the GABAA receptors and stimulating the sleep-related brain nucleus.
Collapse
Affiliation(s)
- Keman Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinqian Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kangning Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mafi AM, Tokar N, Russ MG, Barat O, Mellott JG. Age-related ultrastructural changes in the lateral cortex of the inferior colliculus. Neurobiol Aging 2022; 120:43-59. [PMID: 36116395 PMCID: PMC10276896 DOI: 10.1016/j.neurobiolaging.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Temporal precision, a key component of sound and speech processing in the inferior colliculus (IC), depends on a balance of inhibition and excitation, and this balance degrades during aging. The cause of disrupted excitatory-inhibitory balance in aging is unknown, however changes at the synapse are a likely candidate. We sought to determine whether synaptic changes occur in the lateral cortex of the IC (IClc), a multimodal nucleus that processes lemniscal, intrinsic, somatosensory, and descending auditory input. Using electron microscopic techniques across young, middle age and old Fisher Brown Norway rats, our results demonstrate minimal loss of synapses in middle age, but significant (∼28%) loss during old age. However, in middle age, targeting of GABAergic dendrites by GABAergic synapses is increased and the active zones of excitatory synapses (that predominantly target GABA-negative dendrites) are lengthened. These synaptic changes likely result in a net increase of excitation in the IClc during middle age. Thus, disruption of excitatory-inhibitory balance in the aging IClc may be due to synaptic changes that begin in middle age.
Collapse
Affiliation(s)
- Amir M Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
5
|
Syed P, Durisic N, Harvey RJ, Sah P, Lynch JW. Effects of GABA A Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Front Mol Neurosci 2020; 13:602559. [PMID: 33328885 PMCID: PMC7714833 DOI: 10.3389/fnmol.2020.602559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10-90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.
Collapse
Affiliation(s)
- Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Biology, Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Avegno EM, Middleton JW, Gilpin NW. Synaptic GABAergic transmission in the central amygdala (CeA) of rats depends on slice preparation and recording conditions. Physiol Rep 2020; 7:e14245. [PMID: 31587506 PMCID: PMC6778595 DOI: 10.14814/phy2.14245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/24/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is a primarily GABAergic brain region implicated in stress and addictive disorders. Using in vitro slice electrophysiology, many studies measure GABAergic neurotransmission to evaluate the impact of experimental manipulations on inhibitory tone in the CeA, as a measure of alterations in CeA activity and function. In a recent study, we reported spontaneous inhibitory postsynaptic current (sIPSC) frequencies higher than those typically reported in CeA neurons in the literature, despite utilizing similar recording protocols and internal recording solutions. The purpose of this study was to systematically evaluate two common methods of slice preparation, an NMDG-based aCSF perfusion method and an ice-cold sucrose solution, as well as the use of an in-line heater to control recording temperature, on measures of intrinsic excitability and spontaneous inhibitory neurotransmission in CeA neurons. We report that both slice preparation and recording conditions significantly impact spontaneous GABAergic transmission in CeA neurons, and that recording temperature, but not slicing solution, alters measures of intrinsic excitability in CeA neurons. Bath application of corticotropin-releasing factor (CRF) increased sIPSC frequency under all conditions, but the magnitude of this effect was significantly different across recording conditions that elicited different baseline GABAergic transmission. Furthermore, CRF effects on synaptic transmission differed according to data reporting methods (i.e., raw vs. normalized data), which is important to consider in relation to baseline synaptic transmission values. These studies highlight the impact of experimental conditions and data reporting methods on neuronal excitability and synaptic transmission in the CeA.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jason W Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
7
|
Robinson LC, Barat O, Mellott JG. GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABA AR γ 1 subunit during aging. Neurobiol Aging 2019; 80:99-110. [PMID: 31112831 DOI: 10.1016/j.neurobiolaging.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Age-related hearing loss may result, in part, from declining levels of γ-amino butyric acid (GABA) in the aging inferior colliculus (IC). An upregulation of the GABAAR γ1 subunit, which has been shown to increase sensitivity to GABA, occurs in the aging IC. We sought to determine whether the upregulation of the GABAAR γ1 subunit was specific to GABAergic or glutamatergic IC cells. We used immunohistochemistry for glutamic acid decarboxylase and the GABAAR γ1 subunit at 4 age groups in the IC of Fisher Brown Norway rats. The percentage of somas that expressed the γ1 subunit and the number of subunits on each soma were quantified. Our results show that GABAergic and glutamatergic IC cells increasingly expressed the γ1 subunit from young age until expression peaked during middle age. At old age (∼77% of life span), the number of GABAAR γ1 subunits per cell sharply decreased for both cell types. These results, along with previous studies, suggest inhibitory and excitatory IC circuits may express the GABAAR γ1 subunit in response to the age-related decline of available GABA.
Collapse
Affiliation(s)
- Lauren C Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Biology, Kent State University, Kent, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
8
|
Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med 2018; 50:1-16. [PMID: 29628509 PMCID: PMC5938054 DOI: 10.1038/s12276-018-0063-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibitory neurotransmission plays a key role in anxiety disorders, as evidenced by the anxiolytic effect of the benzodiazepine class of γ-aminobutyric acid (GABA) receptor agonists and the recent discovery of anxiety-associated variants in the molecular components of inhibitory synapses. Accordingly, substantial interest has focused on understanding how inhibitory neurons and synapses contribute to the circuitry underlying adaptive and pathological anxiety behaviors. A key element of the anxiety circuitry is the amygdala, which integrates information from cortical and thalamic sensory inputs to generate fear and anxiety-related behavioral outputs. Information processing within the amygdala is heavily dependent on inhibitory control, although the specific mechanisms by which amygdala GABAergic neurons and synapses regulate anxiety-related behaviors are only beginning to be uncovered. Here, we summarize the current state of knowledge and highlight open questions regarding the role of inhibition in the amygdala anxiety circuitry. We discuss the inhibitory neuron subtypes that contribute to the processing of anxiety information in the basolateral and central amygdala, as well as the molecular determinants, such as GABA receptors and synapse organizer proteins, that shape inhibitory synaptic transmission within the anxiety circuitry. Finally, we conclude with an overview of current and future approaches for converting this knowledge into successful treatment strategies for anxiety disorders.
Collapse
Affiliation(s)
- Olga Babaev
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Carolina Piletti Chatain
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
9
|
|
10
|
Inhibitory synapse deficits caused by familial α1 GABA A receptor mutations in epilepsy. Neurobiol Dis 2017; 108:213-224. [PMID: 28870844 DOI: 10.1016/j.nbd.2017.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is a spectrum of neurological disorders with many causal factors. The GABA type-A receptor (GABAAR) is a major genetic target for heritable human epilepsies. Here we examine the functional effects of three epilepsy-causing mutations to the α1 subunit (α1T10'I, α1D192N and α1A295D) on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic GABAAR isoform, α1β2γ2L. We employed a neuron - HEK293 cell heterosynapse preparation to record IPSCs mediated by mutant-containing GABAARs in isolation from other GABAAR isoforms. IPSCs were recorded in the presence of the anticonvulsant drugs, carbamazepine and midazolam, and at elevated temperatures (22, 37 and 40°C) to gain insight into mechanisms of febrile seizures. The mutant subunits were also transfected into cultured cortical neurons to investigate changes in synapse formation and neuronal morphology using fluorescence microscopy. We found that IPSCs mediated by α1T10'Iβ2γ2L, α1D192Nβ2γ2L GABAARs decayed faster than those mediated by α1β2γ2L receptors. IPSCs mediated by α1D192Nβ2γ2L and α1A295Dβ2γ2L receptors also exhibited a heightened temperature sensitivity. In addition, the α1T10'Iβ2γ2L GABAARs were refractory to modulation by carbamazepine or midazolam. In agreement with previous studies, we found that α1A295Dβ2γ2L GABAARs were retained intracellularly in HEK293 cells and neurons. However, pre-incubation with 100nM suberanilohydroxamic acid (SAHA) induced α1A295Dβ2γ2L GABAARs to mediate IPSCs that were indistinguishable in magnitude and waveform from those mediated by α1β2γ2L receptors. Finally, mutation-specific changes to synaptic bouton size, synapse number and neurite branching were also observed. These results provide new insights into the mechanisms of epileptogenesis of α1 epilepsy mutations and suggest possible leads for improving treatments for patients harbouring these mutations.
Collapse
|
11
|
Chen X, Keramidas A, Lynch JW. Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by α5β1γ2, α5β2γ2 and α5β3γ2 GABA A receptors. Neuropharmacology 2017; 125:243-253. [PMID: 28757051 DOI: 10.1016/j.neuropharm.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
α5-containing GABAARs are potential therapeutic targets for clinical conditions including age-related dementia, stroke, schizophrenia, Down syndrome, anaesthetic-induced amnesia, anxiety and pain. α5-containing GABAARs are expressed in layer 5 cortical neurons and hippocampal pyramidal neurons where they mediate both tonic currents and slow inhibitory postsynaptic currents (IPSCs). A range of drugs has been developed to specifically modulate these receptors. The main α5-containing GABAARs that are likely to exist in vivo are the α5β1γ2, α5β2γ2 and α5β3γ2 isoforms. We currently have few clues as to how these isoforms are distributed between synaptic and extrasynaptic compartments or their relative roles in controlling neuronal excitability. Accordingly, the aim of this study was to define the basic biophysical and pharmacological properties of IPSCs mediated by the three isoforms in a hippocampal neuron-HEK293 cell co-culture assay. The IPSC decay time constants were slow (α5β1γ2L: 45 ms; α5β1γ2L: 80 ms; α5β3γ2L: 184 ms) and were largely dominated by the intrinsic channel deactivation rates. By comparing IPSC rise times, we inferred that α5β1γ2L GABAARs are located postsynaptically whereas the other two are predominantly perisynaptic. α5β3γ2L GABAARs alone mediated tonic currents. We quantified the effects of four α5-specific inverse agonists (TB-21007, MRK-016, α5IA and L-655708) on IPSCs mediated by the three isoforms. All compounds selectively inhibited IPSC amplitudes and accelerated IPSC decay rates, albeit with distinct isoform specificities. MRK-016 also significantly accelerated IPSC rise times. These results provide a reference for future studies seeking to identify and characterize the properties of IPSCs mediated by α5-containing GABAAR isoforms in neurons.
Collapse
Affiliation(s)
- Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|