1
|
Liu JM, Lee KI, Su CC, Fang KM, Liu SH, Fu SC, Kuo CY, Chang KC, Ke JA, Chen YW, Yang CY, Huang CF. Chlorpyrifos-oxon results in autophagic flux dysfunction contributing to neuronal apoptosis via a ROS/AMPK/CHOP activation pathway. Chem Biol Interact 2025; 412:111452. [PMID: 40049439 DOI: 10.1016/j.cbi.2025.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide in agriculture and sanitation, known to elicit neurotoxic effects. Chlorpyrifos-oxon (CPO), a metabolite of CPF, is the primary neurotoxic agent, yet its mechanisms are less understood. In this study, we investigated the effects and underlying mechanisms of CPO-induced neurotoxicity. CPO exposure significantly induced cytotoxicity in Neuro-2a cells, alongside the activation of apoptosis, as evidenced by an increase in the apoptotic cell population, caspase-3 activity, and cleavage of caspaspe-3, -7, and PARP proteins. Furthermore, defective autophagy was observed in CPO-treated Neuro-2a cells, indicated by increased expression of Beclin-1, Atg5, LC3-II, and p62 proteins. 3-MA, an autophagy inhibitor, suppressed CPO-activated LC3-II and apoptotic marker proteins expression, but not p62. In contrast, chloroquine and bafilomycin A1, autophagic flux inhibitors, potentiated the CPO-induced elevation of LC3-II, p62, and cleaved caspase-3 and -7 protein levels. CPO exposure also upregulated CHOP protein expression. Transfection with CHOP-specific siRNA markedly reduced CHOP protein expression, autophagic flux dysfunction, and apoptosis. Additionally, CPO exposure significantly increased AMPKα phosphorylation and reactive oxygen species (ROS) generation. Antioxidant N-acetylcysteine (NAC), but not the AMPK inhibitor Compound C, effectively attenuated the CPO-induced ROS generation in neuronal cells, which was accompanied by the prevention of AMPKα activation, downstream CHOP expression, autophagic flux dysfunction, and apoptosis. Collectively, these findings suggest that CPO-induced neurotoxicity arises from autophagic flux dysfunction, contributing to apoptosis via the ROS-activated AMPK pathway, which regulates CHOP expression, ultimately leading to neuronal cell death. Targeting the ROS/AMPK/CHOP axis may offer a promising intervention to against CPO-induced neurotoxicity.
Collapse
Affiliation(s)
- Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City, 50006, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City, 50006, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Jun-An Ke
- Department of Medical Education, Changhua Christian HospitalChanghua City, 500, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, And Department of Surgery, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
2
|
Zou Y, Duan H, Deng Z, Xiang R, Zhao J, Zhang Z, Hu W, Yang Y, Yan Z, Wen S, Liu Z, Zhang G, Mou Y, Li D, Jiang X. Single-cell atlas profiling revealed cellular characteristics and dynamic changes after PD-1 blockade therapy of brain metastases from laryngeal squamous cell carcinoma. Mol Cell Biochem 2025; 480:2377-2400. [PMID: 39085744 PMCID: PMC11961546 DOI: 10.1007/s11010-024-05064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
Brain metastasis (BM) in laryngeal squamous cell carcinoma (LSCC) is uncommon but prognosis is poor. Anti-PD-1 immunotherapy benefits some advanced LSCC cases, yet its efficiency is limited by tumor complexity. We analyzed paired metastatic tumor samples from before and after immunotherapy using single-cell RNA sequencing (scRNA-seq), along with a primary LSCC dataset and bulk RNA sequencing. This identified changes post-immunotherapy and revealed differences in single-cell transcriptomes among LSCC, primBM, and neoBM. Our findings show that anti-PD-1 treatment suppresses metastasis-promoting pathways like VEGF and EMT in cancer cells, and alters immune cell functions. Notably, it upregulates T cell activation, leading to CD8 T cell exhaustion from excess heat shock proteins, notably HSPA8. However, CD8 T cell cytotoxic functions improve post-treatment. In myeloid cells, anti-PD-1 therapy enhances antigen presentation and promotes a proinflammatory shift post-metastasis. Additionally, NUPR1 is linked to BM in LSCC, and NEAT1 is a potential metastatic cancer cell cycle participant. Our study provides insights into cancer heterogeneity and the impact of PD-1 immunotherapy on metastasis, aiding precise diagnosis and prognosis.
Collapse
Affiliation(s)
- Yunzhi Zou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zekun Deng
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Rong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jixiang Zhao
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuanzhong Yang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zeming Yan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shujuan Wen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Depei Li
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Li J, Liu J, Tang Y, Zhang H, Zhang Y, Zha X, Zhao X. Role of C/EBP Homologous Protein (CHOP) and Nupr1 Interaction in Endoplasmic Reticulum Stress-Induced Apoptosis of Lens Epithelial Cells. Mol Biotechnol 2025; 67:1628-1640. [PMID: 38771421 PMCID: PMC11928426 DOI: 10.1007/s12033-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Junyi Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yongying Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| | - Xueying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
4
|
Qiu H, Zhang M, Li M, Chen C, Wang H, Yue X. Methamphetamine and Methamphetamine-Induced Neuronal Exosomes Modulate the Activity of Rab7a via PTEN to Exert an Influence on the Disordered Autophagic Flux Induced in Neurons. Int J Mol Sci 2025; 26:2644. [PMID: 40141286 PMCID: PMC11941945 DOI: 10.3390/ijms26062644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Autophagy is a critical mechanism by which methamphetamine (METH) induces neuronal damage and neurotoxicity. Prolonged METH exposure can result in the accumulation of autophagosomes within cells. The autophagy process encompasses several essential vesicle-related biological steps, collectively referred to as the autophagic flux. However, the precise mechanisms by which METH modulates the autophagic flux and the underlying pathways remain to be elucidated. In this study, we utilized a chronic METH exposure mouse model and cell model to demonstrate that METH treatment leads to an increase in p62 and LC3B-II and the accumulation of autophagosomes in striatal neurons and SH-SY5Y cells. To assess autophagic flux, this study utilized autophagy inhibitors and inducers. The results demonstrated that the lysosomal inhibitor chloroquine exacerbated autophagosome accumulation; however, blocking autophagosome formation with 3-methyladenine did not prevent METH-induced autophagosome accumulation. Compared to the autophagy activator rapamycin, METH significantly reduced autophagosome-lysosome fusion, leading to autophagosome accumulation. Rab7a is a critical regulator of autophagosome-lysosome fusion. Although Rab7a expression was upregulated in SH-SY5Y cells and brain tissues after METH treatment, immunoprecipitation experiments revealed weakened interactions between Rab7a and the lysosomal protein RILP. Overexpression of active Rab7a (Rab7a Q67L) significantly alleviated the METH-induced upregulation of LC3-II and p62. PTEN, a key regulator of Rab7a dephosphorylation, was downregulated following METH treatment, resulting in decreased Rab7a dephosphorylation and reduced Rab7a activity, thereby contributing to autophagosome accumulation. We further investigated the role of neuronal exosomes in the autophagy process. Our results demonstrated that the miRNA expression profiles in exosomes released by METH-induced SH-SY5Y cells were significantly altered, with 122 miRNAs upregulated and 151 miRNAs downregulated. KEGG and GO enrichment analyses of these differentially expressed miRNAs and their target genes revealed significant associations with the autophagy pathway and potential regulation of PTEN expression. Our experiments confirmed that METH-induced exosomes reduced PTEN expression levels and decreased Rab7a dephosphorylation, thereby exacerbating autophagic flux impairment and autophagosome accumulation. In conclusion, our study indicated that METH and its induced neuronal exosomes downregulate PTEN expression, leading to reduced Rab7a dephosphorylation. This, in turn, hinders the fusion of autophagosomes and lysosomes, ultimately resulting in autophagic flux impairment and neuronal damage.
Collapse
Affiliation(s)
- Hai Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Minchun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Lu S, Li Y, Wang L, Xiong K, Yan J, Zhai Z, Yan W. Effects of Herpud1 in Methamphetamine-induced Neuronal Apoptosis. Curr Med Chem 2025; 32:1406-1422. [PMID: 38299291 DOI: 10.2174/0109298673277857231221110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an illicit psychoactive substance that can damage various organs in the body, especially the nervous system. We hypothesized that expression of homocysteine-inducible endoplasmic reticulum-resident with ubiquitin-like domain member 1 (Herpud1) protein would alleviate the induction of apoptosis following METH administration. METHODS To test this hypothesis, we analysed the changes in Herpud1 expression and apoptosis in PC12 cells under different concentrations and exposure times of METH. Moreover, we examined the effects of Herpud1 knockdown on METH-induced neuronal apoptosis. Flow cytometry and Western blot analyses were used to evaluate apoptosis levels and the expression of apoptotic markers (cleaved caspase-3) in PC12 cells following Herpud1 knockdown by synthetic small interfering RNA (siRNA). RESULTS Our results showed that Herpud1 expression was upregulated in PC12 cells following METH treatment, while endoplasmic reticulum stress (ERS) and apoptosis were also increased. Conversely, Herpud1 knockdown reduced METH-induced ERS and apoptosis levels in vitro. CONCLUSION These results suggest that Herpud1 plays an essential role in METH-induced neuronal ERS and apoptosis and may represent a potential therapeutic gene target in METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lewen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhihao Zhai
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangzhou, 518000, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
7
|
Latifi Z, Nikanfar S, Khodavirdilou R, Beirami SM, Khodavirdilou L, Fattahi A, Oghbaei F. MicroRNAs as diagnostic biomarkers in diabetes male infertility: a systematic review. Mol Biol Rep 2024; 52:90. [PMID: 39739064 DOI: 10.1007/s11033-024-10197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This study conducts an in-depth review of the correlation between testis tissue changes and circulating microRNAs (miRNA) in diabetes-induced male reproductive complications, drawing upon both animal and clinical studies. The original articles published in English that specifically investigate miRNAs linked to male infertility in humans or animals with either type I or ΙΙ diabetes mellitus were included. The relevant articles were gathered from the PubMed, Google Scholar, Cochrane Library, and ScienceDirect databases. The quality of study was assessed utilizing the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Prevalence Studies. We collected an overall number of 1989 citations relating to our research subject. Following the elimination of articles based on the criteria, a total of 20 papers were included in the study. Aberrant expression profiles of 25 miRNAs were identified in diabetes associated with male reproductive issues, with 15 miRNAs exhibiting increased expression and 10 miRNAs showing decreased expression. Among the chosen publications, eighteen were identified as low-risk and two were classed as moderate quality. The dysregulated miRNAs were linked to testicular injury, disrupted steroid production, decreased sperm development and quality, and erectile dysfunction. The results demonstrate that the miRNA-mRNA network is linked to the pathological progression of diabetic testicular damage or erectile dysfunction. From a therapeutic perspective, the identification of circulating miRNAs could be beneficial in the timely identification and prevention of diabetes problems, such as diabetes-induced male infertility. Among all signaling pathways influenced by modified miRNAs, the Bax-caspase-3, MAPK, PI3K-Akt, and eNOS-cGMP-PKC were the main deregulated pathways.
Collapse
Affiliation(s)
- Zeinab Latifi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Rasa Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Wu Q, Chen Q, Liang S, Nie J, Wang Y, Fan C, Liu Z, Zhang X. Dexmedetomidine alleviates intestinal ischemia/reperfusion injury by modulating intestinal neuron autophagy and mitochondrial homeostasis via Nupr1 regulation. Mol Med 2024; 30:203. [PMID: 39508252 PMCID: PMC11542338 DOI: 10.1186/s10020-024-00952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Intestinal ischemia/reperfusion injury (I/R) is a common yet challenging-to-treat condition, presenting a significant clinical challenge. This study aims to investigate the protective mechanisms of Dexmedetomidine (Dex) against I/R injury, with a particular focus on its role in regulating autophagy activity in intestinal neurons and maintaining mitochondrial homeostasis. Experimental findings demonstrate that Dex can mitigate intestinal damage induced by I/R through the modulation of autophagy activity and mitochondrial function in intestinal neurons by suppressing the expression of Nupr1. This discovery sheds light on a new molecular mechanism underlying the potential efficacy of Dex in treating intestinal I/R injury, offering valuable insights for clinical therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qiuhong Chen
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Sisi Liang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jinping Nie
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yingjie Wang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chenlu Fan
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhen Liu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuekang Zhang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
9
|
Cui Y, Yang G, Li H, Sun J, Liu X, Xia X. Reduced expression of NUPR1 alleviates epilepsy progression via attenuating ER stress. Biochem Biophys Res Commun 2024; 730:150365. [PMID: 38996786 DOI: 10.1016/j.bbrc.2024.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurring seizures. It is necessary to further understand the mechanisms of epilepsy in order to develop novel strategies for its prevention and treatment. Abnormal endoplasmic reticulum stress (ERS) activation is related to the pathogenesis of epilepsy. Nuclear protein 1, transcriptional regulator (NUPR1) is involved in ERS and it might play a role in epilepsy progression. In the present study, we generated an epileptic mouse model using pilocarpine induction. After 72 h of pilocarpine treatment, the expression of NUPR1 was increased in epileptic mice. Furthermore, NUPR1 knockdown reduced the number of spontaneous recurrent seizures and alleviated hippocampal damage in these mice. Interestingly, NUPR1 knockdown also reduced the protein expression levels of LC3, PINK1, and Parkin in the mitochondria, and decreased the PINK1 expression in hippocampus. Additionally, the expression of ERS-related proteins-cleaved caspase-12, ATF4, and CHOP-decreased in epileptic mice following NUPR1 knockdown. In vitro experiments showed that the absence of NUPR1 reduced the expression of ATF4, CHOP, and cleaved caspase-12 in hippocampal neurons and inhibited the neuron apoptosis. In all, our study suggested that NUPR1 maybe a potential molecular target for epilepsy therapy.
Collapse
Affiliation(s)
- Ying Cui
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Guang Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hong Li
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianying Sun
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaoman Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaohan Xia
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China
| |
Collapse
|
10
|
Huang L, Li Z, Lv Y, Zhang X, Li Y, Li Y, Yu C. Unveiling disulfidptosis-related biomarkers and predicting drugs in Alzheimer's disease. Sci Rep 2024; 14:20185. [PMID: 39215110 PMCID: PMC11364544 DOI: 10.1038/s41598-024-70893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is the predominant form of dementia, and disulfidptosis is the latest reported mode of cell death that impacts various disease processes. This study used bioinformatics to analyze genes associated with disulfidptosis in Alzheimer's disease comprehensively. Based on the public datasets, the differentially expressed genes associated with disulfidptosis were identified, and immune cell infiltration was investigated through correlation analysis. Subsequently, hub genes were determined by a randomforest model. A prediction model was constructed using logistic regression. In addition, the drug-target affinity was predicted by a graph neural network model, and the results were validated by molecular docking. Five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) were identified. The gene set showed significant enrichment for AD-related pathways. The logistic regression model demonstrated an AUC of 0.952, with AUC values of 0.916 and 0.864 in validated datasets. The immune infiltration analysis revealed significant heterogeneity between the Alzheimer's disease and control groups. High-affinity drugs for hub genes were identified. Through our study, a disease prediction model was constructed using potential biomarkers, and drugs targeting the genes were predicted. These results contribute to further understanding of the molecular mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingji Li
- ICE Bioscience Inc., Beijing, 100176, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Nie QY, Yang GM, Zhang P, Dong WJ, Jing D, Hou ZP, Peng YX, Yu Y, Li LH, Hong SJ. Nrf2 expression, mitochondrial fission, and neuronal apoptosis in the prefrontal cortex of methamphetamine abusers and rats. Brain Res 2024; 1837:148973. [PMID: 38685372 DOI: 10.1016/j.brainres.2024.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Methamphetamine (MA), a representative amphetamine-type stimulant, is one of the most abused drugs worldwide. Studies have shown that MA-induced neurotoxicity is strongly associated with oxidative stress and apoptosis. While nuclear factor E2-related factor 2 (Nrf2), an antioxidant transcription factor, is known to exert neuroprotective effects, its role in MA-induced dopaminergic neuronal apoptosis remains incompletely understood. In the present study, we explored the effects of MA on the expression levels of Nrf2, dynamin-related protein 1 (Drp1), mitofusin 1 (Mfn1), cytochrome c oxidase (Cyt-c), and cysteine aspartate-specific protease 3 (Caspase 3), as well as the correlations between Nrf2 and mitochondrial dynamics and apoptosis. Brain tissue from MA abusers was collected during autopsy procedures. An MA-dependent rat model was also established by intraperitoneal administration of MA (10 mg/kg daily) for 28 consecutive days, followed by conditioned place preference (CPP) testing. Based on immunohistochemical staining and western blot analysis, the protein expression levels of Nrf2 and Mfn1 showed a decreasing trend, while levels of Drp1, Cyt-c, and Caspase 3 showed an increasing trend in the cerebral prefrontal cortex of both MA abusers and MA-dependent rats. Notably, the expression of Nrf2 was positively associated with the expression of Mfn1, but negatively associated with the expression levels of Drp1, Cyt-c, and Caspase 3. These findings suggest that oxidative stress and mitochondrial fission contribute to neuronal apoptosis, with Nrf2 potentially playing a critical role in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian-Yun Nie
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Gen-Meng Yang
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China
| | - Wen-Juan Dong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Di Jing
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhen-Ping Hou
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan-Xia Peng
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yang Yu
- Department of Anatomy, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Li-Hua Li
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shi-Jun Hong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
12
|
Lei J, Aimaier G, Aisha Z, Zhang Y, Ma J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson's disease in U251 cells. Genes Genomics 2024; 46:817-829. [PMID: 38776049 DOI: 10.1007/s13258-024-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 06/27/2024]
Abstract
BACKGROUND Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jing Lei
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Guliqiemu Aimaier
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Zaolaguli Aisha
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China.
- Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
13
|
Tian Q, Zhou J, Xu Z, Wang B, Liao J, Duan K, Li X, Huang E, Xie WB. STIM1 Mediates Methamphetamine-Induced Neuronal Autophagy and Apoptosis. Neurotoxicology 2024; 103:S0161-813X(24)00061-5. [PMID: 38901802 DOI: 10.1016/j.neuro.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Methamphetamine (METH) is a widely abused amphetamine-type psychoactive drug that causes serious health problems. Previous studies have demonstrated that METH can induce neuron autophagy and apoptosis in vivo and in vitro. However, the molecular mechanisms underlying METH-induced neuron autophagy and apoptosis remain poorly understood. Stromal interacting molecule 1 (STIM1) was hypothesized to be involved in METH-induced neuron autophagy and apoptosis. Therefore, the expression of STIM1 protein was measured and the effect of blocking STIM1 expression with siRNA was investigated in cultured neuronal cells, and the hippocampus and striatum of mice exposed to METH. Furthermore, intracellular calcium concentration and endoplasmic reticulum (ER) stress-related proteins were determined in vitro and in vivo in cells treated with METH. The results suggested that STIM1 mediates METH-induced neuron autophagy by activating the p-Akt/p-mTOR pathway. METH exposure also resulted in increased expression of Orai1, which was reversed after STIM1 silencing. Moreover, the disruption of intracellular calcium homeostasis induced ER stress and up-regulated the expression of pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in classic mitochondria apoptosis. METH exposure can cause neuronal autophagy and apoptosis by increasing the expression of STIM1 protein; thus, STIM1 may be a potential gene target for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Qin Tian
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenzhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Bin Wang
- Forensic Science Institute of Ganzhou Public Security Bureau, Ganzhou 341000, PR China
| | - Jiashun Liao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
14
|
Zhou J, Guo D, Xu ZZ, Liao JS, Li XT, Duan K, Chen SY, Xie WB. Nupr1-mediated vascular smooth muscle cell phenotype transformation involved in methamphetamine induces pulmonary hypertension. Cell Biol Toxicol 2024; 40:13. [PMID: 38347241 PMCID: PMC10861617 DOI: 10.1007/s10565-024-09849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
AIMS Nuclear protein 1 (Nupr1) is a multifunctional stress-induced protein involved in the regulation of tumorigenesis, apoptosis, and autophagy. However, its role in pulmonary hypertension (PH) after METH exposure remains unexplored. In this study, we aimed to investigate whether METH can induce PH and describe the role and mechanism of Nupr1 in the development of PH. METHODS AND RESULTS Mice were made to induce pulmonary hypertension (PH) upon chronic intermittent treatment with METH. Their right ventricular systolic pressure (RVSP) was measured to assess pulmonary artery pressure. Pulmonary artery morphometry was determined by H&E staining and Masson staining. Nupr1 expression and function were detected in human lungs, mice lungs exposed to METH, and cultured pulmonary arterial smooth muscle cells (PASMCs) with METH treatment. Our results showed that chronic intermittent METH treatment successfully induced PH in mice. Nupr1 expression was increased in the cultured PASMCs, pulmonary arterial media from METH-exposed mice, and METH-ingested human specimens compared with control. Elevated Nupr1 expression promoted PASMC phenotype change from contractile to synthetic, which triggered pulmonary artery remodeling and resulted in PH formation. Mechanistically, Nupr1 mediated the opening of store-operated calcium entry (SOCE) by activating the expression of STIM1, thereby promoting Ca2+ influx and inducing phenotypic conversion of PASMCs. CONCLUSIONS Nupr1 activation could promote Ca2+ influx through STIM1-mediated SOCE opening, which promoted METH-induced pulmonary artery remodeling and led to PH formation. These results suggested that Nupr1 played an important role in METH-induced PH and might be a potential target for METH-related PH therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhen-Zhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jia-Shun Liao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Ting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shi-You Chen
- Department of Surgery, Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
15
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
16
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Li XF, Yan-Zou D, Liu WB, Desouky HE. High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1079-1095. [PMID: 37831370 DOI: 10.1007/s10695-023-01240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, 22713, Egypt
| |
Collapse
|
17
|
Zhang C, Lin Q, Li C, Chen Z, Deng M, Weng H, Zhu X. Analysis of endoplasmic reticulum stress-related gene signature for the prognosis and pattern in diffuse large B cell lymphoma. Sci Rep 2023; 13:13894. [PMID: 37626099 PMCID: PMC10457392 DOI: 10.1038/s41598-023-38568-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. This study aimed to determine the prognostic significance of endoplasmic reticulum (ER) stress-related genes in DLBCL. ER stress-related genes were obtained from the molecular signatures database. Gene expression data and clinical outcomes from the gene expression omnibus and TCGA datasets were collected, and differentially expressed genes (DEGs) were screened out. Gene ontology enrichment analysis, the kyoto encyclopaedia of genes and genomes pathway analysis, and geneset enrichment analysis were used to analyse the possible biological function of ER stress-related DEGs in DLBCL. Protein-protein interaction network construction using the STRING online and hub genes were identified by cytoHubba on Cytoscape software. The significant prognosis-related genes were screened, and the differential expression was validated. The immune microenvironment assessment of significant genes were evaluated. Next, the nomogram was built using univariate and multivariate Cox regression analysis. 26 ER stress-related DEGs were screened. Functional enrichment analysis showed them to be involved in the regulation of the endoplasmic reticulum mainly. NUPR1 and TRIB3 were identified as the most significant prognostic-related genes by comparison with the GSE10846, GSE11318, and TCGA datasets. NUPR1 was correlated with a good prognosis and immune infiltration in DLBCL; on the other hand, high expression of TRIB3 significantly correlated with a poor prognosis, which was an independent prognostic factor for DLBCL. In summary, we identified NUPR1 and TRIB3 as critical ER stress-related genes in DLBCL. NUPR1 might be involved in immune infiltration in DLBCL, and TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Mengmeng Deng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China.
- Department of Haematology, Quanzhou First Hospital of Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
18
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
19
|
Zeng R, Pu HY, Zhang XY, Yao ML, Sun Q. Methamphetamine: Mechanism of Action and Chinese Herbal Medicine Treatment for Its Addiction. Chin J Integr Med 2023:10.1007/s11655-023-3635-y. [PMID: 37074617 DOI: 10.1007/s11655-023-3635-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
With the proliferation of synthetic drugs, research on the mechanism of action of addictive drugs and treatment methods is of great significance. Among them, methamphetamine (METH) is the most representative amphetamine synthetic drug, and the treatment of METH addiction has become an urgent medical and social problem. In recent years, the therapeutic effects of Chinese herbal medicines on METH addiction have gained widespread attention because of their non-addictiveness, multiple targets, low side effects, low cost, and other characteristics. Previous studies have identified a variety of Chinese herbal medicines with effects on METH addiction. Based on the research on METH in recent years, this article summarizes the mechanism of action of METH as the starting point and briefly reviews the Chinese herbal medicine-based treatment of METH.
Collapse
Affiliation(s)
- Rui Zeng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Yu Pu
- North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xin-Yue Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Meng-Lin Yao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Qin Sun
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
20
|
Seyedhosseini Tamijani SM, Beirami E, Dargahi S, Ahmadiani A, Dargahi L. Neuroprotective effect of thyroid hormones on methamphetamine-induced neurotoxicity via cell surface receptors. Neurosci Lett 2023; 794:137009. [PMID: 36493898 DOI: 10.1016/j.neulet.2022.137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/03/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Thyroid hormones (THs) have an essential role in normal brain development and function. Methamphetamine (MA) is a widely abused psychostimulant that induces irreversible damages to neuronal cells. In the current study, we used rat primary hippocampal neurons (PHNs) to investigate the neuroprotective effect of THs against MA neurotoxicity. PHNs were prepared from 18-day rat embryos and cell viability was assessed using MTT assay, following treatment with various concentrations of MA, T3, T4 or tetrac, an integrin αvβ3 cell surface receptor antagonist. Our results showed that 7 mM MA induced an approximately 50 % reduction in the PHNs viability. Treatment with 800 nM T3 or 8 μM T4 protected PHNs against MA toxicity, an effect which was blocked in the presence of tetrac. These findings suggest that THs protect PHNs against MA-induced cell death by the activation of integrin αvβ3 cell surface receptors. So, targeting integrin αvβ3 receptors or using THs can be considered as promising therapeutic strategies to overcome MA neurotoxicity.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Saina Dargahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Song J, Wang J, Liu K, Xu W, Sun T, Liu J. The role of microRNAs in erectile dysfunction: From pathogenesis to therapeutic potential. Front Endocrinol (Lausanne) 2022; 13:1034043. [PMID: 36387873 PMCID: PMC9640492 DOI: 10.3389/fendo.2022.1034043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Erectile dysfunction (ED) is a common male sexual dysfunction disease, and it was predicted that the number of ED patients worldwide will reach 322 million by 2025. However, the pathogenesis of ED is complex and the current treatment options are still limited, so it is urgent to explore new treatment strategies. Recent studies have shown that microRNAs (miRNAs) play an important role in ED, and these single-stranded non-coding small RNA molecules are involved in key pathophysiological processes in the occurrence and development of ED. Therefore, miRNAs have remarkable potential as therapeutic targets in ED. Here, this review introduces the physiological basis of erectile function and the pathophysiological changes in ED and summarizes the current knowledge on the expression, biological functions, and molecular mechanisms of miRNAs in ED, especially the potential of miRNA-targeted therapies to improve ED. This review will provide a comprehensive view of the role of miRNAs in the pathogenesis of ED and the potential value of miRNAs in the treatment of ED.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Liu S, Costa M. The role of NUPR1 in response to stress and cancer development. Toxicol Appl Pharmacol 2022; 454:116244. [PMID: 36116561 DOI: 10.1016/j.taap.2022.116244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Stress contributes to the development of many human diseases, including cancer. Based on the source of stress, it can be divided into external stress, such as environmental carcinogens, chemicals, and radiation, and internal stress, like endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Nuclear Protein 1 (NUPR1, p8 or Com-1) is a small, highly basic transcriptional regulator that participates in regulating a variety of cellular processes including DNA repair, ER stress, oxidative stress response, cell cycle, autophagy, apoptosis, ferroptosis and chromatin remodeling. A large number of studies have reported that NUPR1 expression can be stimulated rapidly in response to various stresses. Thus, NUPR1 is also known as a stress-response gene. Since the role of NUPR1 in breast cancer was identified in 1999, an increasing number of studies sought to reveal its function in cancer. High expression of NUPR1 has been identified in oral squamous cell carcinoma, breast cancer, lung cancer, multiple myeloma, liver cancer and renal cancer. In this review, we summarize current studies of NUPR1 in response to multiple external stressors and internal stressors, and its role in mediating stressors to cause different cell signaling responses. In addition, this review discusses the function of NUPR1 in carcinogenesis, tumorigenesis, metastasis, and cancer therapy. Thus, this review gives a comprehensive insight into the role of NUPR1 in mediating signals from stress to different cell responses, and this process plays a role in the development of cancer.
Collapse
Affiliation(s)
- Shan Liu
- Division of Environmental Medicine, Dept of Medicine, New York University School of Medicine, NY, USA.
| | - Max Costa
- Division of Environmental Medicine, Dept of Medicine, New York University School of Medicine, NY, USA.
| |
Collapse
|
23
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
24
|
Shen Y, Qian L, Luo H, Li X, Ruan Y, Fan R, Si Z, Chen Y, Li L, Liu Y. The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sci 2022; 12:brainsci12081057. [PMID: 36009120 PMCID: PMC9406040 DOI: 10.3390/brainsci12081057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
The NLRP inflammasome is a multi-protein complex which mainly consists of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain. Its activation is linked to microglial-mediated neuroinflammation and partial neuronal degeneration. Many neuropsychiatric illnesses have increased inflammatory responses as both a primary cause and a defining feature. The NLRP inflammasome inhibition delays the progression and alleviates the deteriorating effects of neuroinflammation on several neuropsychiatric disorders. Evidence on the central effects of the NLRP inflammasome potentially provides the scientific base of a promising drug target for the treatment of neuropsychiatric disorders. This review elucidates the classification, composition, and functions of the NLRP inflammasomes. It also explores the underlying mechanisms of NLRP inflammasome activation and its divergent role in neuropsychiatric disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, depression, drug use disorders, and anxiety. Furthermore, we explore the treatment potential of the NLRP inflammasome inhibitors against these disorders.
Collapse
Affiliation(s)
- Yao Shen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Liyin Qian
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Hu Luo
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xiaofang Li
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Yuer Ruan
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Runyue Fan
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
- Ningbo Yinzhou District Center for Disease Control and Prevention, Ningbo 315199, China
| | - Zizhen Si
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Department of Pharmacology, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yunpeng Chen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Longhui Li
- Ningbo Kangning Hospital, Ningbo 315201, China
| | - Yu Liu
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Correspondence:
| |
Collapse
|
25
|
Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis 2022; 13:544. [PMID: 35688814 PMCID: PMC9187756 DOI: 10.1038/s41419-022-04927-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a type of cell death that depends on iron and reactive oxygen species (ROS). The accumulation of iron and lipid peroxidation primarily initiates oxidative membrane damage during ferroptosis. The core molecular mechanism of ferroptosis includes the regulation of oxidation and the balance between damage and antioxidant defense. Tumor cells usually contain a large amount of H2O2, and ferrous/iron ions will react with excessive H2O2 in cells to produce hydroxyl radicals and induce ferroptosis in tumor cells. Here, we reviewed the latest studies on the regulation of ferroptosis in tumor cells and introduced the tumor-related signaling pathways of ferroptosis. We paid particular attention to the role of noncoding RNA, nanomaterials, the role of drugs, and targeted treatment using ferroptosis drugs for mediating the ferroptosis process in tumor cells. Finally, we discussed the currently unresolved problems and future research directions for ferroptosis in tumor cells and the prospects of this emerging field. Therefore, we have attempted to provide a reference for further understanding of the pathogenesis of ferroptosis and proposed new targets for cancer treatment.
Collapse
|
26
|
Protection of the PC12 Cells by Nesfatin-1 Against Methamphetamine-Induced Neurotoxicity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Tsampoula M, Tarampoulous I, Manolakou T, Ninou E, Politis PK. The neurodevelopmental disorders associated gene Rnf113a regulates survival and differentiation properties of neural stem cells. Stem Cells 2022; 40:678-690. [DOI: 10.1093/stmcls/sxac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Abstract
RNF113A (Ring Finger Protein 113A) is genetically associated with autism spectrum disorders and X-linked trichothiodystrophy (TTD) syndrome. Loss-of-function mutations in human RNF113A are causally linked to TTD, which is characterized by abnormal development of central nervous system (CNS) and mental retardation. How loss of RNF113A activity affects brain development is not known. Here we identify Rnf113a1 as a critical regulator of cell death and neurogenesis during mouse brain development. Rnf113a1 gene exhibits widespread expression in the embryonic CNS. Knockdown studies in embryonic cortical neural stem/progenitor cells (NSCs) and the mouse cortex suggest that Rnf113a1 controls survival, proliferation and differentiation properties of progenitor cells. Importantly, Rnf113a1 deficiency triggers cell apoptosis via a combined action on essential regulators of cell survival, including p53, Nupr1 and Rad51. Collectively, these observations establish Rnf113a1 as a regulatory factor in CNS development and provide insights for its role in neurodevelopmental defects associated with TTD and autism.
Collapse
Affiliation(s)
- Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Isaak Tarampoulous
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
28
|
Neuroligin-1 plays an important role in methamphetamine-induced hippocampal synaptic plasticity. Toxicol Lett 2022; 361:1-9. [PMID: 35331841 DOI: 10.1016/j.toxlet.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
The neurotoxic effects of methamphetamine (METH) include not only neuronal apoptosis and autophagy, but also lead to substance use disorder and have become increasingly prominent. Studies suggest that synaptic plasticity may be the structural basis of METH-induced neurological impairment. Neuroligins are postsynaptic adhesion molecules involved in the regulation of synaptic organization and function. Animal studies have shown that neuroligin (NLG)- 1 is involved in memory formation; however, its role in METH-induced neurotoxicity is not clear. In the present study, we used 1 mM METH in vitro; mice in the acute and subacute exposure groups received intraperitoneal injections of 30 mg/kg METH (1 injection) or 15 mg/kg METH (8 separate injections at 12-h intervals). We found that the expression of NLG-1, Synapsin-1, and postsynaptic density-95 were increased after METH exposure. We further observed that METH-induced inhibition of long-term potentiation and spatial memory loss could be alleviated when mice were pretreated with NLG-1 small interfering RNA. Therefore, our study provides evidence that NLG-1 is involved in METH-induced hippocampal synaptic plasticity and may be a potential target for the treatment of METH-induced neurotoxicity.
Collapse
|
29
|
Zhou Y, Jin Y, Wang Y, Wu R. Hypoxia activates the unfolded protein response signaling network: An adaptive mechanism for endometriosis. Front Endocrinol (Lausanne) 2022; 13:945578. [PMID: 36339404 PMCID: PMC9630844 DOI: 10.3389/fendo.2022.945578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Endometriosis (EMS) is a chronic gynecological disease that affects women of childbearing age. However, the exact cause remains unclear. The uterus is a highly vascularized organ that continuously exposes endometrial cells to high oxygen concentrations. According to the "planting theory" of EMS pathogenesis, when endometrial cells fall from the uterine cavity and retrograde to the peritoneal cavity, they will face severe hypoxic stress. Hypoxic stress remains a key issue even if successfully implanted into the ovaries or peritoneum. In recent years, increasing evidence has confirmed that hypoxia is closely related to the occurrence and development of EMS. Hypoxia-inducible factor-1α (HIF-1α) can play an essential role in the pathological process of EMS by regulating carbohydrate metabolism, angiogenesis, and energy conversion of ectopic endometrial cells. However, HIF-1α alone is insufficient to achieve the complete program of adaptive changes required for cell survival under hypoxic stress, while the unfolded protein response (UPR) responding to endoplasmic reticulum stress plays an essential supplementary role in promoting cell survival. The formation of a complex signal regulation network by hypoxia-driven UPR may be the cytoprotective adaptation mechanism of ectopic endometrial cells in unfavorable microenvironments.
Collapse
|
30
|
Tan X, Cai D, Chen N, Du S, Qiao D, Yue X, Wang T, Li J, Xie W, Wang H. Methamphetamine mediates apoptosis of vascular smooth muscle cells via the chop-related endoplasmic reticulum stress pathway. Toxicol Lett 2021; 350:98-110. [PMID: 34214594 DOI: 10.1016/j.toxlet.2021.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
Methamphetamine (METH) is a highly addictive amphetamine-type drug that has caused persistent harm to society and human health in recent years. Most studies have shown that METH severely damages the central nervous system, and this drug has been found to be toxic to the cardiovascular system in recent years. Therefore, we hypothesized that METH may also damage vascular smooth muscle. We examined the expression of the apoptosis-related proteins Caspase 3 and PARP after METH treatment in vivo and in vitro and detected the expression of endoplasmic reticulum stress-related proteins. After treatment with the endoplasmic reticulum stress inhibitor 4-PBA, changes in the above indicators were examined. C/EBP homologous protein (Chop) expression was also detected, and the relationship between endoplasmic reticulum stress and apoptosis was further determined by siRNA silencing of Chop. The results indicated that METH can induce apoptosis of vascular smooth muscle cells (VSMCs) and upregulate the expression of Chop and endoplasmic reticulum stress-related proteins. Chop inhibits protein kinase B phosphorylation and further inhibits forkhead box class O3a (Foxo3a) dephosphorylation, resulting in increased p53 upregulated molecular of apoptosis (PUMA) transcription. Increased PUMA induces apoptosis through the mitochondrial pathway. These results indicate that Chop is involved in the METH-induced endoplasmic reticulum stress and apoptosis in VSMCs and may be a potential therapeutic target for METH-induced VSMC injury.
Collapse
Affiliation(s)
- Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dunpeng Cai
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Sihao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tao Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jia Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Weibing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China; Nanhai Hospital, Southern Medical University, Foshan, 528244, Guangdong, China.
| |
Collapse
|
31
|
Mystery of methamphetamine-induced autophagosome accumulation in hippocampal neurons: loss of syntaxin 17 in defects of dynein-dynactin driving and autophagosome-late endosome/lysosome fusion. Arch Toxicol 2021; 95:3263-3284. [PMID: 34374793 DOI: 10.1007/s00204-021-03131-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023]
Abstract
Methamphetamine (METH), a psychoactive-stimulant facilitates massive accumulation of autophagosomes and causes autophagy-associated neuronal death. However, the underlying mechanisms involving METH-induced auto-phagosome accumulation remain poorly understood. In the current study, autophagic flux was tracked by mRFP-GFP-LC3 adenovirus, 900 μM METH treatment was found to significantly disrupt autophagic flux, which was further validated by remarkable increase of co-localized of LC3 and SQSTM1/p62, enhancement of LC3-II and SQSTM1/p62 protein levels, and massive autophagosome puncta aggregation. With the cycloheximide (CHX) treatment, METH treatment was displayed a significant inhibition of SQSTM1/p62 degradation. Therefore, the mRNAs associated with vesicle degradation were screened, and syntaxin 17 (Stx17) and dynein-dynactin mRNA levels significantly decreased, an effect was proved in protein level as well. Intriguingly, METH induced autophagosome accumulation and autophagic flux disturbance was incredibly retarded by overexpression of Stx17, which was validated by the restoration of the fusion autophagosome-late endosome/lysosome fusion. Moreover, Stx17 overexpression obviously impeded the METH-induced decrease of co-localization of the retrograded motor protein dynein/dynactin and autophagosome-late endosome, though the dynein/dynactin proteins were not involved in autophagosome-late endosome/lysosome fusion. Collectively, our findings unravel the mechanism of METH-induced autophagosome accumulation involving autophagosome-late endosome/lysosome fusion deficiency and that autophagy-enhancing mechanisms such as the overexpression of Stx17 may be therapeutic strategies for the treatment of METH-induced neuronal damage.
Collapse
|
32
|
Huang C, Santofimia-Castaño P, Iovanna J. NUPR1: A Critical Regulator of the Antioxidant System. Cancers (Basel) 2021; 13:cancers13153670. [PMID: 34359572 PMCID: PMC8345110 DOI: 10.3390/cancers13153670] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nuclear protein 1 (NUPR1) is activated in cellular stress and is expressed at high levels in cancer cells. Much evidence has been gathered supporting its critical role in regulating the antioxidant system. Our review aims to summarize the literature data on the impact of NUPR1 on the oxidative stress response via such a regulatory role and how its inhibition induces reactive oxygen species-mediated cell death, such as ferroptosis. Abstract Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
Collapse
|
33
|
Liao LS, Lu S, Yan WT, Wang SC, Guo LM, Yang YD, Huang K, Hu XM, Zhang Q, Yan J, Xiong K. The Role of HSP90α in Methamphetamine/Hyperthermia-Induced Necroptosis in Rat Striatal Neurons. Front Pharmacol 2021; 12:716394. [PMID: 34349659 PMCID: PMC8326403 DOI: 10.3389/fphar.2021.716394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.
Collapse
Affiliation(s)
- Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Huang
- Department of Human Anatomy and Histoembryolog, School of Basic Medical Sciences, Shaoyang University, Shaoyang, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
34
|
Wang J, Struebing FL, Geisert EE. Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies. Exp Eye Res 2021; 207:108571. [PMID: 33844961 PMCID: PMC9890784 DOI: 10.1016/j.exer.2021.108571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.
Collapse
Affiliation(s)
- Jiaxing Wang
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany,Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eldon E. Geisert
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA,Corresponding author: (E.E. Geisert)
| |
Collapse
|
35
|
Tabatabaei Mirakabad FS, Khoramgah MS, Abdollahifar MA, Tehrani AS, Rezaei-Tavirani M, Niknazar S, Tahmasebinia F, Mahmoudiasl GR, Khoshsirat S, Abbaszadeh HA. NUPR1- CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. J Chem Neuroanat 2021; 114:101942. [PMID: 33675952 DOI: 10.1016/j.jchemneu.2021.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/28/2022]
Abstract
Methamphetamine (Meth) is a neuro-stimulator substrate which might lead to neural cell death and the activation of several interconnected cellular pathways as well. However, the precise molecular mechanisms underlying Meth-induced neural cell death remained unclear yet. The current study aimed to assess the specific relationship between long-term Meth exposure and several endoplasmic reticulum stress, autophagy, and apoptosis associated markers including C/EBP homologous protein (CHOP), Tribbles homolog 3(Trib3), Nuclear protein 1(NUPR1), and Beclin-1 expression in postmortem human striatum. Therefore, the effects of long-term Meth exposure on autophagy and apoptosis in the striatum of postmortem users were evaluated and molecular, immunehistochemical, and histological examinations were performed on 10 control and 10 Meth-addicted brains. The level of CHOP, Trib3, NUPR1, and Beclin-1, Microtubule-associated proteins 1A/1B light chain 3B(LC3), Caspase 3, and Autophagy protein 5 (ATG5) were measured by using qPCR and immunohistochemistry. Stereological neural cell counting, Hematoxylin and Eosin, Nissl and Tunel staining were also performed. Based on our findings, the expression level of CHOP, Trib3, NUPR1, and Beclin-1 in the striatum of Meth group were significantly higher than the control group. Besides, the neuronal cell death was substantially increased in the striatum based on data obtained from the Tunel assay and the stereological analysis. Long-term presence of Meth in the brain can induce ER stress and overexpression of NUPR1 which is associated with the upregulation of CHOP, a pro-apoptotic transcription factor. Moreover, an increase in Trib3 expression is implicated in CHOP-dependent autophagic cell death during Meth-induced ER stress accompanied by an increase in neuronal cell death in the striatum of the postmortem human brains. Beclin 1 expression was also upregulated which may due to the activation of autophagic mechanisms upon prolonged Meth exposure.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei Mirakabad
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shirazi Tehrani
- Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Para Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Aromadendrin Protects Neuronal Cells from Methamphetamine-Induced Neurotoxicity by Regulating Endoplasmic Reticulum Stress and PI3K/Akt/mTOR Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052274. [PMID: 33668860 PMCID: PMC7956189 DOI: 10.3390/ijms22052274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug that induces irreversible damage to neuronal cells and pathological malfunction in the brain. Aromadendrin, isolated from the flowers of Chionanthus retusus, has been shown to have anti-inflammatory or anti-tumor activity. Nevertheless, it has been reported that METH exacerbates neurotoxicity by inducing endoplasmic reticulum (ER) stress via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in neuronal cells. There is little evidence that aromadendrin protects cells from neurotoxicity induced by METH. In this study, we found that aromadendrin partially suppressed the METH-induced cell death in SH-SY5y cells without causing cytotoxicity. Aromadendrin regulated METH-induced ER stress by preserving the phosphorylation of the PI3K/Akt/mTOR signaling pathway in METH-exposed SH-SY5y cells. In addition, aromadendrin mitigated METH-induced autophagic and the apoptotic pathways in METH-exposed SH-SY5y cells. Mechanistic studies revealed that pre-treatment with aromadendrin restored the expression of anti-apoptotic proteins in METH-exposed conditions. The inhibitor assay confirmed that aromadendrin-mediated restoration of mTOR phosphorylation protected cells from autophagy and apoptosis in METH-exposed cells. Therefore, these findings suggest that aromadendrin relatively has a protective effect on SH-SY5y cells against autophagy and apoptosis induced by METH via regulation of ER stress and the PI3K/Akt/mTOR signaling pathway.
Collapse
|
37
|
Tan L, Harper LR, Armstrong A, Carlson CS, Yammani RR. Dietary saturated fatty acid palmitate promotes cartilage lesions and activates the unfolded protein response pathway in mouse knee joints. PLoS One 2021; 16:e0247237. [PMID: 33617553 PMCID: PMC7899342 DOI: 10.1371/journal.pone.0247237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/10/2023] Open
Abstract
Increased intake of dietary saturated fatty acids has been linked to obesity and the development of Osteoarthritis (OA). However, the mechanism by which these fats promote cartilage degradation and the development of OA is not clearly understood. Here, we report the effects of consumption of common dietary saturated and unsaturated fatty acids, palmitate and oleate, respectively, on body weight, metabolic factors, and knee articular cartilage in a mouse model of diet-induced obesity. Mice fed on a diet rich in saturated or unsaturated fatty acid gained an equal amount of weight; however, mice fed a palmitate diet, but not a control or oleate diet, exhibited more cartilage lesions and increased expression of 1) unfolded protein response (UPR)/endoplasmic reticulum (ER) stress markers including BIP, P-IRE1α, XBP1, ATF4, and CHOP; 2) apoptosis markers CC3 and C-PARP; and 3) negative cell survival regulators Nupr1 and TRB3, in knee articular cartilage. Palmitate-induced apoptosis was confirmed by TUNEL staining. Likewise, dietary palmitate was also increased the circulatory levels of classic proinflammatory cytokines, including IL-6 and TNF-α. Taken together, our results demonstrate that increased weight gain is not sufficient for the development of obesity-linked OA and suggest that dietary palmitate promotes UPR/ER stress and cartilage lesions in mouse knee joints. This study validates our previous in vitro findings and suggests that ER stress could be the critical metabolic factor contributing to the development of diet/obesity induced OA.
Collapse
Affiliation(s)
- Li Tan
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Lindsey R. Harper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Alexandra Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Raghunatha R. Yammani
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
38
|
Choi J, Jo M, Lee E, Lee DY, Choi D. Dienogest regulates apoptosis, proliferation, and invasiveness of endometriotic cyst stromal cells via endoplasmic reticulum stress induction. Mol Hum Reprod 2021; 26:30-39. [PMID: 31814016 DOI: 10.1093/molehr/gaz064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Dienogest, a specific progesterone receptor agonist, is used in the treatment of endometriosis. However, it is still unclear as to the mechanisms of therapeutic effects on endometriosis. Our recent study showed that endometriosis may be the result of aberrant endoplasmic reticulum (ER) stress induction due to progesterone resistance. This finding suggests that the regulation of ER stress induction may play a key role in treatment of endometriosis. Therefore, the anti-endometriotic effects of dienogest may be mediated by regulation of ER stress. To test this hypothesis, we elucidate whether dienogest affects endometriotic stromal cell apoptosis, proliferation and invasiveness by modulating ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) expression. Specifically, PRKR-like ER kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4), inositol-requiring kinase 1 (IRE1)/TNF receptor-associated factor 2 (TRAF2)/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling, and downstream CHOP were evaluated to determine the involved ER stress-mediated regulation mechanism of CHOP expression. Our results show that progesterone treatment did not have any significant effects on ER stress, apoptosis, proliferation, and invasion in estrogen-treated endometriotic cyst stromal cells (ECSCs). However, dienogest treatment upregulated the induction of ER stress. It also led to increased apoptosis, and decreased proliferation and invasiveness. These dienogest-induced changes in apoptosis, proliferation and invasiveness were reversed by the ER stress inhibitor salubrinal. Furthermore, dienogest-induced ER stress increased CHOP expression through activation of both PERK/elf2α/ATF4 and IRE1/TRAF2/ASK1/JNK signaling. This upregulation was blocked by transfection with PERK and IRE1 siRNA, which decreased apoptosis and increased the proliferation and invasiveness of dienogest-treated ECSCs. Taken together, our findings indicate that dienogest enhances ER stress induction in endometriotic stromal cells, which affects apoptosis, proliferation and invasiveness via CHOP upregulation.
Collapse
Affiliation(s)
- JongYeob Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Korea
| | - MinWha Jo
- Center for Clinical Research, Samsung Biomedical Research Institute, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Korea
| | - EunYoung Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Korea
| | - Dong-Yun Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Korea
| | - DooSeok Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
39
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Identification of contributing genes of Huntington's disease by machine learning. BMC Med Genomics 2020; 13:176. [PMID: 33228685 PMCID: PMC7684976 DOI: 10.1186/s12920-020-00822-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Huntington’s disease (HD) is an inherited disorder caused by the polyglutamine (poly-Q) mutations of the HTT gene results in neurodegeneration characterized by chorea, loss of coordination, cognitive decline. However, HD pathogenesis is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of HD’s mechanism from machine learning is so far unrealized, majorly due to the lack of needed data density.
Methods To harness the knowledge of the HD pathogenesis from the expression profiles of postmortem prefrontal cortex samples of 157 HD and 157 controls, we used gene profiling ranking as the criteria to reduce the dimension to the order of magnitude of the sample size, followed by machine learning using the decision tree, rule induction, random forest, and generalized linear model. Results These four Machine learning models identified 66 potential HD-contributing genes, with the cross-validated accuracy of 90.79 ± 4.57%, 89.49 ± 5.20%, 90.45 ± 4.24%, and 97.46 ± 3.26%, respectively. The identified genes enriched the gene ontology of transcriptional regulation, inflammatory response, neuron projection, and the cytoskeleton. Moreover, three genes in the cognitive, sensory, and perceptual systems were also identified. Conclusions The mutant HTT may interfere with both the expression and transport of these identified genes to promote the HD pathogenesis.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan. .,Children's Medical Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
40
|
Xie N, Li Y, Wang C, Lian Y, Zhang H, Li Y, Meng X, Du L. FAM134B Attenuates Seizure-Induced Apoptosis and Endoplasmic Reticulum Stress in Hippocampal Neurons by Promoting Autophagy. Cell Mol Neurobiol 2020; 40:1297-1305. [PMID: 32086669 PMCID: PMC11448898 DOI: 10.1007/s10571-020-00814-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Autophagy plays a critical role in epileptic neuronal injury, and recent studies have demonstrated that FAM134B plays an important role in regulating autophagy. However, the effect of FAM134B on epileptic neuronal injury remains unclear. In this study, we investigated the role of FAM134B in neuronal apoptosis and endoplasmic reticulum (ER) stress using the hippocampal neuronal culture model of acquired epilepsy (AE) in vitro. We found that in this model, the level of autophagy significantly increased, indicated by an elevated LC3-II/LC3-I ratio. FAM134B overexpression using lentiviral vectors enhanced autophagy, whereas FAM134B downregulation using lentiviral vectors impaired this process. In addition, the ER Ca2+ concentration was decreased and the intracellular level of reactive oxygen species was increased in this model. FAM134B overexpression was sufficient to reverse these changes. Moreover, FAM134B overexpression attenuated ER stress as shown by a decrease in the expression of C/-EBP homologous protein and glucose-regulated protein 78, and neuronal apoptosis induced by seizure, while FAM134B downregulation caused the opposite effects. Further, pre-treatment with the selective autophagy inhibitor 3-methyladenine abolished the effects of FAM134B on ER stress and neuronal apoptosis. Altogether, we demonstrate that FAM134B is an important regulator of AE-induced ER stress and neuronal apoptosis by controlling autophagy function.
Collapse
Affiliation(s)
- Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjiao Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujuan Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianghe Meng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liyuan Du
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
41
|
Tan L, Register TC, Yammani RR. Age-Related Decline in Expression of Molecular Chaperones Induces Endoplasmic Reticulum Stress and Chondrocyte Apoptosis in Articular Cartilage. Aging Dis 2020; 11:1091-1102. [PMID: 33014525 PMCID: PMC7505268 DOI: 10.14336/ad.2019.1130] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is a major risk factor for the development of osteoarthritis (OA). One hallmark of aging is loss of proteostasis resulting in increased cellular stress and cell death. However, its effect on the development of OA is not clear. Here, using knee articular cartilage tissue from young and old cynomolgus monkeys (Macaca fascicularis), we demonstrate that with aging there is loss of molecular chaperone expression resulting in endoplasmic reticulum (ER) stress and cell death. Chondrocytes from aged articular cartilage showed decreased expression of molecular chaperones, including protein disulfide isomerase, calnexin, and Ero1-like protein alpha, and increased immunohistochemical staining for ER stress markers (phosphorylated IRE1 alpha, spliced X-box binding protein-1, activating transcription factor 4 and C/EBP homologous protein), and apoptotic markers [cleaved caspase 3 and cleaved poly(ADP-ribose) polymerase], suggesting that decreased expression of molecular chaperone during aging induces ER stress and chondrocyte apoptosis in monkey articular cartilage. Apoptosis induced by aging-associated ER stress was further confirmed by TUNEL staining. Aged monkey cartilage also showed increased expression of nuclear protein 1 (Nupr1) and tribbles related protein-3 (TRB3), known regulators of apoptosis and cell survival pathways. Treatment of cultured monkey chondrocytes with a small molecule chemical chaperone, 4-phenylbutyric acid (PBA, a general ER stress inhibitor) or PERK Inhibitor I (an ER stress inhibitor specifically targeting the PERK branch of the unfolded protein response pathway), decreased the expression of ER stress and apoptotic markers and reduced the expression of Nupr1 and TRB3. Consistent with the above finding, knockdown of calnexin expression induces ER stress and apoptotic markers in normal human chondrocytes in vitro. Taken together, our study clearly demonstrates that aging promotes loss of proteostasis and induces ER stress and chondrocyte apoptosis in articular cartilage. Thus, restoring proteostasis using chemical/molecular chaperone or ER stress inhibitor could be a therapeutic option to treat aged-linked OA.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Departments of Pathology and Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
42
|
Liu Y, Wen D, Gao J, Xie B, Yu H, Shen Q, Zhang J, Jing W, Cong B, Ma C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res Bull 2020; 162:73-83. [PMID: 32544512 DOI: 10.1016/j.brainresbull.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illegal amphetamine-typed psychostimulant that is abused worldwide and causes serious public health problems. METH exposure induces apoptosis and autophagy in neuronal cells. However, the role of pyroptosis in METH-induced neurotoxicity is still unclear. Here, we investigate whether pyroptosis is involved in METH-induced hippocampal neurotoxicity and the potential mechanisms of Endoplasmic reticulum (ER) stress in hippocampal neuronal cells. For this purpose, the expression levels of pyroptosis-related proteins, GSDMD and GSDME, were analyzed by immunoblotting and immunohistochemistry in the hippocampal neuron cell line HT-22. Next, we explored METH-induced pyroptosis in HT-22 using immunoblotting, LDH assays and SYTOX green acid staining. Further, the relationship between pyroptosis and ER stress in METH-induced hippocampal neuron damage was studied in HT-22 cells using inhibitors including TUDCA, a specific inhibitor of ER stress, GSK-2656157, a PERK pathway inhibitor and STF-0803010, an inhibitor of IRE1α endoribonuclease activity. This relationship was also studied using siRNAs, including siTRAF2, an siRNA against IRE1α kinase activity and siATF6 against the ATF6 pathway, which were analyzed by immunoblotting, LDH assays and SYTOX green acid staining. GSDME but not GSDMD was found to be expressed in HT-22 cells. METH treatment induced the upregulation of cleaved GSDME-NT and LDH release, as well as the increase of SYTOX green positive cells in HT-22 cells, which was partly reversed by inhibitors and siRNAs, indicating that the ER stress signaling pathway was involved in GSDME-dependent cell death induced by METH. In summary, these results revealed that METH induced ER stress that mediated GSDME-dependent cell death in hippocampal neuronal cells. These findings provide novel insight into the mechanisms of METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Yi Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingqi Gao
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Qianchao Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Jingjing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Weiwei Jing
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, PR China.
| |
Collapse
|
43
|
Yang G, Liu L, Zhang R, Li J, Leung CK, Huang J, Li Y, Shen B, Zeng X, Zhang D. Cannabidiol attenuates methamphetamine-induced conditioned place preference via the Sigma1R/AKT/GSK-3β/CREB signaling pathway in rats. Toxicol Res (Camb) 2020; 9:202-211. [PMID: 32670551 DOI: 10.1093/toxres/tfaa021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant. Cannabidiol (CBD) is an exogenous cannabinoid without psychostimulating activity, which has potential therapeutic effects on opioid addiction. However, it is unclear whether CBD has therapeutic effects on METH-induced motivational effects. The present study examines whether CBD has a protective effect on METH-induced conditioned place preference (CPP) in rats by regulating the Sigma1R and AKT-GSK3β-CREB signaling pathway. Seventy rats were equally and randomly divided into seven groups. The rat CPP model was established via the intraperitoneal injection (IP) of 2 mg/kg of METH. Next, the intraperitoneal injection of 10, 20, 40, and 80 mg/kg CBD was performed 1 h prior to the injection of saline or METH. The protein expression levels of Sigma1R, AKT, p-AKT, GSK-3β, p-GSK-3β, CREB, and p-CREB in the rats' prefrontal cortex, nucleus accumbens, and hippocampus and ventral tegmental were detected using western blot analysis. CBD was found to inhibit METH-induced CPP in a dose-dependent fashion. The expression levels of Sigma1R, p-AKT, p-GSK3β, and p-CREB increased significantly in the METH-induced CPP model. Treatment involving different doses of CBD caused differential inhibitory responses in the cellular protein abundance of Sigma1R, p-AKT, p-GSK3β, and p-CREB across various brain regions. The present study found that METH can induce CPP in rats. When a pretreatment of CBD is applied, the CBD can weaken CPP in METH-induced rats by regulating the SigmaR1/AKT/GSK-3β/CREB signaling pathway. The results of this study indicate that CBD has a potential therapeutic effect on METH-induced rewarding effects.
Collapse
Affiliation(s)
- Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Liu Liu
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Ruilin Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Yuanyuan Li
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Baoyu Shen
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Dongxian Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| |
Collapse
|
44
|
Choi J, Jo M, Lee E, Lee DY, Choi D. Involvement of endoplasmic reticulum stress in regulation of endometrial stromal cell invasiveness: possible role in pathogenesis of endometriosis. Mol Hum Reprod 2020; 25:101-110. [PMID: 30657961 DOI: 10.1093/molehr/gaz002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/02/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to reduce invasiveness in some cancer cells by inhibiting the AKT/mTOR pathway. A previous study from our laboratory suggested that ER stress is promoted by progesterone in human endometrial cells, which suggests that progesterone may inhibit endometrial cell invasiveness by up-regulating ER stress. Therefore, aberrant ER stress in response to progesterone may contribute to the altered invasiveness found in endometriotic tissues. To test this hypothesis, we elucidate whether ER stress is involved in regulation of human endometrial cell invasiveness through the AKT/mTOR pathway and if this involvement is associated with altered invasiveness in endometriotic cells. Specifically, we sought to determine the effects of ER stress on AKT/mTOR pathway by evaluating ER stress-mediated CHOP/TRIB3 signaling, a negative regulator of AKT. We found that ER stress marker GRP78 expression increased with CHOP and TRIB3 expression in normal endometrial stromal cells (NESCs) treated with tunicamycin, and this increase was accompanied by decreased AKT and mTOR activity and cellular invasiveness. Similarly, progesterone increased GRP78, CHOP and TRIB3 expression in NESCs. Subsequently, inhibition of AKT and mTOR activity decreased cellular invasiveness. This progesterone-induced decrease in cellular invasiveness was reversed by inhibition of ER stress. In contrast, progesterone did not change CHOP, TRIB3, AKT, mTOR or invasiveness in endometriotic cyst stromal cells. In contrast to normal endometrium, endometriotic tissues showed no changes in CHOP, TRIB3 and invasion-related proteins (MMP2 and MMP9) expression throughout the menstrual cycle. Taken together, our findings indicate that abnormal ER stress response to progesterone increased endometriotic stromal cell invasiveness via the AKT/mTOR pathway.
Collapse
Affiliation(s)
- JongYeob Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Korea
| | - MinWha Jo
- Center for Clinical Research, Samsung Biomedical Research Institute, 50 Irwon-dong, Gangnam-gu, Seoul, Korea
| | - EunYoung Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Korea
| | - Dong-Yun Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Korea
| | - DooSeok Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Korea
| |
Collapse
|
45
|
Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H. Astrocyte-Derived Lipocalin-2 Is Involved in Mitochondrion-Related Neuronal Apoptosis Induced by Methamphetamine. ACS Chem Neurosci 2020; 11:1102-1116. [PMID: 32186847 DOI: 10.1021/acschemneuro.9b00559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a widely abused and highly addictive psychoactive stimulant that can induce neuronal apoptosis. Lipocalin-2 (LCN2) is a member of the lipocalin family, and its upregulation is involved in cell death in the adult brain. However, the role of LCN2 in METH-induced neurotoxicity has not been reported. In this study, we found that LCN2 was predominantly expressed in hippocampal astrocytes after METH exposure and that recombinant LCN2 (Re LCN2) can induce neuronal apoptosis in vitro and in vivo. The inhibition of LCN2 and LCN2R, a cell surface receptor for LCN2, reduced METH- and Re LCN2-induced mitochondrion-related neuronal apoptosis in cultures of primary rat neurons and animal models. Our study supports the role of reactive oxygen species (ROS) generation and the PRKR-like ER kinase (PERK)-mediated signaling pathway in the upregulation of astrocyte-derived LCN2 after METH exposure. Additionally, the serum and cerebrospinal fluid (CSF) levels of LCN2 were significantly upregulated after METH exposure. These results indicate that upregulation of astrocyte-derived LCN2 binding to LCN2R is involved in METH-induced mitochondrion-related neuronal apoptosis.
Collapse
Affiliation(s)
- Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingtao Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fu Zhang
- Key Lab of Forensic Pathology, Guangdong Public Security Department, Guangzhou 510050, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| |
Collapse
|
46
|
Ding J, Hu S, Meng Y, Li C, Huang J, He Y, Qiu P. Alpha-Synuclein deficiency ameliorates chronic methamphetamine induced neurodegeneration in mice. Toxicology 2020; 438:152461. [PMID: 32278788 DOI: 10.1016/j.tox.2020.152461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
The α-Synuclein (α-syn) and tau have synergistic effects on neurodegenerative diseases induced by environmental factors or genetic mutation. Thus, we investigated the role of α-syn and tau in neurodegeneration induced by chronic methamphetamine (METH) exposure (1.0∼20.0 mg/kg/d body weight, for 14 consecutive days). Here, we present a mice model with evidences of α-syn and tau participating in toxicology in chronic METH. METH increased α-syn level in the stratum oriens, pyramidal layer, stratum radiatum and stratum moleculare of hippocampal CA1, CA2 and CA3, polymorph layer of hippocampal dentate gyrus (DG), and substantia nigra (SN). The subcellular locations of the upregulated α-syn were mainly found in mitochondria and axons. The METH upregulated α-syn may directly induce mitochondrial damage, myelin sheath destruction, and synaptic failure. Also, the excess α-syn might indirectly promote tau phosphorylation through tau kinase GSK3β and CDK5, leading to microtubule depolymerization and eventually fusion deficit of autophagosome and lysosome. In the in vitro experiment, the autophagic vacuoles failed to fuse with the lysosome. The neuropathology induced by both the direct and indirect effects of α-syn could be alleviated by α-syn knockout. Taking together, these results indicate that the α-syn mediates the neurodegenerative process induced by chronic METH and that reducing α-syn might be a potential approach to protect the toxic effects of METH and also be, to a broader view, of therapeutic value in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yunle Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
47
|
Meng Y, Qiao H, Ding J, He Y, Fan H, Li C, Qiu P. Effect of Parkin on methamphetamine-induced α-synuclein degradation dysfunction in vitro and in vivo. Brain Behav 2020; 10:e01574. [PMID: 32086884 PMCID: PMC7177580 DOI: 10.1002/brb3.1574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Methamphetamine (METH) is a psychostimulant drug with complicated neurotoxicity, and abuse of METH is very common. Studies have shown that METH exposure causes alpha-synuclein (α-syn) accumulation. However, the mechanism of α-syn accumulation has not been determined. METHODS In this study, we established cell and animal models of METH intoxication to evaluate how METH affects α-syn expression. In addition, to explore METH-induced neurotoxicity, we measured the level of Parkin and the phosphorylation levels of α-syn, Polo-like kinase 2 (PLK2), the proteasome activity marker CD3δ, and the apoptosis-related proteins Caspase-3 and PARP. Parkin is a key enzyme in the ubiquitin-proteasome system. In addition, the effect of Parkin on METH-induced neurotoxicity was investigated by overexpressing it in vitro and in vivo. RESULTS METH exposure increased polyubiquitin and α-syn expression, as did MG132. Furthermore, the level of Parkin and the interaction between Parkin and α-syn decreased after METH exposure. Importantly, the increases in α-syn expression and neurotoxicity were relieved by Parkin overexpression. CONCLUSIONS By establishing stable cell lines and animal models that overexpress Parkin, we confirmed Parkin as an important factor in METH-induced α-syn degradation dysfunction in vitro and in vivo. Parkin may be a promising target for the treatment of METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Yunle Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Honghua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Guangdong HuaTian Forensic Biology Judicial Evaluation Institute, Qingyuan, China
| | - Jiuyang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoling Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Differential Responses of LINE-1 in the Dentate Gyrus, Striatum and Prefrontal Cortex to Chronic Neurotoxic Methamphetamine: A Study in Rat Brain. Genes (Basel) 2020; 11:genes11040364. [PMID: 32231019 PMCID: PMC7230251 DOI: 10.3390/genes11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause a broad range of severe cognitive deficits as well as neurobehavioral abnormalities when abused chronically, particularly at high doses. Cognitive deficits are related to METH neurotoxicity in the striatum and hippocampus. The activation of transposable Long INterspersed Nuclear Element 1 (LINE-1) is associated with several neurological diseases and drug abuse, but there are very limited data regarding the effects of high-dose METH on the activity of LINE-1 in the adult brain. Using real-time quantitative PCR, the present study demonstrates that the chronic administration of neurotoxic METH doses results in the increased expression of LINE-1-encoded Open Reading Frame 1 (ORF-1) in rat striatum shortly after the last dose of the drug and decreased ORF-1 expression during METH withdrawal, with dentate gyrus potentially developing "tolerance" to these METH effects. LINE-1 activation may be a new factor mediating the neurotoxic effects of chronic METH in the striatum and, therefore, a new drug target against METH-induced psychomotor impairments in chronic METH users.
Collapse
|
49
|
Yang L, Guo N, Fan W, Ni C, Huang M, Bai L, Zhang L, Zhang X, Wen Y, Li Y, Zhou X, Bai J. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology 2020; 78:163-169. [PMID: 32203791 DOI: 10.1016/j.neuro.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) has been reported to induce endoplasmic reticulum (ER) stress and neuronal apoptosis in the central nervous system (CNS) during the development of addiction. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays an important role in inhibiting apoptosis and protects neurons from cytotoxicity through ER and mitochondria-mediated pathways. Our previous study has been reported that Trx-1 protects mice from METH-induced rewarding effect. However, whether Trx-1 plays the role in resisting METH injury is still unclear. Here, we aim to investigate whether Trx-1 participates in the regulation of METH-induced CNS injury via ER stress and mitochondria-mediated pathways. Our study first repeated the conditioned place preference expression induced by METH. Then we detected and found that METH increased the expression of N-methyl-d-asparate (NMDA) receptor subunit 2B (NR2B) and the level of glutamate (Glu) in the ventral tegmental area (VTA) and nucleus accumbens (NAc), while Trx-1 overexpression suppressed the increases. We further examined ER stress-related proteins and mitochondrial apoptosis pathway in the VTA and NAc, and found that METH increased the expressions of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Bax, as same time decreased the expressions of procaspase12, Bcl-2, and procaspase3, while Trx-1 overexpression blocked these changes. These results indicate that Trx-1 blocks METH-induced injury by suppressing ER stress and mitochondria-mediated apoptosis in the VTA and NAc via targeting glutamatergic system.
Collapse
Affiliation(s)
- Lihua Yang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China; Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Ningning Guo
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Fan
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chunmin Ni
- Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Mengbing Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Le Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xianwen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunbo Wen
- Narcotics Control School, Yunnan Police College, Kunming, 650223, China
| | - Ye Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoshuang Zhou
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
50
|
MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats. Aging (Albany NY) 2020; 12:5209-5220. [PMID: 32191629 PMCID: PMC7138556 DOI: 10.18632/aging.102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum stress-induced neuronal apoptosis contributes to neurotoxicity observed after sevoflurane exposure. However, the molecular mechanism underlying the resulting learning and memory impairments remains unknown. Here, we investigated the roles of miR-325-3p and Nupr1 in sevoflurane-induced learning and memory impairments in neonatal rats and HCN-2 human cortical neuronal cells. We found that in both neonatal rats and HCN-2 cells, sevoflurane exposure impairs learning and memory in neonatal rats and increases expression of Nupr1, the endoplasmic reticulum stress marker proteins C/EBPβ and IGFBP5, and the apoptosis-related protein markers cleaved-Caspase-3 and Bax. Using bioinformatics tools to identify microRNAs that bind to Nupr1, we found that miR-325-3p is downregulated in hippocampal neurons exposed to sevoflurane. Moreover, Nupr1 knockdown and miR-325-3p overexpression improved the rats’ performance in learning and memory tests and reduced sevoflurane-induced apoptosis in vitro and in vivo. These results suggest that miR-325-3p blocks sevoflurane-induced learning and memory impairments by inhibiting Nupr1 and the downstream C/EBPβ/IGFBP5 signaling axis in neonatal rats. MiR-325-3p may therefore be a useful therapeutic target in sevoflurane-induced neurotoxicity.
Collapse
|