1
|
Liu Y, Hong J, Wang G, Mei Z. An emerging role of SNAREs in ischemic stroke: From pre-to post-diseases. Biochem Pharmacol 2025; 236:116907. [PMID: 40158821 DOI: 10.1016/j.bcp.2025.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke is a debilitating condition characterized by high morbidity, disability, recurrence, and mortality rates on a global scale, posing a significant threat to public health and economic stability. Extensive research has thoroughly explored the molecular mechanisms underlying ischemic stroke, elucidating a strong association between soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor proteins (SNAREs) and the pathogenesis of this condition. SNAREs, a class of highly conserved proteins involved in membrane fusion, play a crucial role in modulating neuronal information transmission and promoting myelin formation in the central nervous system (CNS). Preventing the SNARE complex formation, malfunctions in SNARE-dependent exocytosis, and altered regulation of SNARE-mediated vesicle fusion are linked to excitotoxicity, endoplasmic reticulum (ER) stress, and programmed cell death (PCD) in ischemic stroke. However, its underlying mechanisms remain unclear. This study conducts a comprehensive review of the existing literature on SNARE proteins, encompassing the structure, classification, and expression of the SNARE protein family, as well as the assembly - disassembly cycle of SNARE complexes and their physiological roles in the CNS. We thoroughly examine the mechanisms by which SNAREs contribute to the pathological progression and associated risk factors of ischemic stroke (hypertension, hyperglycemia, dyslipidemia, and atherosclerosis). Furthermore, our findings highlight the promise of SNAREs as a viable target for pharmacological interventions in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaxin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyan Hong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
4
|
Dannaoui R, Hu R, Hu L, Tian ZQ, Svir I, Huang WH, Amatore C, Oleinick A. Vesicular neurotransmitters exocytosis monitored by amperometry: theoretical quantitative links between experimental current spikes shapes and intravesicular structures. Chem Sci 2024:d4sc04003a. [PMID: 39129778 PMCID: PMC11310864 DOI: 10.1039/d4sc04003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Single cell amperometry has proven to be a powerful and well-established method for characterizing single vesicular exocytotic events elicited at the level of excitable cells under various experimental conditions. Nevertheless, most of the reported characteristics are descriptive, being mostly concerned with the morphological characteristics of the recorded current spikes (maximum current intensities, released charge, rise and fall times, etc.) which are certainly important but do not provide sufficient kinetic information on exocytotic mechanisms due to lack of quantitative models. Here, continuing our previous efforts to provide rigorous models rationalizing the kinetic structures of frequently encountered spike types (spikes with unique exponential decay tails and kiss-and-run events), we describe a new theoretical approach enabling a quantitative kinetic modeling of all types of exocytotic events giving rise to current spikes exhibiting exponential decay tails. This model follows directly from the fact that the condensation of long intravesicular polyelectrolytic strands by high concentrations of monocationic neurotransmitter molecules leads to a matrix structure involving two compartments in constant kinetic exchanges during release. This kinetic model has been validated theoretically (direct and inverse problems) and its experimental interest established by the analysis of the amperometric spikes relative to chromaffin and PC12 cells previously published by some of us.
Collapse
Affiliation(s)
- Reina Dannaoui
- Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P.R. China
| | - Lihui Hu
- Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P.R. China
| | - Irina Svir
- Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P.R. China
| | - Christian Amatore
- Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P.R. China
| | - Alexander Oleinick
- Département de Chimie, PASTEUR, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS 24 rue Lhomond Paris 75005 France
| |
Collapse
|
5
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Di Bartolo AL, Caparotta M, Masone D. Intrinsic Disorder in α-Synuclein Regulates the Exocytotic Fusion Pore Transition. ACS Chem Neurosci 2023. [PMID: 37192400 DOI: 10.1021/acschemneuro.3c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Marcelo Caparotta
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
9
|
Van Dinh Q, Liu J, Dutta P. Effect of Slp4-a on Membrane Bending During Prefusion of Vesicles in Blood-Brain Barrier. J Biomech Eng 2023; 145:011006. [PMID: 35838328 PMCID: PMC9445323 DOI: 10.1115/1.4054985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Vesicle exocytosis is a promising pathway for brain drug delivery through the blood-brain barrier to treat neurodegenerative diseases. In vesicle exocytosis, the membrane fusion process is initiated by the calcium sensor protein named synaptotagmin-like protein4-a (Slp4-a). Understanding conformational changes of Slp4-a during the prefusion stage of exocytosis will help to develop vesicle-based drug delivery to the brain. In this work, we use molecular dynamics (MD) simulations with a hybrid force field coupling united-atom protein model with MARTINI coarse-grained (CG) solvent to capture the conformational changes of Slp4-a during the prefusion stage. These hybrid coarse-grained simulations are more efficient than all-atom MD simulations and can capture protein interactions and conformational changes. Our simulation results show that the calcium ions play critical roles during the prefusion stage. Only one calcium ion can remain in each calcium-binding pocket of Slp4-a C2 domains. The C2B domain of calcium-unbound Slp4-a remains parallel to the endothelial membrane, while the C2B domain of calcium-bound Slp4-a rotates perpendicular to the endothelial membrane to approach the vesicular membrane. For the calcium-bound case, three Slp4-a proteins can effectively bend lipid membranes at the prefusion stage, which could later trigger lipid stalk between membranes. This work provides a better understanding how C2 domains of Slp4-a operate during vesicle exocytosis from an endothelial cell.
Collapse
Affiliation(s)
- Quyen Van Dinh
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
10
|
Di Bartolo AL, Tomes CN, Mayorga LS, Masone D. Enhanced Expansion and Reduced Kiss-and-Run Events in Fusion Pores Steered by Synaptotagmin-1 C2B Domains. J Chem Theory Comput 2022; 18:4544-4554. [PMID: 35759758 DOI: 10.1021/acs.jctc.2c00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
11
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
12
|
Kim DY, Won KJ, Hwang DI, Kim NY, Kim B, Lee HM. 1-Iodohexadecane Alleviates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice: Possible Involvements of the Skin Barrier and Mast Cell SNARE Proteins. Molecules 2022; 27:1560. [PMID: 35268661 PMCID: PMC8911872 DOI: 10.3390/molecules27051560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory dermal disease with symptoms that include inflammation, itching, and dry skin. 1-Iodohexadecane is known as a component of Chrysanthemum boreale essential oil that has an inhibitory effect on AD-like lesions. However, its effects on AD-related pathological events have not been investigated. Here, we explored the effects of 1-iodohexadecane on AD lesion-related in vitro and in vivo responses and the mechanism involved using human keratinocytes (HaCaT cells), mast cells (RBL-2H3 cells), and a 2,4-dinitrochlorobenzene (DNCB)-induced mouse model (male BALB/c) of AD. Protein analyses were performed by immunoblotting or immunohistochemistry. In RBL-2H3 cells, 1-iodohexadecane inhibited immunoglobulin E-induced releases of histamine and β-hexosaminidase and the expression of VAMP8 protein (vesicle-associated membrane proteins 8; a soluble N-ethylmaleimide-sensitive factor attachment protein receptor [SNARE] protein). In HaCaT cells, 1-iodohexadecane enhanced filaggrin and loricrin expressions; in DNCB-treated mice, it improved AD-like skin lesions, reduced epidermal thickness, mast cell infiltration, and increased filaggrin and loricrin expressions (skin barrier proteins). In addition, 1-iodohexadecane reduced the β-hexosaminidase level in the serum of DNCB-applied mice. These results suggest that 1-iodohexadecane may ameliorate AD lesion severity by disrupting SNARE protein-linked degranulation and/or by enhancing the expressions of skin barrier-related proteins, and that 1-iodohexadecane has therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Do Yoon Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea; (K.-J.W.); (B.K.)
| | - Dae Il Hwang
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Nan Young Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| | - Bokyung Kim
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea; (K.-J.W.); (B.K.)
| | - Hwan Myung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea; (D.Y.K.); (D.I.H.); (N.Y.K.)
| |
Collapse
|
13
|
Chanaday NL, Kavalali ET. Synaptobrevin-2 dependent regulation of single synaptic vesicle endocytosis. Mol Biol Cell 2021; 32:1818-1823. [PMID: 34191540 PMCID: PMC8684713 DOI: 10.1091/mbc.e21-04-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
Evidence from multiple systems indicates that vesicle SNARE (soluble NSF attachment receptor) proteins are involved in synaptic vesicle endocytosis, although their exact action at the level of single vesicles is unknown. Here we interrogate the role of the main synaptic vesicle SNARE mediating fusion, synaptobrevin-2 (also called VAMP2), in modulation of single synaptic vesicle retrieval. We report that in the absence of synaptobrevin-2, fast and slow modes of single synaptic vesicle retrieval are impaired, indicating a role of the SNARE machinery in coupling exocytosis to endocytosis of single synaptic vesicles. Ultrafast endocytosis was impervious to changes in the levels of synaptobrevin-2, pointing to a separate molecular mechanism underlying this type of recycling. Taken together with earlier studies suggesting a role of synaptobrevin-2 in endocytosis, these results indicate that the machinery for fast synchronous release couples fusion to retrieval and regulates the kinetics of endocytosis in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240-7933
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240-7933
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933
| |
Collapse
|
14
|
Malik S, Valdebenito S, D'Amico D, Prideaux B, Eugenin EA. HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: A potential mechanism of bystander damage and viral reservoir survival. Prog Neurobiol 2021; 206:102157. [PMID: 34455020 DOI: 10.1016/j.pneurobio.2021.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
HIV-associated neurological dysfunction is observed in more than half of the HIV-infected population, even in the current antiretroviral era. The mechanisms by which HIV mediates CNS dysfunction are not well understood but have been associated with the presence of long-lasting HIV reservoirs. In the CNS, macrophage/microglia and a small population of astrocytes harbor the virus. However, the low number of HIV-infected cells does not correlate with the high degree of damage, suggesting that mechanisms of damage amplification may be involved. Here, we demonstrate that the survival mechanism of HIV-infected cells and the apoptosis of surrounding uninfected cells is regulated by inter-organelle interactions among the mitochondria/Golgi/endoplasmic reticulum system and the associated signaling mediated by IP3 and calcium. We identified that latently HIV-infected astrocytes had elevated intracellular levels of IP3, a master regulator second messenger, which diffuses via gap junctions into neighboring uninfected astrocytes resulting in their apoptosis. In addition, using laser capture microdissection, we confirmed that bystander apoptosis of uninfected astrocytes and the survival of HIV-infected astrocytes were dependent on mitochondrial function, intracellular calcium, and IP3 signaling. Blocking gap junction channels did not prevent an increase in IP3 or inter-organelle dysfunction in HIV-infected cells but reduced the amplification of apoptosis into uninfected neighboring cells. Our data provide a mechanistic explanation for bystander damage induced by surviving infected cells that serve as viral reservoirs and provide potential targets for interventions to reduce the devastating consequences of HIV within the brain.
Collapse
Affiliation(s)
- Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Public Health Research Institute (PHRI), Newark, NJ, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Daniela D'Amico
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
15
|
Smuggle tau through a secret(ory) pathway. Biochem J 2021; 478:2921-2925. [PMID: 34319403 DOI: 10.1042/bcj20210324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Abstract
Secretion of misfolded tau, a microtubule-binding protein enriched in nerve cells, is linked to the progression of tau pathology. However, the molecular mechanisms underlying tau secretion are poorly understood. Recent work by Lee et al. [Biochemical J. (2021) 478: 1471-1484] demonstrated that the transmembrane domains of syntaxin6 and syntaxin8 could be exploited for tau release, setting a stage for testing a novel hypothesis that has profound implications in tauopathies (e.g. Alzheimer's disease, FTDP-17, and CBD/PSP) and other related neurodegenerative diseases. The present commentary highlights the importance and limitations of the study, and discusses opportunities and directions for future investigations.
Collapse
|
16
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
17
|
Risselada HJ, Grubmüller H. How proteins open fusion pores: insights from molecular simulations. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:279-293. [PMID: 33340336 PMCID: PMC8071795 DOI: 10.1007/s00249-020-01484-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.
Collapse
Affiliation(s)
- H. Jelger Risselada
- Department of Theoretical Physics, Georg-August University of Göttingen, Göttingen, Germany
- Leiden University, Leiden Institute of Chemistry (LIC), Leiden, The Netherlands
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Theoretical and Computational Biophysics Department, Göttingen, Germany
| |
Collapse
|
18
|
Abstract
Using our recently designed microfluidic setup, we investigated the early stage of SNAREpin-induced fusion. We discovered the existence of subsecond transient fusion pores with a well-defined subnanometer size that occur when one or two SNAREpins are mediating vesicle fusion. In contrast, when vesicle fusion is mediated by three SNAREpins, the fusion pore reaches a diameter larger than 1.5 nm and expands spontaneously and indefinitely. These results quantitatively explain the need for a complex machinery to ensure a submillisecond neurotransmitter release after the arrival of the action potential during synaptic transmission. Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-μs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.
Collapse
|
19
|
Gordon RE, Nemeth JF, Singh S, Lingham RB, Grewal IS. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics. Trends Biotechnol 2020; 39:298-310. [PMID: 32807530 DOI: 10.1016/j.tibtech.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Intracellular delivery of therapeutic antibodies is highly desirable but remains a challenge for biomedical research and the pharmaceutical industry. Approximately two-thirds of disease-associated targets are found inside the cell. Difficulty blocking these targets with available drugs creates a need for technology to deliver highly specific therapeutic antibodies intracellularly. Historically, antibodies have not been believed to traverse the cell membrane and neutralize intracellular targets. Emerging evidence has revealed that anti-DNA autoantibodies found in systemic lupus erythematosus (SLE) patients can penetrate inside the cell. Harnessing this technology has the potential to accelerate the development of drugs against intracellular targets. Here, we dissect the mechanisms of the intracellular localization of SLE antibodies and discuss how to apply these insights to engineer successful cell-penetrating antibody drugs.
Collapse
Affiliation(s)
- Renata E Gordon
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer F Nemeth
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Russell B Lingham
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
20
|
Dhara M, Mantero Martinez M, Makke M, Schwarz Y, Mohrmann R, Bruns D. Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release. eLife 2020; 9:e55152. [PMID: 32391794 PMCID: PMC7239655 DOI: 10.7554/elife.55152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Maria Mantero Martinez
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Mazen Makke
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Yvonne Schwarz
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke UniversityMagdeburgGermany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| |
Collapse
|
21
|
Abstract
Biological transmission of vesicular content occurs by opening of a fusion pore. Recent experimental observations have illustrated that fusion pores between vesicles that are docked by an extended flat contact zone are located at the edge (vertex) of this zone. We modeled this experimentally observed scenario by coarse-grained molecular simulations and elastic theory. This revealed that fusion pores experience a direct attraction toward the vertex. The size adopted by the resulting vertex pore strongly depends on the apparent contact angle between the adhered vesicles even in the absence of membrane surface tension. Larger contact angles substantially increase the equilibrium size of the vertex pore. Because the cellular membrane fusion machinery actively docks membranes, it facilitates a collective expansion of the contact zone and increases the contact angle. In this way, the fusion machinery can drive expansion of the fusion pore by free energy equivalents of multiple tens of kBT from a distance and not only through the fusion proteins that reside within the fusion pore.
Collapse
Affiliation(s)
- Edgar M Blokhuis
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , 80138 Naples , Italy
| | - Andreas Mayer
- Département de Biochimie , Université de Lausanne , CH-1015 Epalinges , Switzerland
| | - H Jelger Risselada
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
- Department of Theoretical Physics , Georg-August University of Goettingen , 37077 Goettingen , Germany
| |
Collapse
|
22
|
Abstract
Many bacterial species contain dynamin-like proteins (DLPs). However, so far the functional mechanisms of bacterial DLPs are poorly understood. DynA in Bacillus subtilis is a 2-headed DLP, mediating nucleotide-independent membrane tethering in vitro and contributing to the innate immunity of bacteria against membrane stress and phage infection. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if DynA induces membrane full fusion, characterize its subunits in membrane fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer indicated that DynA could induce aqueous content mixing even in the absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow process, and it has phospholipid and membrane curvature preferences. The D1 part of DynA is crucial for membrane binding and fusion, whereas D2 subunit plays a role in facilitating membrane fusion. Surprisingly, digestion of DynA mediated an instant rise of content exchange, supporting the assumption that disassembly of DynA is a driving force for fusion-through-hemifusion. DynA is a rare example of a membrane fusion catalyst that lacks a transmembrane domain and hence sets this system apart from well-characterized fusion systems such as the soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes.-Guo, L., Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
Collapse
Affiliation(s)
- Lijun Guo
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| |
Collapse
|
23
|
Ruchala P, Waring AJ, Cilluffo M, Whitelegge JP, Gundersen CB. Insights into the structure and molecular topography of the fatty acylated domain of synaptotagmin-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:677-684. [DOI: 10.1016/j.bbamem.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
|
24
|
Fezoua-Boubegtiten Z, Hastoy B, Scotti P, Milochau A, Bathany K, Desbat B, Castano S, Oda R, Lang J. The transmembrane domain of the SNARE protein VAMP2 is highly sensitive to its lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:670-676. [DOI: 10.1016/j.bbamem.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
|
25
|
Smirnova YG, Risselada HJ, Müller M. Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Proc Natl Acad Sci U S A 2019; 116:2571-2576. [PMID: 30700547 PMCID: PMC6377489 DOI: 10.1073/pnas.1818200116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biological membrane fusion proceeds via an essential topological transition of the two membranes involved. Known players such as certain lipid species and fusion proteins are generally believed to alter the free energy and thus the rate of the fusion reaction. Quantifying these effects by theory poses a major challenge since the essential reaction intermediates are collective, diffusive and of a molecular length scale. We conducted molecular dynamics simulations in conjunction with a state-of-the-art string method to resolve the minimum free-energy path of the first fusion intermediate state, the so-called stalk. We demonstrate that the isolated transmembrane domains (TMDs) of fusion proteins such as SNARE molecules drastically lower the free energy of both the stalk barrier and metastable stalk, which is not trivially explained by molecular shape arguments. We relate this effect to the local thinning of the membrane (negative hydrophobic mismatch) imposed by the TMDs which favors the nearby presence of the highly bent stalk structure or prestalk dimple. The distance between the membranes is the most crucial determinant of the free energy of the stalk, whereas the free-energy barrier changes only slightly. Surprisingly, fusion enhancing lipids, i.e., lipids with a negative spontaneous curvature, such as PE lipids have little effect on the free energy of the stalk barrier, likely because of its single molecular nature. In contrast, the lipid shape plays a crucial role in overcoming the hydration repulsion between two membranes and thus rather lowers the total work required to form a stalk.
Collapse
Affiliation(s)
- Yuliya G Smirnova
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany;
| | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
26
|
|
27
|
McDargh ZA, Polley A, O'Shaughnessy B. SNARE-mediated membrane fusion is a two-stage process driven by entropic forces. FEBS Lett 2018; 592:3504-3515. [PMID: 30346036 DOI: 10.1002/1873-3468.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
SNARE proteins constitute the core of the exocytotic membrane fusion machinery. Fusion occurs when vesicle-associated and target membrane-associated SNAREs zipper into trans-SNARE complexes ('SNAREpins'), but the number required is controversial and the mechanism of cooperative fusion is poorly understood. We developed a highly coarse-grained molecular dynamics simulation to access the long fusion timescales, which revealed a two-stage process. First, zippering energy was dissipated and cooperative entropic forces assembled the SNAREpins into a ring; second, entropic forces expanded the ring, pressing membranes together and catalyzing fusion. We predict that any number of SNAREs fuses membranes, but fusion is faster with more SNAREs.
Collapse
Affiliation(s)
- Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Anirban Polley
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
28
|
Karatekin E. Toward a unified picture of the exocytotic fusion pore. FEBS Lett 2018; 592:3563-3585. [PMID: 30317539 PMCID: PMC6353554 DOI: 10.1002/1873-3468.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Neurotransmitter and hormone release involve calcium-triggered fusion of a cargo-loaded vesicle with the plasma membrane. The initial connection between the fusing membranes, called the fusion pore, can evolve in various ways, including rapid dilation to allow full cargo release, slow expansion, repeated opening-closing and resealing. Pore dynamics determine the kinetics of cargo release and the mode of vesicle recycling, but how these processes are controlled is poorly understood. Previous reconstitutions could not monitor single pores, limiting mechanistic insight they could provide. Recently developed nanodisc-based fusion assays allow reconstitution and monitoring of single pores with unprecedented detail and hold great promise for future discoveries. They recapitulate various aspects of exocytotic fusion pores, but comparison is difficult because different approaches suggested very different exocytotic fusion pore properties, even for the same cell type. In this Review, I discuss how most of the data can be reconciled, by recognizing how different methods probe different aspects of the same fusion process. The resulting picture is that fusion pores have broadly distributed properties arising from stochastic processes which can be modulated by physical constraints imposed by proteins, lipids and membranes.
Collapse
Affiliation(s)
- Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
29
|
Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R. Phases of the exocytotic fusion pore. FEBS Lett 2018; 592:3532-3541. [PMID: 30169901 DOI: 10.1002/1873-3468.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Membrane fusion and fission are fundamental processes in living organisms. Membrane fusion occurs through the formation of a fusion pore, which is the structure that connects two lipid membranes during their fusion. Fusion pores can form spontaneously, but cells endow themselves with a set of proteins that make the process of fusion faster and regulatable. The fusion pore starts with a narrow diameter and dilates relatively slowly; it may fluctuate in size or can even close completely, producing a transient vesicle fusion (kiss-and-run), or can finally expand abruptly to release all vesicle contents. A set of proteins control the formation, dilation, and eventual closure of the fusion pore and, therefore, the velocity at which the contents of secretory vesicles are released to the extracellular medium. Thus, the regulation of fusion pore expansion or closure is key to regulate the release of neurotransmitters and hormones. Here, we review the phases of the fusion pore and discuss the implications in the modes of exocytosis.
Collapse
Affiliation(s)
| | - María Ángeles Montes
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Pablo Montenegro
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| |
Collapse
|
30
|
Scheidt HA, Kolocaj K, Veje Kristensen J, Huster D, Langosch D. Transmembrane Helix Induces Membrane Fusion through Lipid Binding and Splay. J Phys Chem Lett 2018; 9:3181-3186. [PMID: 29799756 DOI: 10.1021/acs.jpclett.8b00859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fusion of biological membranes may require splayed lipids whose tails transiently visit the headgroup region of the bilayer, a scenario suggested by molecular dynamics simulations. Here, we examined the lipid splay hypothesis experimentally by relating liposome fusion and lipid splay induced by model transmembrane domains (TMDs). Our results reveal that a conformationally flexible transmembrane helix promotes outer leaflet mixing and lipid splay more strongly than a conformationally rigid one. The lipid dependence of basal as well as of TMD-driven lipid mixing and splay suggests that the cone-shaped phosphatidylethanolamine stimulates basal fusion via enhancing lipid splay and that the negatively charged phosphatidylserine inhibits fusion via electrostatic repulsion. Phosphatidylserine also strongly differentiates basal and helix-driven fusion, which is related to its preferred interaction with the conformationally more flexible transmembrane helix. Thus, the contribution of a transmembrane helix to membrane fusion appears to depend on lipid binding, which results in lipid splay.
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute for Medical Physics and Biophysics , Leipzig University , Härtelstrasse 16-18 , 04107 Leipzig , Germany
| | - Katja Kolocaj
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| | - Julie Veje Kristensen
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics , Leipzig University , Härtelstrasse 16-18 , 04107 Leipzig , Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere , Technische Universität München , Weihenstephaner Berg 3 , 85354 Freising , Germany
- Munich Center For Integrated Protein Science (CIPSM) , Butenandtstrasse 5 , 81377 München , Germany
| |
Collapse
|
31
|
Zhang J, Zhou J, Pan R, Jiang D, Burgess JD, Chen HY. New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 2018; 3:242-250. [PMID: 29276834 DOI: 10.1021/acssensors.7b00711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Junyu Zhou
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Rongrong Pan
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Dechen Jiang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - James D. Burgess
- Department
of Medical Laboratory, Imaging, and Radiologic Sciences, College of
Allied Health Sciences, Augusta University, Augusta, Georgia 30912, United States
| | - Hong-Yuan Chen
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| |
Collapse
|