1
|
Sapaly D, Cheguillaume F, Weill L, Clerc Z, Biondi O, Bendris S, Buon C, Slika R, Piller E, Sundaram VK, da Silva Ramos A, Amador MDM, Lenglet T, Debs R, Le Forestier N, Pradat PF, Salachas F, Lacomblez L, Hesters A, Borderie D, Devos D, Desnuelle C, Rolland AS, Periou B, Vasseur S, Chapart M, Le Ber I, Fauret-Amsellem AL, Millecamps S, Maisonobe T, Leonard-Louis S, Behin A, Authier FJ, Evangelista T, Charbonnier F, Bruneteau G. Dysregulation of muscle cholesterol transport in amyotrophic lateral sclerosis. Brain 2025; 148:788-802. [PMID: 39197036 PMCID: PMC11884649 DOI: 10.1093/brain/awae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons, with a typical lifespan of 3-5 years. Altered metabolism is a key feature of ALS that strongly influences prognosis, with an increase in whole body energy expenditure and changes in skeletal muscle metabolism, including greater reliance on fat oxidation. Dyslipidaemia has been described in ALS as part of the metabolic dysregulation, but its role in the pathophysiology of the disease remains controversial. Among the lipids, cholesterol is of particular interest as a vital component of cell membranes, playing a key role in signal transduction and mitochondrial function in muscle. The aim of this study was to investigate whether motor dysfunction in ALS might be associated with dysregulation of muscle cholesterol metabolism. We determined cholesterol content and analysed the expression of key determinants of the cholesterol metabolism pathway in muscle biopsies from 13 ALS patients and 10 asymptomatic ALS-mutation gene carriers compared to 16 control subjects. Using human control primary myotubes, we investigated the potential contribution of cholesterol dyshomeostasis to reliance on mitochondrial fatty acid. We found that cholesterol accumulates in the skeletal muscle of ALS patients and that cholesterol overload significantly correlates with disease severity evaluated by the Revised ALS Functional Rating Scale. These defects are associated with overexpression of the genes of the lysosomal cholesterol transporters Niemann-Pick type C1 (NPC1) and 2 (NPC2), which are required for cholesterol transfer from late endosomes/lysosomes to cellular membranes. Most notably, a significant increase in NPC2 mRNA levels could be detected in muscle samples from asymptomatic ALS-mutation carriers, long before disease onset. We found that filipin-stained unesterified cholesterol accumulated in the lysosomal compartment in ALS muscle samples, suggesting dysfunction of the NPC1/2 system. Accordingly, we report here that experimental NPC1 inhibition or lysosomal pH alteration in human primary myotubes was sufficient to induce the overexpression of NPC1 and NPC2 mRNA. Finally, acute NPC1 inhibition in human control myotubes induced a shift towards a preferential use of fatty acids, thus reproducing the metabolic defect characteristic of ALS muscle. We conclude that cholesterol homeostasis is dysregulated in ALS muscle from the presymptomatic stage. Targeting NPC1/2 dysfunction may be a new therapeutic strategy for ALS to restore muscle energy metabolism and slow motor symptom progression.
Collapse
Affiliation(s)
- Delphine Sapaly
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | | | - Laure Weill
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | - Zoé Clerc
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | - Olivier Biondi
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université d’Evry, IRBA, Université de Paris Saclay, 91000 Évry-Courcouronnes, France
| | - Sabrina Bendris
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | - Céline Buon
- Myology Center For Research, UMRS974, Sorbonne University, INSERM, 75013 Paris, France
| | - Rasha Slika
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | - Elsie Piller
- University Paris Cité and Inserm UMR_S1124, 75270, 75006 Paris, France
| | - Venkat Krishnan Sundaram
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Andreia da Silva Ramos
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Maria del Mar Amador
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
- APHP, Genetic department, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Timothée Lenglet
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
- Neurophysiology Department, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Rabab Debs
- Neurophysiology Department, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Nadine Le Forestier
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
- Espaces Régional IdF et National de Réflexion Éthique-Maladies Neuro Évolutives, Université Paris Sud/Paris Saclay, 75010 Paris, France
| | - Pierre-François Pradat
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
| | - François Salachas
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
| | - Lucette Lacomblez
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
| | - Adèle Hesters
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
| | - Didier Borderie
- Department of Biochemistry, APHP, Cochin Hospital, 75014 Paris, France
- Faculty of Pharmacy, University Paris Cité and Inserm UMR_S1124, 75006 Paris, France
| | - David Devos
- Pharmacology Department, University Hospital of Lille, Lille University, INSERM UMRS_1172, LICEND, 59000 Lille, France
- Alliance on Clinical Trials for ALS-MND (ACT4ALS-MND), Neuroscience Clinical Investigation Center, Paris Brain Institute, 75013 Paris, France
| | - Claude Desnuelle
- Alliance on Clinical Trials for ALS-MND (ACT4ALS-MND), Neuroscience Clinical Investigation Center, Paris Brain Institute, 75013 Paris, France
- Pasteur 2 Hospital—CHU de Nice, 06000 Nice, France
| | - Anne-Sophie Rolland
- Pharmacology Department, University Hospital of Lille, Lille University, INSERM UMRS_1172, LICEND, 59000 Lille, France
| | - Baptiste Periou
- Créteil Paris Est University, INSERM, IMRB U955, and Reference centre for rare neuromuscular diseases, AP-HP, Henri Mondor Hospital 94010, 94010 Créteil, France
| | | | - Maud Chapart
- MyoBank AFM-Institut de Myologie, 75013 Paris, France
| | - Isabelle Le Ber
- Reference Centre for Rare Dementias, AP-HP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Anne-Laure Fauret-Amsellem
- Functional Unit of Cellular and Molecular Neurogenetics, Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne University, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Thierry Maisonobe
- Department of Neuropathology, Sorbonne University, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Sarah Leonard-Louis
- Department of Neuropathology, Sorbonne University, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Anthony Behin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - François-Jérôme Authier
- Créteil Paris Est University, INSERM, IMRB U955, and Reference centre for rare neuromuscular diseases, AP-HP, Henri Mondor Hospital 94010, 94010 Créteil, France
| | - Teresinha Evangelista
- Department of Neuropathology, Sorbonne University, APHP, Pitié-Salpêtrière Hospital, 75013 Paris, France
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | | | - Gaëlle Bruneteau
- Myology Center For Research, UMRS974, Sorbonne University, INSERM, 75013 Paris, France
- Sorbonne Université, APHP, Inserm, CNRS, Institut du Cerveau—Paris Brain Institute—ICM, Pitié-Salpêtrière Hospital, Paris ALS expert center, Department of NeurologyCIC Neurosciences, 75013 Paris, France
- Alliance on Clinical Trials for ALS-MND (ACT4ALS-MND), Neuroscience Clinical Investigation Center, Paris Brain Institute, 75013 Paris, France
| |
Collapse
|
2
|
McDonald TS, Cui CS, Lerskiatiphanich T, Marallag J, Lee JD. Metabolic rate and insulin-independent glucose uptake increase in a TDP-43 Q331K mouse model of amyotrophic lateral sclerosis. Heliyon 2025; 11:e42482. [PMID: 39995927 PMCID: PMC11849610 DOI: 10.1016/j.heliyon.2025.e42482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Impaired glucose regulation is increasingly recognised in amyotrophic lateral sclerosis (ALS), yet the precise mechanisms remain unclear. Here, we investigated energy balance and glucose control in TAR DNA-binding protein 43 (TDP-43)Q331K mice, a model of ALS, at both the early and late symptomatic stages of disease. Mutant TDP-43Q331K mice and non-transgenic controls underwent indirect calorimetry, as well as intraperitoneal glucose, insulin, and glucagon tolerance testing. We also examined plasma hormone levels and quantified α- and β-cell areas in pancreatic islets. Throughout disease progression, TDP-43Q331K mice exhibited elevated metabolic rates, with a transient increase in food intake at the early stages. At the later stages of disease, heightened glucose uptake was observed despite unchanged insulin secretion or tolerance, indicating mechanisms independent of insulin. Notably, TDP-43Q331K mice maintained fasting blood glucose levels even when circulating glucagon levels were reduced, suggesting that alternative pathways contribute to preserving euglycemia. These findings reveal a distinct metabolic profile in TDP-43Q331K mice, underscoring the complexity of glucose dyshomeostasis in ALS.
Collapse
Affiliation(s)
- Tanya S. McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Cedric S. Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianina Marallag
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Zhang X, Liu X, Li Q, Li C, Li X, Qian J, Li J, Li X. GsMTx-4 combined with exercise improves skeletal muscle structure and motor function in rats with spinal cord injury. PLoS One 2025; 20:e0317683. [PMID: 39841686 PMCID: PMC11753701 DOI: 10.1371/journal.pone.0317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis. It has been reported that GsMTx-4, a specific blocker of the mechanosensitive ion channels Piezo1, can protect the integrity of the neuromuscular junction and promote nerve regeneration, and thus has the potential as a therapeutic agent for SCI. In this study, we observed the combined and separate therapeutic effect of GsMTx-4 and exercise on the structure of the soleus muscle and motor function in rats with SCI. At 42 days post-injury, compared with SCI rats, the Basso-Beattie-Bresnahan score (P = 0.0007) and Gait Symmetry (P = 0.0002) were significantly improved after combination therapy. On histology of rat soleus muscle, compared with SCI rats, the combined treatment significantly increased the wet weight ratio, muscle fiber cross-sectional area and acetylcholinesterase (all P<0.0001). On histology of rat spinal tissue, compared with SCI rats, the combined treatment significantly increased neuron counts and BDNF levels, and significantly reduced the percentage of TUNEL-positive cells (all P<0.0001). On physiology of rat soleus muscle, compared with SCI rats, the combined treatment increased the succinate dehydrogenase expression (P<0.0001), while the expression of α-glycerophosphate dehydrogenase (P<0.0001) and GDF8 protein (P = 0.0008) decreased. Results indicate the combination therapy effectively improves histopathology of spinal cord and soleus muscle in SCI rats, enhancing motor function. This study was conducted on animal models, it offers insights for SCI treatment, advancing understanding of lower limb muscle pathology post-SCI. Further research is needed for clinical validation in the future.
Collapse
Affiliation(s)
- Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xinyu Liu
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xinyan Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jinghua Qian
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xuemei Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Białobrodzka E, Flis DJ, Akdogan B, Borkowska A, Wieckowski MR, Antosiewicz J, Zischka H, Dzik KP, Kaczor JJ, Ziolkowski W. Amyotrophic Lateral Sclerosis and swim training affect copper metabolism in skeletal muscle in a mouse model of disease. Muscle Nerve 2024; 70:1111-1118. [PMID: 39225106 DOI: 10.1002/mus.28237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION/AIMS Swim training and regulation of copper metabolism result in clinical benefits in amyotrophic lateral sclerosis (ALS) mice. Therefore, the study aimed to determine whether swim training improves copper metabolism by modifying copper metabolism in the skeletal muscles of ALS mice. METHODS SOD1G93A mice (n = 6 per group) were used as the ALS model, and wild-type B6SJL (WT) mice as controls (n = 6). Mice with ALS were analyzed before the onset of ALS (ALS BEFORE), at baseline ALS (first disease symptoms, trained and untrained, ALS ONSET), and at the end of ALS (last stage disease, trained and untrained, ALS TERMINAL). Copper concentrations and the level of copper metabolism proteins in the skeletal muscles of the lower leg were determined. RESULTS ALS disease caused a reduction in the copper concentration in ALS TERMINAL untrained mice compared with the ALS BEFORE (10.43 ± 1.81 and 38.67 ± 11.50 μg/mg, respectively, p = .0213). The copper chaperon for SOD1 protein, which supplies copper to SOD1, and ATPase7a protein (copper exporter), increased at the terminal stage of disease by 57% (p = .0021) and 34% (p = .0372), while the CTR1 protein (copper importer) decreased by 45% (p = .002). Swim training moderately affected the copper concentration and the concentrations of proteins responsible for copper metabolism in skeletal muscles. DISCUSSION The results show disturbances in skeletal muscle copper metabolism associated with ALS progression, which is moderately affected by swim training. From a clinical point of view, exercise in water for ALS patients should be an essential element of rehabilitation for maintaining quality of life.
Collapse
Affiliation(s)
| | - Damian Jozef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich School of Medicine, Munich, Germany
| | | | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdansk, Gdansk, Poland
| | - Wieslaw Ziolkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Hazell G, McCallion E, Ahlskog N, Sutton ER, Okoh M, Shaqoura EIH, Hoolachan JM, Scaife T, Iqbal S, Bhomra A, Kordala AJ, Scamps F, Raoul C, Wood MJA, Bowerman M. Exercise, disease state and sex influence the beneficial effects of Fn14-depletion on survival and muscle pathology in the SOD1 G93A amyotrophic lateral sclerosis (ALS) mouse model. Skelet Muscle 2024; 14:23. [PMID: 39396990 PMCID: PMC11472643 DOI: 10.1186/s13395-024-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease. Accumulating evidence strongly suggests that intrinsic muscle defects exist and contribute to disease progression, including imbalances in whole-body metabolic homeostasis. We have previously reported that tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor inducible 14 (Fn14) are significantly upregulated in skeletal muscle of the SOD1G93A ALS mouse model. While antagonising TWEAK did not impact survival, we did observe positive effects in skeletal muscle. Given that Fn14 has been proposed as the main effector of the TWEAK/Fn14 activity and that Fn14 can act independently from TWEAK in muscle, we suggest that manipulating Fn14 instead of TWEAK in the SOD1G93A ALS mice could lead to differential and potentially improved benefits. METHODS We thus investigated the contribution of Fn14 to disease phenotypes in the SOD1G93A ALS mice. To do so, Fn14 knockout mice (Fn14-/-) were crossed onto the SOD1G93A background to generate SOD1G93A;Fn14-/- mice. Investigations were performed on both unexercised and exercised (rotarod and/or grid test) animals (wild type (WT), Fn14-/-, SOD1G93A and SOD1G93A;Fn14-/-). RESULTS Here, we firstly confirm that the TWEAK/Fn14 pathway is dysregulated in skeletal muscle of SOD1G93A mice. We then show that Fn14-depleted SOD1G93A mice display increased lifespan, myofiber size, neuromuscular junction endplate area as well as altered expression of known molecular effectors of the TWEAK/Fn14 pathway, without an impact on motor function. Importantly, we also observe a complex interaction between exercise (rotarod and grid test), genotype, disease state and sex that influences the overall effects of Fn14 deletion on survival, expression of known molecular effectors of the TWEAK/Fn14 pathway, expression of myosin heavy chain isoforms and myofiber size. CONCLUSIONS Our study provides further insights on the different roles of the TWEAK/Fn14 pathway in pathological skeletal muscle and how they can be influenced by age, disease, sex and exercise. This is particularly relevant in the ALS field, where combinatorial therapies that include exercise regimens are currently being explored. As such, a better understanding and consideration of the interactions between treatments, muscle metabolism, sex and exercise will be of importance in future studies.
Collapse
Affiliation(s)
- Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Magnus Okoh
- School of Medicine, Keele University, Staffordshire, UK
| | | | | | - Taylor Scaife
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Sara Iqbal
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna J Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Cedric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France
- ALS Reference Center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- School of Medicine, Keele University, Staffordshire, UK.
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
6
|
Kubat GB, Picone P. Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches. Neurol Sci 2024; 45:4121-4131. [PMID: 38676818 PMCID: PMC11306305 DOI: 10.1007/s10072-024-07508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Pasquale Picone
- Istituto Per La Ricerca E L'Innovazione Biomedica, Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 0146, Palermo, Italy.
| |
Collapse
|
7
|
Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol 2024; 12:1421566. [PMID: 39156974 PMCID: PMC11327861 DOI: 10.3389/fcell.2024.1421566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.
Collapse
Affiliation(s)
- Gianmarco Fenili
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Scaricamazza
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alberto Ferri
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Cristiana Valle
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
8
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
9
|
Sun Z, Zhang B, Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab Brain Dis 2024; 39:467-482. [PMID: 38078970 DOI: 10.1007/s11011-023-01334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes paralysis whose etiology and pathogenesis have not been fully elucidated. Presently it is incurable and rapidly progressive with a survival of 2-5 years from onset, and no treatments could cure it. Therefore, it is urgent to identify which therapeutic target(s) are more promising to develop treatments that could effectively treat ALS. So far, more than 90 novel treatments for ALS patients have been registered on ClinicalTrials.gov, of which 23 are in clinical trials, 12 have been terminated and the rest suspended. This review will systematically summarize the possible targets of these novel treatments under development or failing based on published literature and information released by sponsors, so as to provide basis and support for subsequent drug research and development.
Collapse
Affiliation(s)
- Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
10
|
Halon-Golabek M, Flis DJ, Zischka H, Akdogan B, Wieckowski MR, Antosiewicz J, Ziolkowski W. Amyotrophic lateral sclerosis associated disturbance of iron metabolism is blunted by swim training-role of AKT signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167014. [PMID: 38171451 DOI: 10.1016/j.bbadis.2023.167014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Swim training has increased the life span of the transgenic animal model of amyotrophic lateral sclerosis (ALS). Conversely, the progress of the disease is associated with the impairment of iron metabolism and insulin signaling. We used transgenic hmSOD1 G93A (ALS model) and non-transgenic mice in the present study. The study was performed on the muscles taken from trained (ONSET and TERMINAL) and untrained animals at three stages of the disease: BEFORE, ONSET, and TERMINAL. In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines expression vector pcDNA3.1 and transiently transfected with specific siRNAs. The progress of ALS resulted in decreased P-Akt/Akt ratio, which is associated with increased proteins responsible for iron storage ferritin L, ferritin H, PCBP1, and skeletal muscle iron at ONSET. Conversely, proteins responsible for iron export- TAU significantly decrease. The training partially reverses changes in proteins responsible for iron metabolism. AKT silencing in the SH-SY5Y cell line decreased PCBP2 and ferroportin and increased ferritin L, H, PCBP1, TAU, transferrin receptor 1, and APP. Moreover, silencing APP led to an increase in ferritin L and H. Our data suggest that swim training in the mice ALS model is associated with significant changes in iron metabolism related to AKT activity. Down-regulation of AKT mainly upregulates proteins involved in iron import and storage but decreases proteins involved in iron export.
Collapse
Affiliation(s)
- Małgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Damian Jozef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.
| | - Wiesław Ziolkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
11
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
12
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
13
|
Misquitta NS, Ravel-Chapuis A, Jasmin BJ. Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. Hum Mol Genet 2023; 32:551-566. [PMID: 36048859 DOI: 10.1093/hmg/ddac222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.
Collapse
Affiliation(s)
- Naomi S Misquitta
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Guo Y, Wang S, Chao X, Li D, Wang Y, Guo Q, Chen T. Multi-omics studies reveal ameliorating effects of physical exercise on neurodegenerative diseases. Front Aging Neurosci 2022; 14:1026688. [PMID: 36389059 PMCID: PMC9659972 DOI: 10.3389/fnagi.2022.1026688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, are heavy burdens to global health and economic development worldwide. Mounting evidence suggests that exercise, a type of non-invasive intervention, has a positive impact on the life quality of elderly with neurodegenerative diseases. X-omics are powerful tools for mapping global biochemical changes in disease and treatment. METHOD Three major databases were searched related to current studies in exercise intervention on neurodegenerative diseases using omics tools, including metabolomics, metagenomics, genomics, transcriptomics, and proteomics. RESULT We summarized the omics features and potential mechanisms associated with exercise and neurodegenerative diseases in the current studies. Three main mechanisms by which exercise affects neurodegenerative diseases were summed up, including adult neurogenesis, brain-derived neurotrophic factor (BDNF) signaling, and short-chain fatty acids (SCFAs) metabolism. CONCLUSION Overall, there is compelling evidence that exercise intervention is a feasible way of preventing the onset and alleviating the severity of neurodegenerative diseases. These studies highlight the importance of exercise as a complementary approach to the treatment and intervention of neurodegenerative diseases in addition to traditional treatments. More mechanisms on exercise interventions for neurodegenerative diseases, the specification of exercise prescriptions, and differentiated exercise programs should be explored so that they can actually be applied to the clinic.
Collapse
Affiliation(s)
- Yuhuai Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ding Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
15
|
Swim Training Affects on Muscle Lactate Metabolism, Nicotinamide Adenine Dinucleotides Concentration, and the Activity of NADH Shuttle Enzymes in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms231911504. [PMID: 36232801 PMCID: PMC9569676 DOI: 10.3390/ijms231911504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.
Collapse
|
16
|
Liao Q, He J, Huang K. Physical activities and risk of neurodegenerative diseases: A two-sample Mendelian randomization study. Front Aging Neurosci 2022; 14:991140. [PMID: 36212040 PMCID: PMC9541335 DOI: 10.3389/fnagi.2022.991140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Physical activity (PA) is considered beneficial in slowing the progression and improving the neurodegenerative disease prognosis. However, the association between PA and neurodegenerative diseases remains unknown. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the causal association between PA phenotypes and neurodegenerative diseases. Materials and methods Genetic variants robustly associated with PA phenotypes, used as instrumental variables, were extracted from public genome-wide association study (GWAS) summary statistics. Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), were considered outcomes. GWAS information was also obtained from the most recent large population study of individuals with European ancestry. Multiple MR methods, pleiotropy tests and sensitivity analyses were performed to obtain a robust and valid estimation. Results We found a positive association between moderate-to-vigorous physical activities and ALS based on the inverse variance weighted MR analysis method (OR: 2.507, 95% CI: 1.218-5.160, p = 0.013). The pleiotropy test and sensitivity analysis confirmed the robustness and validity of these MR results. No causal effects of PA phenotypes were found on PD and AD. Conclusion Our study indicates a causal effect of PA on the risk of neurodegenerative diseases. Genetically predicted increases in self-reported moderate-to-vigorous PA participation could increase the risk of ALS in individuals of European ancestry. Precise and individualized prescriptions of physical activity should be provided to the elderly population.
Collapse
Affiliation(s)
- Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Proteomics reveals the key molecules involved in curcumin-induced protection against sciatic nerve injury in rats. Neuroscience 2022; 501:11-24. [PMID: 35870565 DOI: 10.1016/j.neuroscience.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
We generated a rat model of sciatic nerve crush injury and characterized the effects of curcumin on sciatic nerve recovery by using behavioral experiments, hematoxylin-eosin staining, toluidine blue staining, and immunohistochemical. Proteomic analysis using tandem mass tagging was performed to determine differentially expressed proteins (DEPs), and GO and KEGG pathway analyses of overlapping DEPs was conducted, following which, qPCR, western blotting, and immunofluorescence were further performed to validate the proteins of interest. Finally, a Schwann cell injury model was used to verify the effect of curcumin on potential targets. The rat model was successful established and curcumin improved the sciatic nerve function index of rats with sciatic nerve injury (SNI) and increased the number and diameter of myelinated axons in the sciatic nerve. In the Sham group versus the Injured group and in the Injured group versus the Curcumin group, we identified a total of 4,175 proteins, of which 953 were DEPs, and 218 were known overlapping DEPs. Ten associated pathways, such as calcium signaling pathway, biosynthesis of antibiotics, and long-term potentiation, were identified. The 218 overlapping DEPs were primarily involved in negative regulation of apoptotic process, biological processes, cytoplasm cellular component, and protein binding molecular function based on GO annotation. Curcumin promoted increased expression of ApoD and inhibited the expression of Cyba in vivo and in vitro. These results indicated that curcumin promoted sciatic nerve repair through regulation of various proteins, targets, and pathways. Cyba and ApoD may be potential targets of curcumin in the treatment of SNI.
Collapse
|
18
|
Santiago JA, Quinn JP, Potashkin JA. Physical Activity Rewires the Human Brain against Neurodegeneration. Int J Mol Sci 2022; 23:6223. [PMID: 35682902 PMCID: PMC9181322 DOI: 10.3390/ijms23116223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Physical activity may offset cognitive decline and dementia, but the molecular mechanisms by which it promotes neuroprotection remain elusive. In the absence of disease-modifying therapies, understanding the molecular effects of physical activity in the brain may be useful for identifying novel targets for disease management. Here we employed several bioinformatic methods to dissect the molecular underpinnings of physical activity in brain health. Network analysis identified 'switch genes' associated with drastic hippocampal transcriptional changes in aged cognitively intact individuals. Switch genes are key genes associated with dramatic transcriptional changes and thus may play a fundamental role in disease pathogenesis. Switch genes are associated with protein processing pathways and the metabolic control of glucose, lipids, and fatty acids. Correlation analysis showed that transcriptional patterns associated with physical activity significantly overlapped and negatively correlated with those of neurodegenerative diseases. Functional analysis revealed that physical activity might confer neuroprotection in Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases via the upregulation of synaptic signaling pathways. In contrast, in frontotemporal dementia (FTD) its effects are mediated by restoring mitochondrial function and energy precursors. Additionally, physical activity is associated with the downregulation of genes involved in inflammation in AD, neurogenesis in FTD, regulation of growth and transcriptional repression in PD, and glial cell differentiation in HD. Collectively, these findings suggest that physical activity directs transcriptional changes in the brain through different pathways across the broad spectrum of neurodegenerative diseases. These results provide new evidence on the unique and shared mechanisms between physical activity and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
19
|
Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 2022; 74:101543. [PMID: 34923167 PMCID: PMC8761166 DOI: 10.1016/j.arr.2021.101543] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, USA; Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA
| | - R J Wessells
- Department of Physiology, Wayne State University School of Medicine, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
20
|
Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neurosci Rep 2021; 12:25-44. [PMID: 34918006 PMCID: PMC8669318 DOI: 10.1016/j.ibneur.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS-associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules which could have similar functions. The interaction between the modules and bottleneck-hubs provides the functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting partners could provide a further understanding of their role in the pathophysiology of ALS. Amyotrophic Lateral Sclerosis protein-protein interaction network (ALS-PPIN) followed a hierarchical scale-free nature. We identified 17 bottleneck-hubs in the ALS-PPIN. Among bottleneck-hubs we found CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the ALS-PPIN. CDC5L is the effective communicator with all five modules in the ALS-PPIN and followed by SNW1 and TP53. Modules are highly associated with various disease classes like neoplasms, nervous systems and others.
Collapse
Key Words
- ALS
- ALS, Amyotrophic Lateral Sclerosis
- ALS-PPIN
- ALS-PPIN, Amyotrophic Lateral Sclerosis Protein-Protein Interaction Network
- ALSoD, Amyotrophic Lateral Sclerosis online database
- BC, Betweenness centrality
- Bn-H, Bottleneck-hub
- Bottleneck-hubs
- CDC5L
- CDC5L, Cell division cycle5-likeprotein
- FUS, Fused in sarcoma
- MCODE, Molecular Complex Detection
- MND, Motor neuron disease
- SMA, Spinal muscular atrophy
- SMN, Survival of motor neuron
- SNW1
- SNW1, SNW domain-containing protein 1
- SOD1
- SOD1, Superoxide dismutase
- TP53
- TP53, Tumor protein p53
- VCP
- VCP, Valosin containing protein
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| |
Collapse
|
21
|
Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2021; 11:20899. [PMID: 34686697 PMCID: PMC8536703 DOI: 10.1038/s41598-021-00319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.
Collapse
|
22
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
23
|
McDonald TS, Kumar V, Fung JN, Woodruff TM, Lee JD. Glucose clearance and uptake is increased in the SOD1 G93A mouse model of amyotrophic lateral sclerosis through an insulin-independent mechanism. FASEB J 2021; 35:e21707. [PMID: 34118098 DOI: 10.1096/fj.202002450r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances are associated with the progression of the neurodegenerative disorder, amyotrophic lateral sclerosis (ALS). However, the molecular events that drive energy imbalances in ALS are not completely understood. In this study, we aimed to elucidate deficits in energy homeostasis in the SOD1G93A mouse model of ALS. SOD1G93A mice and their wild-type littermates underwent indirect calorimetry and intraperitoneal glucose/insulin tolerance tests at both the onset and mid-symptomatic stages of the disease. Glucose uptake and the plasma glucoregulatory hormone profiles were analyzed. Pancreatic islet cell mass and function were assessed by measuring hormone concentrations and secretion in isolated islets, and pancreatic α- and β-cell immunoreactive areas. Finally, we profiled liver glycogen metabolism by measuring glucagon concentrations and liver metabolic gene expressions. We identified that mid-symptomatic SOD1G93A mice have increased oxygen consumption and faster exogenous glucose uptake, despite presenting with normal insulin tolerance. The capacity for pancreatic islets to secrete insulin appears intact, however, islet cell insulin concentrations and β-cell mass were reduced. Fasting glucose homeostasis was also disturbed, along with increased liver glycogen stores, despite elevated circulating glucagon, suggesting that glucagon signaling is impaired. Metabolic gene expression profiling of livers indicated that glucose cannot be utilized efficiently in SOD1G93A mice. Overall, we demonstrate that glucose homeostasis and uptake are altered in SOD1G93A mice, which is linked to an increase in insulin-independent glucose uptake, and a loss of β-cells, insulin production, and glucagon sensitivity. This suggests that the hormonal regulation of glucose concentrations may contribute to the progression of disease in this ALS mouse model.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Skeletal Muscle Metabolism: Origin or Prognostic Factor for Amyotrophic Lateral Sclerosis (ALS) Development? Cells 2021; 10:cells10061449. [PMID: 34207859 PMCID: PMC8226541 DOI: 10.3390/cells10061449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.
Collapse
|
25
|
Metabolic Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22115913. [PMID: 34072857 PMCID: PMC8198411 DOI: 10.3390/ijms22115913] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.
Collapse
|
26
|
Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity? Cells 2021; 10:525. [PMID: 33801336 PMCID: PMC8000428 DOI: 10.3390/cells10030525] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Collapse
Affiliation(s)
- Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
27
|
Sonkodi B. Delayed Onset Muscle Soreness (DOMS): The Repeated Bout Effect and Chemotherapy-Induced Axonopathy May Help Explain the Dying-Back Mechanism in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Brain Sci 2021; 11:brainsci11010108. [PMID: 33467407 PMCID: PMC7830646 DOI: 10.3390/brainsci11010108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Delayed onset muscle soreness (DOMS) is hypothesized to be caused by glutamate excitotoxicity-induced acute compression axonopathy of the sensory afferents in the muscle spindle. Degeneration of the same sensory afferents is implicated in the disease onset and progression of amyotrophic lateral sclerosis (ALS). A series of “silent” acute compression proprioceptive axonopathies with underlying genetic/environmental factors, damaging eccentric contractions and the non-resolving neuroinflammatory process of aging could lead to ALS disease progression. Since the sensory terminals in the muscle spindle could not regenerate from the micro-damage in ALS, unlike in DOMS, the induced protective microcircuits and their long-term functional plasticity (the equivalent of the repeated bout effect in DOMS) will be dysfunctional. The acute stress invoking osteocalcin, bradykinin, COX1, COX2, GDNF, PGE2, NGF, glutamate and N-methyl-D-aspartate (NMDA) receptors are suggested to be the critical signalers of this theory. The repeated bout effect of DOMS and the dysfunctional microcircuits in ALS are suggested to involve several dimensions of memory and learning, like pain memory, inflammation, working and episodic memory. The spatial encoding of these memory dimensions is compromised in ALS due to blunt position sense from the degenerating proprioceptive axon terminals of the affected muscle spindles. Dysfunctional microcircuits progressively and irreversibly interfere with postural control, with motor command and locomotor circuits, deplete the neuroenergetic system, and ultimately interfere with life-sustaining central pattern generators in ALS. The activated NMDA receptor is suggested to serve the “gate control” function in DOMS and ALS in line with the gate control theory of pain. Circumvention of muscle spindle-loading could be a choice of exercise therapy in muscle spindle-affected neurodegenerative diseases.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary
| |
Collapse
|
28
|
Steyn FJ, Li R, Kirk SE, Tefera TW, Xie TY, Tracey TJ, Kelk D, Wimberger E, Garton FC, Roberts L, Chapman SE, Coombes JS, Leevy WM, Ferri A, Valle C, René F, Loeffler JP, McCombe PA, Henderson RD, Ngo ST. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa154. [PMID: 33241210 PMCID: PMC7677608 DOI: 10.1093/braincomms/fcaa154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Rui Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Tesfaye W Tefera
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Teresa Y Xie
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Dean Kelk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Elyse Wimberger
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Llion Roberts
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,School of Allied Health Sciences, Griffith University, Southport, Gold Coast 4222, Australia
| | - Sarah E Chapman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeff S Coombes
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - W Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
29
|
McDonald TS, McCombe PA, Woodruff TM, Lee JD. The potential interplay between energy metabolism and innate complement activation in amyotrophic lateral sclerosis. FASEB J 2020; 34:7225-7233. [PMID: 32307753 DOI: 10.1096/fj.201901781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease without effective treatment. Although the precise mechanisms leading to ALS are yet to be determined, there is now increasing evidence implicating the defective energy metabolism and components of the innate immune complement system in the onset and progression of its motor phenotypes. This review will survey the mechanisms by which the energy metabolism and the complement system are altered during the disease progression of ALS and how it can contribute to disease. Furthermore, it will also examine how complement activation can modify the energy metabolism in metabolic disorders, in order to highlight how the complement system and energy metabolism may be linked in ALS.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
30
|
Maternal Treadmill Exercise Reduces the Neurotoxicity of Prenatal Sevoflurane Exposure in Rats via Activation of p300 Histone Acetyltransferase. Neurochem Res 2020; 45:1626-1635. [DOI: 10.1007/s11064-020-03023-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
|
31
|
Lewis KEA, Bennett W, Blizzard CL, West AK, Chung RS, Chuah MI. The influence of metallothionein treatment and treadmill running exercise on disease onset and survival in SOD1 G93A amyotrophic lateral sclerosis mice. Eur J Neurosci 2020; 52:3223-3241. [PMID: 31954073 DOI: 10.1111/ejn.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised by the degeneration of motor neurons innervating skeletal muscle. The mechanisms underlying neurodegeneration in ALS are not yet fully elucidated, and with current therapeutics only able to extend lifespan by a matter of months there is a clear need for novel therapies to increase lifespan and patient quality of life. Here, we evaluated whether moderate-intensity treadmill exercise and/or treatment with metallothionein-2 (MT2), a neuroprotective protein, could improve survival, behavioural or neuropathological outcomes in SOD1G93A familial ALS mice. Six-week-old female SOD1G93A mice were allocated to one of four treatment groups: MT2 injection, i.m.; moderate treadmill exercise; neither MT2 nor exercise; or both MT2 and exercise. MT2-treated mice survived around 3% longer than vehicle-treated mice, with this mild effect reaching statistical significance in Cox proportional hazards analysis once adjusted for potential confounders. Mixed model body weight trajectories over time indicated that MT2-treated mice, with or without exercise, reached maximum body weight at a later age, suggesting a delay in disease onset of around 4% compared to saline-treated mice. Exercise alone did not significantly increase survival or delay disease onset, and neither exercise nor MT2 substantially ameliorated gait abnormalities or muscle strength loss. We conclude that neither exercise nor MT2 treatment was detrimental in female SOD1G93A mice, and further study could determine whether the mild effect of peripheral MT2 administration on disease onset and survival could be improved via direct administration of MT2 to the central nervous system.
Collapse
Affiliation(s)
- Katherine E A Lewis
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - William Bennett
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Adrian K West
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Roger S Chung
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Meng Inn Chuah
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
32
|
Tsitkanou S, Della Gatta P, Foletta V, Russell A. The Role of Exercise as a Non-pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental? Front Neurol 2019; 10:783. [PMID: 31379732 PMCID: PMC6652799 DOI: 10.3389/fneur.2019.00783] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, involves the rapid deterioration of motor neurons resulting in severe muscle atrophy and respiratory insufficiency. It is considered a "multisystemic" disease with many potential mechanisms responsible for its pathology. Currently, there is no cure for ALS. Exercise training is suggested as a potential approach to reduce ALS pathology, but its beneficial role remains controversial. This review provides an overview of the effects of exercise training in ALS-affected mice and patients. It will compare the intensity, duration, and type of exercise on the health of SOD1G93A mice, a mouse model of familial ALS, and review clinical studies involving ALS patients undergoing both endurance and resistance training. In summary, mild-to-moderate swimming-based endurance training appears the most advantageous mode of exercise in SOD1G93A mice, improving animal survival, and delaying the onset and progression of disease. Furthermore, clinical studies show that both endurance and resistance training have an advantageous impact on the quality of life of ALS patients without extending life expectancy. However, small sample sizes, non-representative control populations, heterogeneous disease stage of patients, and the presence of confounders often exist in the exercise studies conducted with ALS patients. This raises concerns about the interpretation of these findings and, therefore, these results should be considered with caution. While promising, more pre-clinical and clinical studies with improved experimental design and fewer limitations are still necessary to confirm the impact of exercise training on the health of ALS patients.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Victoria Foletta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Aaron Russell
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
33
|
Li HY, Hong X, Huang M, So KF. Voluntary running delays primary degeneration in rat retinas after partial optic nerve transection. Neural Regen Res 2019; 14:728-734. [PMID: 30632515 PMCID: PMC6352605 DOI: 10.4103/1673-5374.247481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Running is believed to be beneficial for human health. Many studies have focused on the neuroprotective effects of voluntary running on animal models. There were both primary and secondary degeneration in neurodegenerative diseases, including glaucoma. However, whether running can delay primary or secondary degeneration or both of them was not clear. Partial optic nerve transection model is a valuable glaucoma model for studying both primary and secondary degeneration because it can separate primary (mainly in the superior retina) from secondary (mainly in the inferior retina) degeneration. Therefore, we compared the survival of retinal ganglion cells between Sprague-Dawley rat runners and non-runners both in the superior and inferior retinas. Excitotoxicity, oxidative stress, and apoptosis are involved in the degeneration of retinal ganglion cells in glaucoma. So we also used western immunoblotting to compare the expression of some proteins involved in apoptosis (phospho-c-Jun N-terminal kinases, p-JNKs), oxidative stress (manganese superoxide dismutase, MnSOD) and excitotoxicity (glutamine synthetase) between runners and non-runners after partial optic nerve transection. Results showed that voluntary running delayed the death of retinal ganglion cells vulnerable to primary degeneration but not those to secondary degeneration. In addition, voluntary running decreased the expression of glutamine synthetase, but not the expression of p-JNKs and MnSOD in the superior retina after partial optic nerve transection. These results illustrated that primary degeneration of retinal ganglion cells might be mainly related with excitotoxicity rather than oxidative stress; and the voluntary running could down-regulate excitotoxicity to delay the primary degeneration of retinal ganglion cells after partial optic nerve transection.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Anatomy, School of Medicine; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xi Hong
- Department of Anatomy, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Mi Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province; Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
34
|
Swim Training Modulates Mouse Skeletal Muscle Energy Metabolism and Ameliorates Reduction in Grip Strength in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2019; 20:ijms20020233. [PMID: 30634386 PMCID: PMC6359093 DOI: 10.3390/ijms20020233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (-70% between 11 and 15 weeks, p < 0.05), modulates muscle metabolism through lowering citrate synthase (CS) (-30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (-5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.
Collapse
|
35
|
Merico A, Cavinato M, Gregorio C, Lacatena A, Gioia E, Piccione F, Angelini C. Effects of combined endurance and resistance training in Amyotrophic Lateral Sclerosis: A pilot, randomized, controlled study. Eur J Transl Myol 2018; 28:7278. [PMID: 29686818 PMCID: PMC5895987 DOI: 10.4081/ejtm.2018.7278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Based on available evidence, muscle strengthening and cardiovascular exercises can help maintain function and not adversely affect the progression of disease in patients with ALS. However, this evidence is not sufficiently detailed to recommend a specific exercise prescription. The purpose of this project was to assess clinical outcomes of a combined exercise programme to increase knowledge of rehabilitation in ALS patients. 38 ALS patients were assigned randomly to two groups: one group underwent a specific exercise programme (ALS-EP) based on a moderate aerobic workout and isometric contractions, and the second group followed a standard neuromotor rehabilitation treatment. Objective evaluation consisted of cardiovascular measures, muscle strength and fatigue. Some positive effects of physical activity on ALS patients were found. Among the benefits, an overall improvement of functional independence in all patients, independently of the type of exercise conducted was seen. In addition, improvements in muscle power, oxygen consumption and fatigue were specifically observed in the ALS-EP group, all hallmarks of a training effect for the specific exercises. In conclusion, moderate intensity exercise is beneficial in ALS, helping in avoiding deconditioning and muscle atrophy resulting from progressive inactivity.
Collapse
Affiliation(s)
- Antonio Merico
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Marianna Cavinato
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Caterina Gregorio
- Department of Economic, mathematical and statistical sciences, University of Trieste, Italy
| | | | - Elisabetta Gioia
- Rehabilitation Department, Unità Locale Socio-Sanitaria Serenissima, Venice, Italy
| | - Francesco Piccione
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Corrado Angelini
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| |
Collapse
|
36
|
Henriques A, Croixmarie V, Bouscary A, Mosbach A, Keime C, Boursier-Neyret C, Walter B, Spedding M, Loeffler JP. Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 10:433. [PMID: 29354030 PMCID: PMC5758557 DOI: 10.3389/fnmol.2017.00433] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Althéa Mosbach
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| |
Collapse
|