1
|
Zhang Z, Yan Z, Yuan T, Zhao X, Wang M, Liu G, Gan L, Qin W. PD-1 inhibition disrupts collagen homeostasis and aggravates cardiac dysfunction through endothelial-fibroblast crosstalk and EndMT. Front Pharmacol 2025; 16:1549487. [PMID: 40166462 PMCID: PMC11955664 DOI: 10.3389/fphar.2025.1549487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Cardiac immune-related adverse events (irAEs) from PD-1-targeting immune check-point inhibitors (ICIs) are an increasing concern due to their high mortality rate. Collagen plays a crucial role in maintaining cardiac structure, elasticity, and signal transduction; however, the effects and mechanisms of PD-1 inhibitor on cardiac collagen remodeling remain poorly understood. Methods C57BL/6 mice were injected with anti-mouse PD-1 antibody to create a PD-1 inhibitor-treated model. Cardiac function was measured by echocardiography, and collagen distribution was analyzed with Masson's trichrome staining and Sirius Red staining. Single-nucleus RNA sequencing was performed to examine the effects of PD-1 inhibition on gene expression in cardiac fibroblasts (CFs) and endothelial cells (ECs). EC-CF crosstalk was assessed using co-culture experiments and ELISA. ChIP assay was performed to analyze the regulation of TCF12 on TGF-β1 promoter. Western blot, qRT-PCR, and immunofluorescence staining were used to detect the expression of TCF12, TGF-β1, and endothelial-to-mesenchymal transition (EndMT) markers. Reactive oxygen species (ROS) levels were evaluated by DHE staining, MDA content, and SOD activity assays. Results We report a newly discovered cardiotoxic effect of PD-1 inhibitor, which causes aberrant collagen distribution in the heart, marked by a decrease in interstitial collagen and an increase in perivascular collagen deposition. Mechanistically, PD-1 inhibitor does not directly affect CFs but instead impact them through EC-CF crosstalk. PD-1 inhibitor reduces TGF-β1 secretion in ECs by downregulating TCF12, which we identify as a transcriptional promoter of TGF-β1. This subsequently decreases CF activity, leading to reduced interstitial collagen deposition. Additionally, PD-1 inhibitor induces EndMT, increasing perivascular collagen deposition. The endothelial dysfunction induced by PD-1 inhibitor results from ROS accumulation in ECs. Inhibiting ROS with N-acetylcysteine (NAC) preserves normal collagen distribution and cardiac function in PD-1 inhibitor-treated mice by reversing TCF12 downregulation and EndMT in ECs. Conclusion Our results suggest that PD-1 inhibitor causes ROS accumulation in cardiac ECs, leading to imbalanced collagen distribution (decrease in interstitial collagen and increase in perivascular collagen) in the heart by modulating TCF12/TGF-β1-mediated EC-CF crosstalk and EndMT. NAC supplementation could be an effective clinical strategy to mitigate PD-1 inhibitor-induced imbalanced collagen distribution and cardiac dysfunction.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zhenzhen Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Tao Yuan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Shandong University of Traditional Chinese medicine, Jinan, Shandong, China
| | - Lijun Gan
- Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment), Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment), Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Sun X, Chen Y, Zhang Y, Cheng T, Peng H, Sun Y, Liu JG, Xu C. Exosomes released from immature neurons regulate adult neural stem cell differentiation through microRNA-7a-5p. Stem Cells 2025; 43:sxae082. [PMID: 39670872 DOI: 10.1093/stmcls/sxae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Exosomes in the hippocampal dentate gyrus are essential for modulating the cell signaling and controlling the neural differentiation of hippocampal neural stem cells (NSCs), which may determine the level of hippocampal adult neurogenesis. In the present study, we found that exosomes secreted by immature neurons may promote the neuronal differentiation of mouse NSCs in vitro. By miRNA sequencing, we discovered that miR-7a-5p was significantly lower in exosomes from differentiated immature neurons than those from undifferentiated NSCs. By modulating the level of miR-7a-5p, the mimic and inhibitor of miR-7a-5p could either inhibit or promote the neuronal differentiation of NSCs, respectively. Moreover, we confirmed that miR-7a-5p affected neurogenesis by directly targeting Tcf12, a transcription factor responsible for the differentiation of NSCs. The siRNA of Tcf12 inhibited neuronal differentiation of NSCs, while overexpression of Tcf12 promoted NSC differentiation. Thus, we conclude that the miR-7a-5p content in neural exosomes is essential to the fate determination of adult hippocampal neurogenesis and that miR-7a-5p directly targets Tcf12 to regulate adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Xiujian Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yexiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Tiantian Cheng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Huisheng Peng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yanting Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
3
|
Pulcrano S, De Gregorio R, De Sanctis C, Lahti L, Perrone-Capano C, Ponti D, di Porzio U, Perlmann T, Caiazzo M, Volpicelli F, Bellenchi GC. Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. Int J Mol Sci 2022; 23:6961. [PMID: 35805964 PMCID: PMC9266978 DOI: 10.3390/ijms23136961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Laura Lahti
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, 040100 Latina, Italy;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Thomas Perlmann
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
4
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
5
|
Li D, Yang J, Huang X, Zhou H, Wang J. eIF4A2 targets developmental potency and histone H3.3 transcripts for translational control of stem cell pluripotency. SCIENCE ADVANCES 2022; 8:eabm0478. [PMID: 35353581 PMCID: PMC8967233 DOI: 10.1126/sciadv.abm0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Translational control has emerged as a fundamental regulatory layer of proteome complexity that governs cellular identity and functions. As initiation is the rate-limiting step of translation, we carried out an RNA interference screen for key translation initiation factors required to maintain embryonic stem cell (ESC) identity. We identified eukaryotic translation initiation factor 4A2 (eIF4A2) and defined its mechanistic action through ribosomal protein S26-independent and -dependent ribosomes in translation initiation activation of messenger RNAs (mRNAs) encoding pluripotency factors and the histone variant H3.3 with demonstrated roles in maintaining stem cell pluripotency. eIF4A2 also mediates translation initiation activation of Ddx6, which acts together with eIF4A2 to restrict the totipotent two-cell transcription program in ESCs through Zscan4 mRNA degradation and translation repression. Accordingly, knockdown of eIF4A2 disrupts ESC proteome, causing the loss of ESC identity. Collectively, we establish a translational paradigm of the protein synthesis of pluripotency transcription factors and epigenetic regulators imposed on their established roles in controlling pluripotency.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Singh A, Mahesh A, Noack F, Cardoso de Toledo B, Calegari F, Tiwari VK. Tcf12 and NeuroD1 cooperatively drive neuronal migration during cortical development. Development 2022; 149:dev200250. [PMID: 35147187 PMCID: PMC8918803 DOI: 10.1242/dev.200250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/06/2023]
Abstract
Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.
Collapse
Affiliation(s)
- Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Beatriz Cardoso de Toledo
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
8
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Gu J, Ge X, You A, Li J, Zhang Y, Rao G, Wang J, Zhang K, Liu X, Wu X, Cheng L, Zhu M, Wang D. miR-218-5p inhibits the malignant progression of glioma via targeting TCF12. TUMORI JOURNAL 2021; 108:338-346. [PMID: 34121515 DOI: 10.1177/03008916211018263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have shown the ability of transcription factor 12 (TCF12) to promote tumor malignant progression, but its function in glioma cells has not been fully elucidated. In this study, we analyzed the data from TCGA by bioinformatics and found that in glioma tissue, TCF12 was conspicuously highly expressed while miR-218-5p was significantly low-expressed. The downregulation of miR-218-5p was correlated with adverse prognosis in patients with glioma. miR-218-5p was found to be negatively associated with TCF12 by Pearson correlation analysis, and dual luciferase assay was employed to verify that miR-218-5p and TCF12 had a targeting relationship. qRT-PCR and Western blot assays were used to verify that the expression of TCF12 was regulated by its upstream regulator miR-218-5p. Moreover, cell experiments validated that overexpressed TCF12 could promote the proliferation, migration, and invasion of glioma cells and inhibit their apoptosis, whereas overexpressing miR-218-5p at the same time could reverse this phenomenon. Our study demonstrates the regulatory mechanism of the miR-218-5p/TCF12 axis in gliomas, which lays a foundation for searching for new therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jingshun Gu
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xuehua Ge
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Aiwu You
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jun Li
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yuyan Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Guomin Rao
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Juntong Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Kun Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xuan Liu
- The Second Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Mengjiao Zhu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Dongchun Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
10
|
Mesman S, Wever I, Smidt MP. Tcf4 Is Involved in Subset Specification of Mesodiencephalic Dopaminergic Neurons. Biomedicines 2021; 9:biomedicines9030317. [PMID: 33804772 PMCID: PMC8003918 DOI: 10.3390/biomedicines9030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
During development, mesodiencephalic dopaminergic (mdDA) neurons form into different molecular subsets. Knowledge of which factors contribute to the specification of these subsets is currently insufficient. In this study, we examined the role of Tcf4, a member of the E-box protein family, in mdDA neuronal development and subset specification. We show that Tcf4 is expressed throughout development, but is no longer detected in adult midbrain. Deletion of Tcf4 results in an initial increase in TH-expressing neurons at E11.5, but this normalizes at later embryonic stages. However, the caudal subset marker Nxph3 and rostral subset marker Ahd2 are affected at E14.5, indicating that Tcf4 is involved in correct differentiation of mdDA neuronal subsets. At P0, expression of these markers partially recovers, whereas expression of Th transcript and TH protein appears to be affected in lateral parts of the mdDA neuronal population. The initial increase in TH-expressing cells and delay in subset specification could be due to the increase in expression of the bHLH factor Ascl1, known for its role in mdDA neuronal differentiation, upon loss of Tcf4. Taken together, our data identified a minor role for Tcf4 in mdDA neuronal development and subset specification.
Collapse
|
11
|
Holliday H, Roden D, Junankar S, Wu SZ, Baker LA, Krisp C, Chan CL, McFarland A, Skhinas JN, Cox TR, Pal B, Huntington ND, Ormandy CJ, Carroll JS, Visvader J, Molloy MP, Swarbrick A. Inhibitor of Differentiation 4 (ID4) represses mammary myoepithelial differentiation via inhibition of HEB. iScience 2021; 24:102072. [PMID: 33554073 PMCID: PMC7851187 DOI: 10.1016/j.isci.2021.102072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inhibitor of differentiation (ID) proteins dimerize with basic HLH (bHLH) transcription factors, repressing transcription of lineage-specification genes across diverse cellular lineages. ID4 is a key regulator of mammary stem cells; however, the mechanism by which it achieves this is unclear. Here, we show that ID4 has a cell autonomous role in preventing myoepithelial differentiation of basal cells in mammary organoids and in vivo. ID4 positively regulates proliferative genes and negatively regulates genes involved in myoepithelial function. Mass spectrometry reveals that ID4 interacts with the bHLH protein HEB, which binds to E-box motifs in regulatory elements of basal developmental genes involved in extracellular matrix and the contractile cytoskeleton. We conclude that high ID4 expression in mammary basal stem cells antagonizes HEB transcriptional activity, preventing myoepithelial differentiation and allowing for appropriate tissue morphogenesis. Downregulation of ID4 during pregnancy modulates gene regulated by HEB, promoting specialization of basal cells into myoepithelial cells.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sunny Z. Wu
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura A. Baker
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chia-Ling Chan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna N. Skhinas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas R. Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Bhupinder Pal
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Nicholas D. Huntington
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Christopher J. Ormandy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Jane Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark P. Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| |
Collapse
|
12
|
Meng QH, Li Y, Kong C, Gao XM, Jiang XJ. Circ_0000388 Exerts Oncogenic Function in Cervical Cancer Cells by Regulating miR-337-3p/TCF12 Axis. Cancer Biother Radiopharm 2021; 36:58-69. [PMID: 32119786 DOI: 10.1089/cbr.2019.3159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Qing-hua Meng
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi, China
| | - Ying Li
- Department of Gynaecology and Obstetrics, The Third People's Hospital of Linyi, Linyi, China
| | - Cui Kong
- Department of Gynaecology and Obstetrics, The Third People's Hospital of Linyi, Linyi, China
| | - Xue-mei Gao
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi, China
| | - Xiao-juan Jiang
- Department of Gynaecology and Obstetrics, Jinan Maternal and Child Health Hospital of Shandong Province, Jinan, China
| |
Collapse
|
13
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
14
|
Prajapati B, Fatima M, Fatma M, Maddhesiya P, Arora H, Naskar T, Devasenapathy S, Seth P, Sinha S. Temporal transcriptome analysis of neuronal commitment reveals the preeminent role of the divergent lncRNA biotype and a critical candidate gene during differentiation. Cell Death Discov 2020; 6:28. [PMID: 32351715 PMCID: PMC7181654 DOI: 10.1038/s41420-020-0263-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
lncRNA genes can be genic or "intergenic". "Genic" RNAs can be further divided into six biotypes. Through genome-wide analysis of a publicly available data set on corticogenesis, we found that the divergent lncRNA (XH) biotype, comprising the lncRNA and the coding gene being in opposite directions in a head-to-head manner, was most prominent during neural commitment. Within this biotype, a coding gene/divergent RNA pair of the BASP1 gene and the uncharacterized RNA loc285696 (hitherto referred as BASP1-AS1) formed a major HUB gene during neuronal differentiation. Experimental validation during the in vitro differentiation of human neural progenitor cells (hNPCs) showed that BASP1-AS1 regulates the expression of its adjacent coding gene, BASP1. Both transcripts increased sharply on the first day of neuronal differentiation of hNPCs, to fall steadily thereafter, reaching very low levels in differentiated neurons. BASP1-AS1 RNA and the BASP1 gene formed a molecular complex that also included the transcription factor TCF12. TCF12 is coded by the DYX1 locus, associated with inherited dyslexia and neurodevelopmental defects. Knockdown of BASP1-AS1, BASP1, or TCF12 impaired the neuronal differentiation of hNPCs, as seen by reduction in DCX and TUJ1-positive cells and by reduced neurite length. There was also increased cell proliferation. A common set of critical genes was affected by the three molecules in the complex. Our study thus identified the role of the XH biotype and a novel mediator of neuronal differentiation-the complex of BASP1-AS1, BASP1, and TCF12. It also linked a neuronal differentiation pathway to inherited dyslexia.
Collapse
Affiliation(s)
| | - Mahar Fatima
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
| | - Mena Fatma
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
| | | | - Himali Arora
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
| | - Teesta Naskar
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
| | | | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon, Haryana India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
15
|
Adusumilli L, Facchinello N, Teh C, Busolin G, Le MTN, Yang H, Beffagna G, Campanaro S, Tam WL, Argenton F, Lim B, Korzh V, Tiso N. miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells 2020; 9:cells9030711. [PMID: 32183236 PMCID: PMC7140713 DOI: 10.3390/cells9030711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson’s disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/β-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Lavanya Adusumilli
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Giorgia Busolin
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Minh TN Le
- Department of Pharmacology, National University of Singapore, Singapore 117559, Singapore;
| | - Henry Yang
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Giorgia Beffagna
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Stefano Campanaro
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Wai Leong Tam
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Bing Lim
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| |
Collapse
|
16
|
Andersen RE, Hong SJ, Lim JJ, Cui M, Harpur BA, Hwang E, Delgado RN, Ramos AD, Liu SJ, Blencowe BJ, Lim DA. The Long Noncoding RNA Pnky Is a Trans-acting Regulator of Cortical Development In Vivo. Dev Cell 2020; 49:632-642.e7. [PMID: 31112699 DOI: 10.1016/j.devcel.2019.04.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
While it is now appreciated that certain long noncoding RNAs (lncRNAs) have important functions in cell biology, relatively few have been shown to regulate development in vivo, particularly with genetic strategies that establish cis versus trans mechanisms. Pnky is a nuclear-enriched lncRNA that is transcribed divergently from the neighboring proneural transcription factor Pou3f2. Here, we show that conditional deletion of Pnky from the developing cortex regulates the production of projection neurons from neural stem cells (NSCs) in a cell-autonomous manner, altering postnatal cortical lamination. Surprisingly, Pou3f2 expression is not disrupted by deletion of the entire Pnky gene. Moreover, expression of Pnky from a BAC transgene rescues the differential gene expression and increased neurogenesis of Pnky-knockout NSCs, as well as the developmental phenotypes of Pnky-deletion in vivo. Thus, despite being transcribed divergently from a key developmental transcription factor, the lncRNA Pnky regulates development in trans.
Collapse
Affiliation(s)
- Rebecca E Andersen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sung Jun Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin J Lim
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Miao Cui
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brock A Harpur
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Elizabeth Hwang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Ramos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Siyuan John Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
17
|
Yang X, Hu B, Liao J, Qiao Y, Chen Y, Qian Y, Feng S, Yu F, Dong J, Hou Y, Xu H, Wang R, Peng G, Li J, Tang F, Jing N. Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Res 2019; 29:911-926. [PMID: 31591447 DOI: 10.1038/s41422-019-0234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Primary germ layers have the potential to form all tissues in the mature organism, and their formation during gastrulation requires precise epigenetic modulation of both proximal and distal regulatory elements. Previous studies indicated that spatial and temporal patterns of gene expression in the gastrula predispose individual regions to distinct cell fates. However, the underlying epigenetic mechanisms remain largely unexplored. Here, we profile the spatiotemporal landscape of the epigenome and transcriptome of the mouse gastrula. We reveal the asynchronous dynamics of proximal chromatin states during germ layer formation as well as unique gastrula-specific epigenomic features of regulatory elements, which have strong usage turnover dynamics and clear germ layer-specific signatures. Importantly, we also find that enhancers around organogenetic genes, which are weakly expressed at the gastrulation stage, are frequently pre-marked by histone H3 lysine 27 acetylation (H3K27ac) in the gastrula. By using the transgenic mice and genome editing system, we demonstrate that a pre-marked enhancer, which is located in the intron of a brain-specific gene 2510009E07Rik, exhibits specific enhancer activity in the ectoderm and future brain tissue, and also executes important function during mouse neural differentiation. Taken together, our study provides the comprehensive epigenetic information for embryonic patterning during mouse gastrulation, demonstrates the importance of gastrula pre-marked enhancers in regulating the correct development of the mouse embryo, and thus broadens the current understanding of mammalian embryonic development and related diseases.
Collapse
Affiliation(s)
- Xianfa Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Jiaoyang Liao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Yingying Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yun Qian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fang Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yu Hou
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - He Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, Guangdong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China. .,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
18
|
TCF12 overexpression as a poor prognostic factor in ovarian cancer. Pathol Res Pract 2019; 215:152527. [DOI: 10.1016/j.prp.2019.152527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 02/03/2023]
|
19
|
Ferdousi F, Sasaki K, Uchida Y, Ohkohchi N, Zheng YW, Isoda H. Exploring the Potential Role of Rosmarinic Acid in Neuronal Differentiation of Human Amnion Epithelial Cells by Microarray Gene Expression Profiling. Front Neurosci 2019; 13:779. [PMID: 31396047 PMCID: PMC6667736 DOI: 10.3389/fnins.2019.00779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
In the present study, we conducted microarray gene expression profiling to explore the direction of differentiation of human amnion epithelial cells (hAECs) treated with rosmarinic acid (RA). hAECs have several clinical advantages over other types of stem cells, including availability, low immunogenicity, low rejection rate, non-tumorigenicity, and less ethical constraint. On the other hand, RA is a phenolic compound having several health benefits, including neuroprotective and antidepressant-like activities. In this study, hAECs were isolated from discarded term placenta and were treated with 20 μM RA for 7 days. Microarray gene expression profiling was conducted for three biological replicates of RA-treated and untreated control cells on day 0 and day 7. Gene set enrichment analysis, and gene annotation and pathway analysis were conducted using online data mining tools GSEA and DAVID. Gene expression profiling showed that RA treatment biased hAECs toward ectodermal lineage progression, regulated transcription factors involved in neuronal differentiation, regulated neural specific epigenetic modifiers and several extracellular signaling pathways of neural induction, and significantly inhibited Notch signaling pathway. Gene expression profiling of RA-treated hAECs reveals for the first time a potential role of RA in neural induction and neuronal differentiation of hAECs. Having a naturally occurring compound as differentiation inducer as well as a readily available source of stem cells would have great advantages for the cell-based therapies. Findings from our genome-wide analysis could provide a foundation for further in-depth investigation.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiaki Uchida
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Quevedo M, Meert L, Dekker MR, Dekkers DHW, Brandsma JH, van den Berg DLC, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. Mediator complex interaction partners organize the transcriptional network that defines neural stem cells. Nat Commun 2019; 10:2669. [PMID: 31209209 PMCID: PMC6573065 DOI: 10.1038/s41467-019-10502-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively. Here, we purify Mediator from neural stem cells (NSCs) and identify 75 protein-protein interaction partners. We identify super enhancers in NSCs and show that Mediator-interacting chromatin modifiers colocalize with Mediator at enhancers and super enhancers. Transcription factor families with high affinity for Mediator dominate enhancers and super enhancers and can explain genome-wide Mediator localization. We identify E-box transcription factor Tcf4 as a key regulator of NSCs. Tcf4 interacts with Mediator, colocalizes with Mediator at super enhancers and regulates neurogenic transcription factor genes with super enhancers and broad H3K4me3 domains. Our data suggest that high binding-affinity for Mediator is an important organizing feature in the transcriptional network that determines NSC identity. The Mediator complex regulates transcription by connecting enhancers to promoters. Here, the authors purify Mediator from neural stem cells (NSCs), identify 75 novel protein-protein interaction partners and characterize the Mediator-interacting network that regulates transcription and establishes NSC identity.
Collapse
Affiliation(s)
- Marti Quevedo
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | | | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands.
| |
Collapse
|
21
|
On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio). PLoS One 2019; 14:e0218286. [PMID: 31188878 PMCID: PMC6561585 DOI: 10.1371/journal.pone.0218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.
Collapse
|
22
|
Huguet G, Temel Y, Kádár E, Pol S, Casaca-Carreira J, Segura-Torres P, Jahanshahi A. Altered expression of dopaminergic cell fate regulating genes prior to manifestation of symptoms in a transgenic rat model of Huntington's disease. Brain Res 2019; 1712:101-108. [PMID: 30711400 DOI: 10.1016/j.brainres.2019.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Hyperactivity of the dopaminergic pathway is thought to contribute to clinical symptoms in the early stages of Huntington's disease (HD). It is suggested to be result of a reduced dopaminergic inhibition by degeneration of medium spiny neurons in the striatum. Previously, we have shown that the number of dopaminergic cells is increased in the dorsal raphe nucleus (DRN) of HD patients and transgenic HD (tgHD) rats during the manifestation phase of the disease; as well as in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) of tgHD rats. To address whether these changes are secondary to neurodegeneration or take place in the pre-manifest phase of the disease, we examined the expression of genes controlling neuronal cell fate and genes that define dopaminergic cell phenotype. In the SNc-VTA of tgHD rats, Msx1 was upregulated, which correlated with an altered expression of transcription factors Zbtb16 and Tcf12. Zbtb16 was upregulated in the DRN and it was the only gene that showed a correlated expression in the tgHD rats between SNc-VTA and DRN. Zbtb16 may be a candidate for regionally tuning its cell populations, resulting in the increase in dopaminergic cells observed in our previous studies. Here, we demonstrated an altered expression of genes related to dopaminergic cell fate regulation in the brainstem of 6 months-old tgHD rats. This suggests that changes in dopaminergic system in HD precede the manifestation of clinical symptoms, contradicting the theory that hyperdopaminergic status in HD is a consequence of neurodegeneration in the striatum.
Collapse
Affiliation(s)
- Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain.
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain.
| | - Sylvana Pol
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Joao Casaca-Carreira
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|