1
|
Fornage M, Tarraf W, Xia R, Ordonez A, Sofer T, Márquez F, Thyagarajan B, Talavera GA, Gallo LC, DeCarli C, González HM. Longitudinal associations of epigenetic aging with cognitive aging in Hispanic/Latino adults from the Hispanic Community Health Study/Study of Latinos. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.03.25325181. [PMID: 40236421 PMCID: PMC11998844 DOI: 10.1101/2025.04.03.25325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Due to the paucity of longitudinal DNA methylation data (DNAm), especially among Hispanic/Latino adults, the association between changes in epigenetic clocks over time and cognitive aging phenotypes has not been investigated. This longitudinal study included 2671 Hispanic/Latino adults (57 years; 66% women) with blood DNAm data and neurocognitive function assessed at two visits approximately 7 years apart. We evaluated the associations of 5 epigenetic clocks and their between-visit change with multiple measures of cognitive aging that included a global cognitive function score at each visit, between-visit change in global cognitive function score, MCI diagnosis, and presence of significant cognitive decline at visit 2 (V2). There were significant associations between greater acceleration for all clocks and lower global cognitive function at each visit. The strongest associations were observed for GrimAge and DunedinPACE. Similar results were observed for domain-specific cognitive function at each visit and MCI diagnosis at V2. There was a significant association of decline in global cognitive function with increase in age acceleration between the two visits for PhenoAge and GrimAge. Between-visit increase in age acceleration for these two clocks was also associated with a greater risk of MCI diagnosis and presence of significant cognitive decline at V2. Epigenetic aging is associated with lower global and domain-specific cognitive function, greater cognitive decline, and greater risk of MCI in Hispanic/Latino adults. Longitudinal assessment of change in age acceleration for second-generation clocks, GrimAge and PhenoAge may provide additional value in predicting cognitive aging beyond a single time point assessment.
Collapse
|
2
|
Chen C, Khanthiyong B, Thaweetee-Sukjai B, Charoenlappanit S, Roytrakul S, Surit P, Phoungpetchara I, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Proteomic associations with cognitive variability as measured by the Wisconsin Card Sorting Test in a healthy Thai population: A machine learning approach. PLoS One 2025; 20:e0313365. [PMID: 39977438 PMCID: PMC11841870 DOI: 10.1371/journal.pone.0313365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Inter-individual cognitive variability, influenced by genetic and environmental factors, is crucial for understanding typical cognition and identifying early cognitive disorders. This study investigated the association between serum protein expression profiles and cognitive variability in a healthy Thai population using machine learning algorithms. We included 199 subjects, aged 20 to 70, and measured cognitive performance with the Wisconsin Card Sorting Test. Differentially expressed proteins (DEPs) were identified using label-free proteomics and analyzed with the Linear Model for Microarray Data. We discovered 213 DEPs between lower and higher cognition groups, with 155 upregulated in the lower cognition group and enriched in the IL-17 signaling pathway. Subsequent bioinformatic analysis linked these DEPs to neuroinflammation-related cognitive impairment. A random forest model classified cognitive ability groups with an accuracy of 81.5%, sensitivity of 65%, specificity of 85.9%, and an AUC of 0.79. By targeting a specific Thai cohort, this research provides novel insights into the link between neuroinflammation and cognitive performance, advancing our understanding of cognitive variability, highlighting the role of biological markers in cognitive function, and contributing to developing more accurate machine learning models for diverse populations.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Medical Science, Medical Science graduate program, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sawanya Charoenlappanit
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Phrutthinun Surit
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Gavin P. Reynolds
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Trojan G, Moniuszko-Malinowska A, Grzeszczuk A, Czupryna P. Adrenomedullin as a New Prosperous Biomarker in Infections: Current and Future Perspectives. J Clin Med 2024; 13:6142. [PMID: 39458091 PMCID: PMC11508582 DOI: 10.3390/jcm13206142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Adrenomedullin has emerged as a promising biomarker in the field of viral diseases. Numerous studies have demonstrated its potential in assessing disease severity, predicting clinical outcomes, and monitoring treatment response. Adrenomedullin (AM) is a multifaceted peptide implicated in vasodilation, hormone secretion, antimicrobial defense, cellular growth, angiogenesis, and, importantly, chronic pain. AM and related peptides interface with cytoskeletal proteins within neuronal contexts, influencing microtubule dynamics. AM has primarily been utilized in diagnosing diseases of bacterial origin, including sepsis. Nevertheless, there are reports suggesting its utility in diseases of viral origin, and this is the focus of the present study. Furthermore, adrenomedullin has been shown to be elevated in various viral infections, suggesting its role in immune response modulation. Furthermore, AM may contribute to neuronal dysfunction through mechanisms involving immune and inflammatory responses, apoptosis, and disruptions in calcium homeostasis. This review aims to consolidate current knowledge regarding AM and its potential implications in viral diseases, elucidating its diverse roles in neurological pathophysiology. This review highlights the growing importance of adrenomedullin as a biomarker in viral diseases and the need for further functional studies to understand the underlying mechanisms involved.
Collapse
Affiliation(s)
- Gabriela Trojan
- Department of Infectious Diseases and Neuroinfections, Medical Uniwersity of Bialystok, 15-540 Bialystok, Poland; (A.M.-M.); (A.G.); (P.C.)
| | | | | | | |
Collapse
|
4
|
Richardson B, Goedert T, Quraishe S, Deinhardt K, Mudher A. How do neurons age? A focused review on the aging of the microtubular cytoskeleton. Neural Regen Res 2024; 19:1899-1907. [PMID: 38227514 DOI: 10.4103/1673-5374.390974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer's disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease.
Collapse
Affiliation(s)
- Brad Richardson
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas Goedert
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Shmma Quraishe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Amritpal Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Quigua-Orozco RM, Andrade IEP, Oshiro KGN, Rezende SB, Santos ADO, Pereira JAL, da Silva VG, Buccini DF, Porto WF, Macedo MLR, Cardoso MH, Franco OL. In silico optimization of analogs derived pro-adrenomedullin peptide to evaluate antimicrobial potential. Chem Biol Drug Des 2024; 104:e14588. [PMID: 39048531 DOI: 10.1111/cbdd.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Diverse computational approaches have been widely used to assist in designing antimicrobial peptides with enhanced activities. This tactic has also been used to address the need for new treatment alternatives to combat resistant bacterial infections. Herein, we have designed eight variants from a natural peptide, pro-adrenomedullin N-terminal 20 peptide (PAMP), using an in silico pattern insertion approach, the Joker algorithm. All the variants show an α-helical conformation, but with differences in the helix percentages according to circular dichroism (CD) results. We found that the C-terminal portion of PAMP may be relevant for its antimicrobial activities, as revealed by the molecular dynamics, CD, and antibacterial results. The analogs showed variable antibacterial potential, but most were not cytotoxic. Nevertheless, PAMP2 exhibited the most potent activities against human and animal-isolated bacteria, showing cytotoxicity only at a substantially higher concentration than its minimal inhibitory concentration (MIC). Our results suggest that the enhanced activity in the profile of PAMP2 may be related to their particular physicochemical properties, along with the adoption of an amphipathic α-helical arrangement with the conserved C-terminus portion. Finally, the peptides designed in this study can constitute scaffolds for the design of improved sequences.
Collapse
Affiliation(s)
- Raquel M Quigua-Orozco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Isadora E P Andrade
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Duarte O Santos
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Julia A L Pereira
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Viviane G da Silva
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - William F Porto
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
Plonski NM, Pan Y, Chen C, Dong Q, Zhang X, Song N, Shelton K, Easton J, Mulder H, Zhang J, Neale G, Walker E, Wang H, Webster R, Brinkman T, Krull KR, Armstrong GT, Ness KK, Hudson MM, Li Q, Huang IC, Wang Z. Health-related quality of life and DNA methylation-based aging biomarkers among survivors of childhood cancer. J Natl Cancer Inst 2024; 116:1116-1125. [PMID: 38445706 PMCID: PMC11223852 DOI: 10.1093/jnci/djae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Childhood cancer survivors are at high risk for morbidity and mortality and poor patient-reported outcomes, typically health-related quality of life (HRQOL). However, associations between DNA methylation-based aging biomarkers and HRQOL have not been evaluated. METHODS DNA methylation was generated with Infinium EPIC BeadChip on blood-derived DNA (median for age at blood draw = 34.5 years, range = 18.5-66.6 years), and HRQOL was assessed with age at survey (mean = 32.3 years, range = 18.4-64.5 years) from 2206 survivors in the St Jude Lifetime Cohort. DNA methylation-based aging biomarkers, including epigenetic age using multiple clocks (eg, GrimAge) and others (eg, DNAmB2M: beta-2-microglobulin; DNAmADM: adrenomedullin), were derived from the DNAm Age Calculator (https://dnamage.genetics.ucla.edu). HRQOL was assessed using the Medical Outcomes Study 36-Item Short-Form Health Survey to capture 8 domains and physical and mental component summaries. General linear models evaluated associations between HRQOL and epigenetic age acceleration (EAA; eg, EAA_GrimAge) or other age-adjusted DNA methylation-based biomarkers (eg, ageadj_DNAmB2M) after adjusting for age at blood draw, sex, cancer treatments, and DNA methylation-based surrogate for smoking pack-years. All P values were 2-sided. RESULTS Worse HRQOL was associated with greater EAA_GrimAge (physical component summaries: β = -0.18 years, 95% confidence interval [CI] = -0.251 to -0.11 years; P = 1.85 × 10-5; and 4 individual HRQOL domains), followed by ageadj_DNAmB2M (physical component summaries: β = -0.08 years, 95% CI = -0.124 to -0.037 years; P = .003; and 3 individual HRQOL domains) and ageadj_DNAmADM (physical component summaries: β = -0.082 years, 95% CI = -0.125 to -0.039 years; P = .002; and 2 HRQOL domains). EAA_Hannum (Hannum clock) was not associated with any HRQOL. CONCLUSIONS Overall and domain-specific measures of HRQOL are associated with DNA methylation measures of biological aging. Future longitudinal studies should test biological aging as a potential mechanism underlying the association between poor HRQOL and increased risk of clinically assessed adverse health outcomes.
Collapse
Affiliation(s)
- Noel-Marie Plonski
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yue Pan
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Cheng Chen
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xijun Zhang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily Walker
- Hartwell Center, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rachel Webster
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Tara Brinkman
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kevin R Krull
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Qian Li
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - I-Chan Huang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
7
|
Kusters CDJ, Klopack ET, Crimmins EM, Seeman TE, Cole S, Carroll JE. Short Sleep and Insomnia Are Associated With Accelerated Epigenetic Age. Psychosom Med 2024; 86:453-462. [PMID: 37594243 PMCID: PMC10879461 DOI: 10.1097/psy.0000000000001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Short sleep and insomnia are each associated with a greater risk of age-related disease, which suggests that insufficient sleep may accelerate biological aging. We examine whether short sleep and insomnia alone or together relates to epigenetic age among older adults. METHODS A total of 3795 men (46.3%) and women aged 56 to 100 years from the Health and Retirement Study were included. Insomnia was defined as reporting at least one insomnia symptom (difficulty falling asleep, waking up at night, or waking up too early in the morning) and feeling unrested when waking up most of the time. Those reporting <6 hours of bedtime were categorized as short sleepers. Three second- or third-generation epigenetic age acceleration clocks were derived from the 2016 Health and Retirement Study Venous Blood Study. The linear regression analysis was adjusted for age, sex, race/ethnicity, education, and obesity status. RESULTS Insomnia and short sleep were associated with acceleration of GrimAge of 0.49 (95% confidence interval [CI] = 0.03-0.94 years; p = .04) and 1.29 (95% CI = 0.52-2.07 years; p = .002) years, respectively, as well as a faster pace of aging (DunedinPACE; 0.018 [95% CI = 0.004-0.033; p = .02] and 0.022 [95% CI = -0.004 to 0.048; p = .11]). Compared with healthy sleepers, individuals with the combination of short sleep and insomnia had an accelerated GrimAge (0.97 years; 95% CI = 0.07-1.87 years, p = .04) and a greater DunedinPACE (0.032; 95% CI = 0.003-0.060, p = .04). CONCLUSIONS Our findings indicate that short sleep, insomnia, and the combination of the two are linked to epigenetic age acceleration, suggesting that these individuals have an older biological age that may contribute to risk of comorbidity and mortality.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- From the Department of Epidemiology (Kusters, Seeman), Fielding School of Public Health, UCLA; Davis School of Gerontology (Klopack, Crimmins), and Leonard Davis School of Gerontology, USC; Department of Geriatrics (Seeman), and Cousins Center for Psychoneuroimmunology (Cole, Carroll), Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
8
|
Hunt AL, Khan I, Wu AML, Makohon-Moore SC, Hood BL, Conrads KA, Abulez T, Ogata J, Mitchell D, Gist G, Oliver J, Wei D, Chung MA, Rahman S, Bateman NW, Zhang W, Conrads TP, Steeg PS. The murine metastatic microenvironment of experimental brain metastases of breast cancer differs by host age in vivo: a proteomic study. Clin Exp Metastasis 2024; 41:229-249. [PMID: 37917186 DOI: 10.1007/s10585-023-10233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Alex M L Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Zymeworks Inc, Vancouver, BC, V5T 1G4, Canada
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Samiur Rahman
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Wei Zhang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Ilina Y, Kaufmann P, Melander O, Press M, Thuene K, Bergmann A. Immunoassay-based quantification of full-length peptidylglycine alpha-amidating monooxygenase in human plasma. Sci Rep 2023; 13:10827. [PMID: 37402878 DOI: 10.1038/s41598-023-37976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
A one-step sandwich chemiluminescence immunometric assay (LIA) was developed for the quantification of bifunctional peptidylglycine-α-amidating monooxygenase (PAM) in human plasma (PAM-LIA). PAM is responsible for the activation of more than half of known peptide hormones through C-terminal α-amidation. The assay employed antibodies targeting specific catalytic PAM-subunits, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), to ensure detection of full-length PAM. The PAM-LIA assay was calibrated with a human recombinant PAM enzyme and achieved a detection limit of 189 pg/mL and a quantification limit of 250 pg/mL. The assay demonstrated good inter-assay (6.7%) and intra-assay (2.2%) variabilities. It exhibited linearity when accessed by gradual dilution or random mixing of plasma samples. The accuracy of the PAM-LIA was determined to be 94.7% through spiking recovery experiments, and the signal recovery after substance interference was 94-96%. The analyte showed 96% stability after six freeze-thaw cycles. The assay showed strong correlation with matched EDTA and serum samples, as well as matched EDTA and Li-Heparin samples. Additionally, a high correlation was observed between α-amidating activity and PAM-LIA. Finally, the PAM-LIA assay was successfully applied to a sub-cohort of a Swedish population-based study, comprising 4850 individuals, confirming its suitability for routine high throughput screening.
Collapse
Affiliation(s)
- Yulia Ilina
- PAM Theragnostics GmbH, Neuendorfstr. 15A, 16761, Hennigsdorf, Germany.
| | - Paul Kaufmann
- PAM Theragnostics GmbH, Neuendorfstr. 15A, 16761, Hennigsdorf, Germany
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, 205 02, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Michaela Press
- PAM Theragnostics GmbH, Neuendorfstr. 15A, 16761, Hennigsdorf, Germany
| | - Katrin Thuene
- PAM Theragnostics GmbH, Neuendorfstr. 15A, 16761, Hennigsdorf, Germany
| | - Andreas Bergmann
- PAM Theragnostics GmbH, Neuendorfstr. 15A, 16761, Hennigsdorf, Germany
| |
Collapse
|
10
|
Martínez-Magaña JJ, Krystal JH, Girgenti MJ, Núnez-Ríos DL, Nagamatsu ST, Andrade-Brito DE, Montalvo-Ortiz JL. Decoding the role of transcriptomic clocks in the human prefrontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288765. [PMID: 37163025 PMCID: PMC10168432 DOI: 10.1101/2023.04.19.23288765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aging is a complex process with interindividual variability, which can be measured by aging biological clocks. Aging clocks are machine-learning algorithms guided by biological information and associated with mortality risk and a wide range of health outcomes. One of these aging clocks are transcriptomic clocks, which uses gene expression data to predict biological age; however, their functional role is unknown. Here, we profiled two transcriptomic clocks (RNAAgeCalc and knowledge-based deep neural network clock) in a large dataset of human postmortem prefrontal cortex (PFC) samples. We identified that deep-learning transcriptomic clock outperforms RNAAgeCalc to predict transcriptomic age in the human PFC. We identified associations of transcriptomic clocks with psychiatric-related traits. Further, we applied system biology algorithms to identify common gene networks among both clocks and performed pathways enrichment analyses to assess its functionality and prioritize genes involved in the aging processes. Identified gene networks showed enrichment for diseases of signal transduction by growth factor receptors and second messenger pathways. We also observed enrichment of genome-wide signals of mental and physical health outcomes and identified genes previously associated with human brain aging. Our findings suggest a link between transcriptomic aging and health disorders, including psychiatric traits. Further, it reveals functional genes within the human PFC that may play an important role in aging and health risk.
Collapse
Affiliation(s)
- José J. Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - John H. Krystal
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| | - Matthew J. Girgenti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diana L. Núnez-Ríos
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diego E. Andrade-Brito
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| |
Collapse
|
11
|
Zhang H, Li X, Fan W, Pandovski S, Tian Y, Dillin A. Inter-tissue communication of mitochondrial stress and metabolic health. LIFE METABOLISM 2023; 2:load001. [PMID: 37538245 PMCID: PMC10399134 DOI: 10.1093/lifemeta/load001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mitochondria function as a hub of the cellular metabolic network. Mitochondrial stress is closely associated with aging and a variety of diseases, including neurodegeneration and cancer. Cells autonomously elicit specific stress responses to cope with mitochondrial stress to maintain mitochondrial homeostasis. Interestingly, mitochondrial stress responses may also be induced in a non-autonomous manner in cells or tissues that are not directly experiencing such stress. Such non-autonomous mitochondrial stress responses are mediated by secreted molecules called mitokines. Due to their significant translational potential in improving human metabolic health, there has been a surge in mitokine-focused research. In this review, we summarize the findings regarding inter-tissue communication of mitochondrial stress in animal models. In addition, we discuss the possibility of mitokine-mediated intercellular mitochondrial communication originating from bacterial quorum sensing.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wudi Fan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Beheshti F, Gholami M, Ghane Z, Nazari S E, Salari M, Shabab S, Hosseini M. PPARγ activation improved learning and memory and attenuated oxidative stress in the hippocampus and cortex of aged rats. Physiol Rep 2022; 10:e15538. [PMID: 36541251 PMCID: PMC9768666 DOI: 10.14814/phy2.15538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress has an important role in brain aging and its consequences include cognitive decline and physiological disorders. Peroxisome proliferator-activated receptor-γ (PPARγ) activation has been suggested to decrease oxidative stress. In the current research, the effect of PPARγ activation by pioglitazone(Pio) on learning, memory and oxidative stress was evaluated in aged rats. The rats were divided into five groups. In the Control group, vehicle (saline-diluted dimethyl sulfoxide (DMSO)) and saline were injected instead of Pio and scopolamine (Sco), respectively. In the Sco group, the vehicle was injected instead of Pio and the rats were injected by Sco 30 min before the behavioral tests. In the Sco-Pio 10, Sco-Pio 20, and Sco-Pio 30 groups, 10, 20, and 30 mg/kg Pio was injected and finally, the rats were injected with Sco 30 min before the behavioral tests. Morris water mater maze(MWM) and passive avoidance(PA) tests were carried out, and finally, the hippocampus and cortex were removed for biochemical assessments. The results showed that the highest dose of Pio decreased the traveling time and distance during 5 days of learning and increased the time and distance in the target area on the probe day of MWM. The highest dose of Pio also prolonged the delay time for entering the dark and total time spent in the light while decreasing the total time spent in and the number of entries into the dark in PA test. Pio especially, in the medium and highest doses, decreased MDA while increasing thiol, superoxide dismutase, and catalase in the hippocampus and cortex. It is concluded that PPARγ activation by Pio as an agonist improved learning and memory in aged rats probably by attenuating oxidative stress in the hippocampus and cortex.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of MedicineArak University of Medical SciencesArakIran
| | - Zahra Ghane
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyedeh Elnaz Nazari
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Salari
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sadegh Shabab
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Vanherle L, Lidington D, Uhl FE, Steiner S, Vassallo S, Skoug C, Duarte JM, Ramu S, Uller L, Desjardins JF, Connelly KA, Bolz SS, Meissner A. Restoring myocardial infarction-induced long-term memory impairment by targeting the cystic fibrosis transmembrane regulator. EBioMedicine 2022; 86:104384. [PMID: 36462404 PMCID: PMC9718964 DOI: 10.1016/j.ebiom.2022.104384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cognitive impairment is a serious comorbidity in heart failure patients, but effective therapies are lacking. We investigated the mechanisms that alter hippocampal neurons following myocardial infarction (MI). METHODS MI was induced in male C57Bl/6 mice by left anterior descending coronary artery ligation. We utilised standard procedures to measure cystic fibrosis transmembrane regulator (CFTR) protein levels, inflammatory mediator expression, neuronal structure, and hippocampal memory. Using in vitro and in vivo approaches, we assessed the role of neuroinflammation in hippocampal neuron degradation and the therapeutic potential of CFTR correction as an intervention. FINDINGS Hippocampal dendrite length and spine density are reduced after MI, effects that associate with decreased neuronal CFTR expression and concomitant microglia activation and inflammatory cytokine expression. Conditioned medium from lipopolysaccharide-stimulated microglia (LCM) reduces neuronal cell CFTR protein expression and the mRNA expression of the synaptic regulator post-synaptic density protein 95 (PSD-95) in vitro. Blocking CFTR activity also down-regulates PSD-95 in neurons, indicating a relationship between CFTR expression and neuronal health. Pharmacologically correcting CFTR expression in vitro rescues the LCM-mediated down-regulation of PSD-95. In vivo, pharmacologically increasing hippocampal neuron CFTR expression improves MI-associated alterations in neuronal arborisation, spine density, and memory function, with a wide therapeutic time window. INTERPRETATION Our results indicate that CFTR therapeutics improve inflammation-induced alterations in hippocampal neuronal structure and attenuate memory dysfunction following MI. FUNDING Knut and Alice Wallenberg Foundation [F 2015/2112]; Swedish Research Council [VR; 2017-01243]; the German Research Foundation [DFG; ME 4667/2-1]; Hjärnfonden [FO2021-0112]; The Crafoord Foundation; Åke Wibergs Stiftelse [M19-0380], NMMP 2021 [V2021-2102]; the Albert Påhlsson Research Foundation; STINT [MG19-8469], Lund University; Canadian Institutes of Health Research [PJT-153269] and a Heart and Stroke Foundation of Ontario Mid-Career Investigator Award.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Saskia Steiner
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Stefania Vassallo
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Joao M.N. Duarte
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Kim A. Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital; Toronto, Ontario, Canada
| | | | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden,Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany,German Centre for Neurodegenerative Diseases, Bonn, Germany,Corresponding author. Klinikgatan 32, Lund SE-22184, Sweden.
| |
Collapse
|
14
|
Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev 2022; 81:101743. [PMID: 36206857 DOI: 10.1016/j.arr.2022.101743] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
As a complicated process, aging is characterized by various changes at the cellular, subcellular and nuclear levels, one of which is epigenetic aging. With increasing awareness of the critical role that epigenetic alternations play in aging, DNA methylation patterns have been employed as a measure of biological age, currently referred to as the epigenetic clock. This review provides a comprehensive overview of the epigenetic clock as a biomarker of aging and a useful tool to manage healthy aging. In this burgeoning scientific field, various kinds of epigenetic clocks continue to emerge, including Horvath's clock, Hannum's clock, DNA PhenoAge, and DNA GrimAge. We hereby present the most classic epigenetic clocks, as well as their differences. Correlations of epigenetic age with morbidity, mortality and other factors suggest the potential of epigenetic clocks for risk prediction and identification in the context of aging. In particular, we summarize studies on promising age-reversing interventions, with epigenetic clocks employed as a practical tool in the efficacy evaluation. We also discuss how the lack of higher-quality information poses a major challenge, and offer some suggestions to address existing obstacles. Hopefully, our review will help provide an appropriate understanding of the epigenetic clocks, thereby enabling novel insights into the aging process and how it can be manipulated to promote healthy aging.
Collapse
|
15
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
16
|
Peppercorn K, Kleffmann T, Jones O, Hughes S, Tate W. Secreted Amyloid Precursor Protein Alpha, a Neuroprotective Protein in the Brain Has Widespread Effects on the Transcriptome and Proteome of Human Inducible Pluripotent Stem Cell-Derived Glutamatergic Neurons Related to Memory Mechanisms. Front Neurosci 2022; 16:858524. [PMID: 35692428 PMCID: PMC9179159 DOI: 10.3389/fnins.2022.858524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Secreted amyloid precursor protein alpha (sAPPα) processed from a parent human brain protein, APP, can modulate learning and memory. It has potential for development as a therapy preventing, delaying, or even reversing Alzheimer’s disease. In this study a comprehensive analysis to understand how it affects the transcriptome and proteome of the human neuron was undertaken. Human inducible pluripotent stem cell (iPSC)-derived glutamatergic neurons in culture were exposed to 1 nM sAPPα over a time course and changes in the transcriptome and proteome were identified with RNA sequencing and Sequential Window Acquisition of All THeoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS), respectively. A large subset (∼30%) of differentially expressed transcripts and proteins were functionally involved with the molecular biology of learning and memory, consistent with reported links of sAPPα to memory enhancement, as well as neurogenic, neurotrophic, and neuroprotective phenotypes in previous studies. Differentially regulated proteins included those encoded in previously identified Alzheimer’s risk genes, APP processing related proteins, proteins involved in synaptogenesis, neurotransmitters, receptors, synaptic vesicle proteins, cytoskeletal proteins, proteins involved in protein and organelle trafficking, and proteins important for cell signalling, transcriptional splicing, and functions of the proteasome and lysosome. We have identified a complex set of genes affected by sAPPα, which may aid further investigation into the mechanism of how this neuroprotective protein affects memory formation and how it might be used as an Alzheimer’s disease therapy.
Collapse
Affiliation(s)
- Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Owen Jones
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Stephanie Hughes
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- *Correspondence: Warren Tate,
| |
Collapse
|
17
|
Monk B, Rajkovic A, Petrus S, Rajkovic A, Gaasterland T, Malinow R. A Machine Learning Method to Identify Genetic Variants Potentially Associated With Alzheimer's Disease. Front Genet 2021; 12:647436. [PMID: 34194466 PMCID: PMC8238203 DOI: 10.3389/fgene.2021.647436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer's disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of "protective" (or "at-risk") netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.
Collapse
Affiliation(s)
- Bradley Monk
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Cognitive Science & Psychology IDP, University of California, San Diego, San Diego, CA, United States
| | - Andrei Rajkovic
- Department of Computer Science, Royal Holloway, University of London, Egham, United Kingdom
| | - Semar Petrus
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Aleks Rajkovic
- Department of Pathology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terry Gaasterland
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Roberto Malinow
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Adrenomedullin Is a Diagnostic and Prognostic Biomarker for Acute Intracerebral Hemorrhage. Curr Issues Mol Biol 2021; 43:324-334. [PMID: 34208106 PMCID: PMC8928941 DOI: 10.3390/cimb43010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate-nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.
Collapse
|
19
|
Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2020; 11:303-327. [PMID: 30669119 PMCID: PMC6366976 DOI: 10.18632/aging.101684] [Citation(s) in RCA: 1283] [Impact Index Per Article: 256.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/22/1969] [Indexed: 12/16/2022]
Abstract
It was unknown whether plasma protein levels can be estimated based on DNA methylation (DNAm) levels, and if so, how the resulting surrogates can be consolidated into a powerful predictor of lifespan. We present here, seven DNAm-based estimators of plasma proteins including those of plasminogen activator inhibitor 1 (PAI-1) and growth differentiation factor 15. The resulting predictor of lifespan, DNAm GrimAge (in units of years), is a composite biomarker based on the seven DNAm surrogates and a DNAm-based estimator of smoking pack-years. Adjusting DNAm GrimAge for chronological age generated novel measure of epigenetic age acceleration, AgeAccelGrim.Using large scale validation data from thousands of individuals, we demonstrate that DNAm GrimAge stands out among existing epigenetic clocks in terms of its predictive ability for time-to-death (Cox regression P=2.0E-75), time-to-coronary heart disease (Cox P=6.2E-24), time-to-cancer (P= 1.3E-12), its strong relationship with computed tomography data for fatty liver/excess visceral fat, and age-at-menopause (P=1.6E-12). AgeAccelGrim is strongly associated with a host of age-related conditions including comorbidity count (P=3.45E-17). Similarly, age-adjusted DNAm PAI-1 levels are associated with lifespan (P=5.4E-28), comorbidity count (P= 7.3E-56) and type 2 diabetes (P=2.0E-26). These DNAm-based biomarkers show the expected relationship with lifestyle factors including healthy diet and educational attainment.Overall, these epigenetic biomarkers are expected to find many applications including human anti-aging studies.
Collapse
Affiliation(s)
- Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Themistocles L Assimes
- Department of Medicine (Division of Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA 94305, USA.,VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, USA, Baltimore, MD 21224, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
21
|
Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases. Cells 2020; 9:cells9010140. [PMID: 31936134 PMCID: PMC7016617 DOI: 10.3390/cells9010140] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of monounsaturated fatty acids (MUFAS), (i.e., palmitoleate and oleate) from their saturated fatty acid (SFA) precursors (i.e., palmitate and stearate), influencing cellular membrane physiology and signaling, leading to broad effects on human physiology. In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment for various diseases, such as nonalcoholic steatohepatitis, Alzheimer’s disease, cancer, and skin disorders. Sterculic acid (SA) is a cyclopropene fatty acid originally found in the seeds of the plant Sterculia foetida with numerous biological activities. On the one hand, its ability to inhibit stearoyl-CoA desaturase (SCD) allows its use as a coadjuvant of several pathologies where this enzyme has been associated. On the other hand, additional effects independently of its SCD inhibitory properties, involve anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD). This review aims to summarize the mechanisms by which SA exerts its actions and to highlight the emerging areas where this natural compound may be of help for the development of new therapies for human diseases.
Collapse
|
22
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Nagata S, Yamasaki M, Kitamura K. Polyethylene glycol-conjugated human adrenomedullin as a possible treatment for vascular dementia. Peptides 2019; 121:170133. [PMID: 31449828 DOI: 10.1016/j.peptides.2019.170133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Adrenomedullin (AM) is a multifunctional bioactive peptide. Recent studies have shown that AM has protective effects against ischemic brain damage. We recently prepared a long-acting human AM derivative that was conjugated with a 60 kDa polyethylene glycol (PEG-AM), which had an effect similar to that of native AM. In this study, we examined the effect of PEG-AM on four-vessel occlusion model rats, which exhibit vascular dementia. From day 10 to day 14 after surgery, the learning and memory abilities of the rats were examined using a Morris water maze. The rats were treated with a single subcutaneous injection of 1.0 or 10.0 nmol/kg of PEG-AM. PEG-AM treatment reduced the escape latency in the hidden platform test. Furthermore, the treatment increased the time spent in the platform quadrant in the probe test. The data showed that PEG-AM injection prevented memory loss and learning disorders in dose-dependent manner. On day 14, the immunoreactive AM concentration in plasma was 9.749 ± 2.167 pM in the high-dose group (10.0 nmol/kg) and 0.334 ± 0.073 pM in the low-dose group (1.0 nmol/kg). However, even in the low-dose group, a significant effect was observed in both tests. The present data indicate that PEG-AM is a possible therapeutic agent for the treatment of ischemic brain injury or vascular dementia.
Collapse
Affiliation(s)
- Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | - Motoo Yamasaki
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuo Kitamura
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
24
|
Kaushik R, Morkovin E, Schneeberg J, Confettura AD, Kreutz MR, Senkov O, Dityatev A. Traditional Japanese Herbal Medicine Yokukansan Targets Distinct but Overlapping Mechanisms in Aged Mice and in the 5xFAD Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:411. [PMID: 30631278 PMCID: PMC6315162 DOI: 10.3389/fnagi.2018.00411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Yokukansan (YKS) is a traditional Japanese herbal medicine that has been used in humans for the treatment of several neurological conditions, such as age-related anxiety and behavioral and psychological symptoms (BPSD) related to multiple forms of dementia, including Alzheimer’s disease (AD). However, the cellular and molecular mechanisms targeted by YKS in the brain are not completely understood. Here, we compared the efficacy of YKS in ameliorating the age- and early-onset familial AD-related behavioral and cellular defects in two groups of animals: 18- to 22-month-old C57BL6/J wild-type mice and 6- to 9-month-old 5xFAD mice, as a transgenic mouse model of this form of AD. Animals were fed food pellets that contained YKS or vehicle. After 1–2 months of YKS treatment, we evaluated the cognitive improvements in both the aged and 5xFAD transgenic mice, and their brain tissues were further investigated to assess the molecular and cellular changes that occurred following YKS intake. Our results show that both the aged and 5xFAD mice exhibited impaired behavioral performance in novel object recognition and contextual fear conditioning (CFC) tasks, which was significantly improved by YKS. Further analyses of the brain tissue from these animals indicated that in aged mice, this improvement was associated with a reduction in astrogliosis, microglia activation and downregulation of the extracellular matrix (ECM), whereas in 5xFAD mice, none of these mechanisms were evident. These results show the differential action of YKS in healthy aged and 5xFAD mice. However, both aged and 5xFAD YKS-treated mice showed increased neuroprotective signaling through protein kinase B/Akt as the common mode of action. Our data suggest that YKS may impart its beneficial effects through Akt signaling in both 5xFAD mice and aged mice, with multiple additional mechanisms potentially contributing to its beneficial effects in aged animals.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Evgeny Morkovin
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Fundamental Medicine and Biology, Volgograd State Medical University (VSMU), Volgograd, Russia.,Laboratory of Genomic and Proteomic Research, Volgograd Medical Research Center (VMRC), Volgograd, Russia
| | - Jenny Schneeberg
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology (LG), Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Ferrero H, Larrayoz IM, Solas M, Martínez A, Ramírez MJ, Gil-Bea FJ. Reduced Adrenomedullin Parallels Microtubule Dismantlement in Frontotemporal Lobar Degeneration. Mol Neurobiol 2018; 55:9328-9333. [PMID: 29671277 DOI: 10.1007/s12035-018-1079-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 11/30/2022]
Abstract
Tau is a microtubule-associated protein highly expressed in neurons with a chief role in microtubule dynamics and axonal maintenance. Adrenomedullin gene (ADM) codifies for various peptides that exert broad range of actions in the body. Previous works in our groups have shown that increased ADM products are positively correlated to microtubule disruption and tau pathology in Alzheimer's disease brains. In the present study, we explore the involvement of ADM in the neuropathology of frontotemporal lobar degeneration that presents with primary tauopathy (FTLD-tau). Proteins from frontal cortices of FTLD-tau patients and age- and sex-matched non-demented controls were analyzed with antibodies against different microtubule components, including adrenomedullin, and synaptic markers. Tau pathology in frontal cortex from FTLD patients was confirmed. Levels of total βIII-tubulin as well as acetylated and detyrosinated tubulins, two markers of stabilized and aged microtubules, were significantly reduced and directly correlated with PSD95 and proBDNF in FTLD-tau patients when compared to non-demented controls. In contrast, no change in actin cytoskeleton was found. Interestingly, changes in microtubule elements, indicators of disturbed axonal preservation, were accompanied by decreased levels of free adrenomedullin, although no association was found. Altogether, reduced levels of adrenomedullin might not be directly linked to the microtubule pathology of FTLD-tau, but based on previous works, it is suggested that downregulation of ADM might be an adaptive attempt of neurons to mitigate microtubule disruption.
Collapse
Affiliation(s)
- Hilda Ferrero
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Francisco J Gil-Bea
- Neurosciences Area, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Health Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
| |
Collapse
|