1
|
Starobova H, McCalmont H, Shatunova S, Tay N, Smith CM, Robertson A, Winkler I, Lock RB, Vetter I. Inhibition of the NLRP3 inflammasome using MCC950 reduces vincristine-induced adverse effects in an acute lymphoblastic leukemia patient-derived xenograft model. Hemasphere 2025; 9:e70092. [PMID: 40104043 PMCID: PMC11915122 DOI: 10.1002/hem3.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 03/20/2025] Open
Abstract
Vincristine is one of the most important chemotherapeutic drugs used to treat acute lymphoblastic leukemia (ALL). Unfortunately, vincristine often causes severe adverse effects, including sensory-motor neuropathies, weight loss, and overall decreased well-being, that are difficult to control and that decrease the quality of life and survival of patients. Recent studies demonstrate that sensory-motor adverse effects of vincristine are driven by neuroinflammatory processes, including the activation of the Nod-like receptor 3 (NLRP3) inflammasome. In this study, we aimed to test the effects of MCC950, a specific NLRP3 inhibitor, on the prevention of vincristine-induced adverse effects as well as tumor progression and vincristine efficacy in NOD/SCID/interleukin-2 receptor γ-negative mice patient-derived xenografts of ALL. We demonstrate that co-administration of MCC950 effectively prevented the development of mechanical allodynia, motor impairment, and weight loss and significantly improved the overall well-being of the animals without negatively impacting the in vivo efficacy of vincristine as a single agent or in combination with standard-of-care drugs. These results provide proof of principle that the adverse effects of vincristine chemotherapy can be prevented using NLRP3 inflammasome inhibitors and provide new options for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Svetlana Shatunova
- Mater Research Institute, The University of Queensland South Brisbane Queensland Australia
| | - Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
| | - Christopher M Smith
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Avril Robertson
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Queensland Australia
| | - Ingrid Winkler
- Mater Research Institute, The University of Queensland South Brisbane Queensland Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
- School of Pharmacy and Pharmaceutical Sciences The University of Queensland Woolloongabba Queensland Australia
| |
Collapse
|
2
|
Sana SRGL, Lv C, Yu S, Deng X, Dong Y. Epidural injection of varying doses of capsaicin alleviates inflammatory pain in rats via the TLR4/AKT/NF-κB pathway. Inflammopharmacology 2025; 33:257-267. [PMID: 39690361 PMCID: PMC11799098 DOI: 10.1007/s10787-024-01617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Capsaicin (CAP) induces transient pain sensation by activating transient receptor potential vanilloid-1 (TRPV1). However, the initial neuronal excitation induced by CAP is followed by a prolonged refractory period, resulting in long-lasting analgesia. Although the effects of CAP on microglia in the dorsal root ganglion of neuropathic pain disorders have been reported, the regulatory pathways of CAP on microglia remain poorly defined. METHODS A chronic pain model was established via plantar injection of complete Freund's adjuvant (CFA), and different doses of CAP were administered to rats. Pain behavior, expression of pain-related factors, protein expression of TRPV1 in nerve cells, and the inflammatory activation of microglia were evaluated. In vitro experiments were conducted to explore the activation and migration ability of microglia, expression of inflammatory cytokines and pathway proteins, TRPV1 expression in nerve cells, and intracellular calcium concentration under different doses of CAP. RESULTS Different doses of CAP alleviated chronic pain in rats, reduced TRPV1 expression in nerve cells, and inhibited the activation of microglia; however, high doses of CAP were particularly effective in improving chronic pain. In vitro experiments confirmed that CAP reduces the secretion of inflammatory cytokines by microglia via inhibition of the TLR4/AKT/NF-κB signaling pathway. This mechanism reduced the injury and apoptosis of nerve cells, the expression of TRPV1, and the influx of calcium ions in nerve cells. CONCLUSIONS CAP reduced inflammatory responses in microglia in a dose-dependent manner by inhibiting the TLR4/AKT/NF-κB signaling pathway, which consequently reduced TRPV1 expression on neuronal cells and reduced chronic pain.
Collapse
Affiliation(s)
- Si Ri Gu Leng Sana
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanbao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Yu
- Department of Anesthesiology, Guangzhou United Family Hospital, Guangzhou, China
| | - Xijin Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingwei Dong
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Richards JH, Freeman DD, Detloff MR. Myeloid Cell Association with Spinal Cord Injury-Induced Neuropathic Pain and Depressive-like Behaviors in LysM-eGFP Mice. THE JOURNAL OF PAIN 2024; 25:104433. [PMID: 38007034 PMCID: PMC11058038 DOI: 10.1016/j.jpain.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Spinal cord injury (SCI) affects ∼500,000 people worldwide annually, with the majority developing chronic neuropathic pain. Following SCI, approximately 60% of these individuals are diagnosed with comorbid mood disorders, while only ∼21% of the general population will experience a mood disorder in their lifetime. We hypothesize that nociceptive and depressive-like dysregulation occurs after SCI and is associated with aberrant macrophage infiltration in segmental pain centers. We completed moderate unilateral C5 spinal cord contusion on LysM-eGFP reporter mice to visualize infiltrating macrophages. At 6-weeks post-SCI, mice exhibit nociceptive and depressive-like dysfunction compared to naïve and sham groups. There were no differences between the sexes, indicating that sex is not a contributing factor driving nociceptive or depressive-like behaviors after SCI. Utilizing hierarchical cluster analysis, we classified mice based on endpoint nociceptive and depressive-like behavior scores. Approximately 59.3% of the SCI mice clustered based on increased paw withdrawal threshold to mechanical stimuli and immobility time in the forced swim test. SCI mice displayed increased myeloid cell presence in the lesion epicenter, ipsilateral C7-8 dorsal horn, and C7-8 DRGs as evidenced by eGFP, CD68, and Iba1 immunostaining when compared to naïve and sham mice. This was further confirmed by SCI-induced alterations in the expression of genes indicative of myeloid cell activation states and their associated secretome in the dorsal horn and dorsal root ganglia. In conclusion, moderate unilateral cervical SCI caused the development of pain-related and depressive-like behaviors in a subset of mice and these behavioral changes are consistent with immune system activation in the segmental pain pathway. PERSPECTIVE: These experiments characterized pain-related and depressive-like behaviors and correlated these changes with the immune response post-SCI. While humanizing the rodent is impossible, the results from this study inform clinical literature to closely examine sex differences reported in humans to better understand the underlying shared etiologies of pain and depressive-like behaviors following central nervous system trauma.
Collapse
Affiliation(s)
- Jonathan H. Richards
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Daniel D. Freeman
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| |
Collapse
|
4
|
Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther 2023; 19:1501-1508. [PMID: 38156915 DOI: 10.4103/jcrt.jcrt_1982_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 01/03/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN),referring to the damage to the peripheral nerves caused by exposure to a neurotoxic chemotherapeutic agent, is a common side effect amongst patients undergoing chemotherapy. Paclitaxel-induced peripheral neuropathy (PIPN) can lead to dose reduction or early cessation of chemotherapy, which is not conducive to patients'survival. Even after treatment is discontinued, PIPN symptoms carried a greater risk of worsening and plagued the patient's life, leading to long-term morbidity in survivors. Here, we summarize the research progress for clinical manifestations, risk factors, pathogenesis, prevention and treatment of PIPN, so as to embark on the path of preventing PIPN with prolongation of patient's life quality on a long-term basis.
Collapse
Affiliation(s)
- Shan Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Tu Xiong
- Department of Radiology, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shenglan Guo
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiyi Zhu
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Jing He
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Su CJ, Zhang JT, Zhao FL, Xu DL, Pan J, Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front Immunol 2023; 14:1091753. [PMID: 36993950 PMCID: PMC10040838 DOI: 10.3389/fimmu.2023.1091753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionPaclitaxel is a chemotherapy drug that is commonly used to treat cancer, but it can cause paclitaxel-induced neuropathic pain (PINP) as a side effect. Resolvin D1 (RvD1) has been shown to be effective in promoting the resolution of inflammation and chronic pain. In this study, we evaluated the effects of RvD1 on PINP and its underlying mechanisms in mice.MethodsBehavioral analysis was used to assess the establishment of the PINP mouse model and to test the effects of RvD1 or other formulations on mouse pain behavior. Quantitative real-time polymerase chain reaction analysis was employed to detect the impact of RvD1 on 12/15 Lox, FPR2, and neuroinflammation in PTX-induced DRG neurons. Western blot analysis was used to examine the effects of RvD1 on FPR2, Nrf2, and HO-1 expression in DRG induced by PTX. TUNEL staining was used to detect the apoptosis of DRG neurons induced by BMDM conditioned medium. H2DCF-DA staining was used to detect the reactive oxygen species level of DRG neurons in the presence of PTX or RvD1+PTX treated BMDMs CM.ResultsExpression of 12/15-Lox was decreased in the sciatic nerve and DRG of mice with PINP, suggesting a potential involvement of RvD1 in the resolution of PINP. Intraperitoneal injection of RvD1 promoted pain resolution of PINP in mice. Intrathecal injection of PTX-treated BMDMs induced mechanical pain hypersensitivity in naïve mice, while pretreatment of RvD1 in BMDMs prevented it. Macrophage infiltration increased in the DRGs of PINP mice, but it was not affected by RvD1 treatment. RvD1 increased IL-10 expression in the DRGs and macrophages, while IL-10 neutralizing antibody abolished the analgesic effect of RvD1 on PINP. The effects of RvD1 in promoting IL-10 production were also inhibited by N-formyl peptide receptor 2 (FPR2) antagonist. The primary cultured DRG neurons apoptosis increased after stimulation with condition medium of PTX-treated BMDMs, but decreased after pretreatment with RvD1 in BMDMs. Finally, Nrf2-HO1 signaling was additionally activated in DRG neurons after stimulation with condition medium of RvD1+PTX-treated BMDMs, but these effects were abolished by FPR2 blocker or IL-10 neutralizing antibody.DiscussionIn conclusion, this study provides evidence that RvD1 may be a potential therapeutic strategy for the clinical treatment of PINP. RvD1/FPR2 upregulates IL-10 in macrophages under PINP condition, and then IL-10 activates the Nrf2- HO1 pathway in DRG neurons, relieve neuronal damage and PINP.
Collapse
Affiliation(s)
- Cun-Jin Su
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Feng-Lun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Lai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yanan, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou Medical College of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| |
Collapse
|
6
|
Sankaranarayanan I, Tavares-Ferreira D, Mwirigi JM, Mejia GL, Burton MD, Price TJ. Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice. J Neuroinflammation 2023; 20:32. [PMID: 36774519 PMCID: PMC9922469 DOI: 10.1186/s12974-023-02719-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a primary dose-limiting side effect caused by antineoplastic agents, such as paclitaxel. A primary symptom of this neuropathy is pain. Currently, there are no effective treatments for CIPN, which can lead to long-term morbidity in cancer patients and survivors. Neuro-immune interactions occur in CIPN pain and have been implicated both in the development and progression of pain in CIPN and the resolution of pain in CIPN. We investigated the potential role of inducible co-stimulatory molecule (ICOS) in the resolution of CIPN pain-like behaviors in mice. ICOS is an immune checkpoint molecule that is expressed on the surface of activated T cells and promotes proliferation and differentiation of T cells. We found that intrathecal administration of ICOS agonist antibody (ICOSaa) alleviates mechanical hypersensitivity caused by paclitaxel and facilitates the resolution of mechanical hypersensitivity in female mice. Administration of ICOSaa reduced astrogliosis in the spinal cord and satellite cell gliosis in the DRG of mice previously treated with paclitaxel. Mechanistically, ICOSaa intrathecal treatment promoted mechanical hypersensitivity resolution by increasing interleukin 10 (IL-10) expression in the dorsal root ganglion. In line with these observations, blocking IL-10 receptor (IL-10R) activity occluded the effects of ICOSaa treatment on mechanical hypersensitivity in female mice. Suggesting a broader activity in neuropathic pain, ICOSaa also partially resolved mechanical hypersensitivity in the spared nerve injury (SNI) model. Our findings support a model wherein ICOSaa administration induces IL-10 expression to facilitate neuropathic pain relief in female mice. ICOSaa treatment is in clinical development for solid tumors and given our observation of T cells in the human DRG, ICOSaa therapy could be developed for combination chemotherapy-CIPN clinical trials.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Diana Tavares-Ferreira
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Juliet M. Mwirigi
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Galo L. Mejia
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Michael D. Burton
- grid.267323.10000 0001 2151 7939Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| |
Collapse
|
7
|
Chmielewski NN, Limoli CL. Sex Differences in Taxane Toxicities. Cancers (Basel) 2022; 14:3325. [PMID: 35884386 PMCID: PMC9317669 DOI: 10.3390/cancers14143325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The taxane family of microtubule poisons and chemotherapeutics have been studied for over 50 years and are among the most frequently used antineoplastic agents today. Still, limited research exists characterizing taxane-induced sex-specific mechanisms of action and toxicities in cancer and non-cancerous tissue. Such research is important to advance cancer treatment outcomes as well as to address clinically observed sex-differences in short- and long-term taxane-induced toxicities that have disproportionate effects on female and male cancer patients. To gain more insight into these underlying differences between the sexes, the following review draws from pre-clinical and clinical paclitaxel and taxane oncology literature, examines sex-discrepancies, and highlights uncharacterized sex-dependent mechanisms of action and clinical outcomes. To our knowledge, this is the first literature review to provide a current overview of the basic and clinical sex dimorphisms of taxane-induced effects. Most importantly, we hope to provide a starting point for improving and advancing sex-specific personalized chemotherapy and cancer treatment strategies as well as to present a novel approach to review sex as a biological variable in basic and clinical biology.
Collapse
|
8
|
Shin GJE, Abaci HE, Smith MC. Cellular Pathogenesis of Chemotherapy-Induced Peripheral Neuropathy: Insights From Drosophila and Human-Engineered Skin Models. FRONTIERS IN PAIN RESEARCH 2022; 3:912977. [PMID: 35875478 PMCID: PMC9304629 DOI: 10.3389/fpain.2022.912977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and complex condition arising from chemotherapy cancer treatments. Currently, there are no treatment or prevention options in the clinic. CIPN accompanies pain-related sensory functions starting from the hands and feet. Studies focusing on neurons in vitro and in vivo models significantly advanced our understanding of CIPN pathological mechanisms. However, given the direct toxicity shown in both neurons and non-neuronal cells, effective in vivo or in vitro models that allow the investigation of neurons in their local environment are required. No single model can provide a complete solution for the required investigation, therefore, utilizing a multi-model approach would allow complementary advantages of different models and robustly validate findings before further translation. This review aims first to summarize approaches and insights from CIPN in vivo models utilizing small model organisms. We will focus on Drosophila melanogaster CIPN models that are genetically amenable and accessible to study neuronal interactions with the local environment in vivo. Second, we will discuss how these findings could be tested in physiologically relevant vertebrate models. We will focus on in vitro approaches using human cells and summarize the current understanding of engineering approaches that may allow the investigation of pathological changes in neurons and the skin environment.
Collapse
Affiliation(s)
- Grace Ji-eun Shin
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- *Correspondence: Grace Ji-eun Shin
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, Saint Nicholas Avenue, New York, NY, United States
| | - Madison Christine Smith
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 2022; 19:97. [PMID: 35429971 PMCID: PMC9013246 DOI: 10.1186/s12974-022-02454-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are present in all mammalian tissues and coexist with various cell types in order to respond to different environmental cues. However, the role of these cells has been underestimated in the context of peripheral nerve damage. More importantly, macrophages display divergent characteristics, associated with their origin, and in response to the modulatory effects of their microenvironment. Interestingly, the advent of new techniques such as fate mapping and single-cell transcriptomics and their synergistic use has helped characterize in detail the origin and fate of tissue-resident macrophages in the peripheral nervous system (PNS). Furthermore, these techniques have allowed a better understanding of their functions from simple homeostatic supervisors to chief regulators in peripheral neuropathies. In this review, we summarize the latest knowledge about macrophage ontogeny, function and tissue identity, with a particular focus on PNS-associated cells, as well as their interaction with reactive oxygen species under physiological and pathological conditions. We then revisit the process of Wallerian degeneration, describing the events accompanying axon degeneration, Schwann cell activation and most importantly, macrophage recruitment to the site of injury. Finally, we review these processes in light of internal and external insults to peripheral nerves leading to peripheral neuropathies, the involvement of macrophages and the potential benefit of the targeting of specific macrophages for the alleviation of functional defects in the PNS.
Collapse
|
10
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
11
|
Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022; 288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is among the most common clinical complications associated with the use of anti-cancer drugs. CINP occurs in nearly 68.1% of the cancer patients receiving chemotherapeutic drugs. Most of the clinically available analgesics are ineffective in the case of CINP patients as the pathological mechanisms involved with different chemotherapeutic drugs are distinct from each other. CINP triggers the somatosensory nervous system, increases the neuronal firing and activation of nociceptive mediators including transient receptor protein vanilloid 1 (TRPV1). TRPV1 is widely present in the peripheral nociceptive nerve cells and it has been reported that the higher expression of TRPV1 in DRGs serves a critical role in the potentiation of CINP. The therapeutic glory of TRPV1 is well recognized in clinics which gives a promising insight into the treatment of pain. But the adverse effects associated with some of the antagonists directed the scientists towards RNA interference (RNAi), a tool to silence gene expression. Thus, ongoing research is focused on developing small interfering RNA (siRNA)-based therapeutics targeting TRPV1. In this review, we have discussed the involvement of TRPV1 in the nociceptive signaling associated with CINP and targeting this nociceptor, using siRNA will potentially arm us with effective therapeutic interventions for the clinical management of CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nimisha Verma
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
12
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
13
|
Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9100229. [PMID: 34678925 PMCID: PMC8540213 DOI: 10.3390/toxics9100229] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review.
Collapse
|
14
|
Lv Z, Shen J, Gao X, Ruan Y, Ling J, Sun R, Dai J, Fan H, Cheng X, Cao P. Herbal formula Huangqi Guizhi Wuwu decoction attenuates paclitaxel-related neurotoxicity via inhibition of inflammation and oxidative stress. Chin Med 2021; 16:76. [PMID: 34376246 PMCID: PMC8353759 DOI: 10.1186/s13020-021-00488-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel-induced peripheral neuropathy (PIPN) is a challenging clinical problem during chemotherapy. Our previous work found that herbal formula Huangqi Guizhi Wuwu decoction (HGWD) could reduce oxaliplatin-induced neurotoxicity. However, its effect on PIPN remains unknown. In this study, we aim to investigate the therapeutic effect and the underlying mechanisms of HGWD against PIPN with pharmacological experiment and network pharmacology. METHODS Male Wistar rats were used to establish an animal model of PIPN and treated with different doses of HGWD for 3 weeks. Mechanical allodynia, thermal hyperalgesia and body weight were measured to evaluate the therapeutic effect of HGWD on PIPN rats. On the day of the sacrifice, blood, DRGs, sciatic nerve, and hind-paw intra-plantar skins were collected to assess neuroprotective effect of HGWD on PIPN. Next, network pharmacology was performed to decipher the potential active components and molecular mechanisms of HGWD, as were further verified by western blotting analyses in PIPN rats. Finally, the effect of HGWD on the chemotherapeutic activity of paclitaxel was evaluated in vitro and in vivo. RESULTS In rats with PIPN, HGWD reversed mechanical allodynia, thermal hyperalgesia, and ameliorated neuronal damage. Moreover, HGWD significantly increased the level of nerve growth factor, dramatically reduced IL-1β, IL-6, TNF-α levels and oxidative stress. Network pharmacology analysis revealed 30 active ingredients in HGWD and 158 candidate targets. Integrated pathway analysis identified PI3K/Akt and toll-like receptor as two main pathways responsible for the neuroprotective effect of HGWD. Further experimental validation demonstrated that HGWD expectedly inhibited the protein expression of TLR4, MyD88, IKKα, and p-NF-κB, and promoted PI3K, p-Akt, Nrf2, and HO-1 level in dorsal root ganglia. Last but not least, HGWD did not interfere with the antitumor activity of paclitaxel both in in vitro and in vivo models. CONCLUSION These combined data showed that HGWD could inhibit paclitaxel-evoked inflammatory and oxidative responses in peripheral nervous system viaTLR4/NF-κB and PI3K/Akt-Nrf2 pathways involvement. The neuroprotective property of HGWD on PIPN provides fundamental support to the potential application of HGWD for counteracting the side effects of paclitaxel during chemotherapy.
Collapse
Affiliation(s)
- Zhangming Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jiayun Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yonglan Ruan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jinying Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Rongwei Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jingya Dai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Haizhen Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. .,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. .,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
15
|
Abstract
The role of immune mediators, including proinflammatory cytokines in chemotherapy-induced peripheral neuropathy (CIPN), remains unclear. Here, we studied the contribution of interleukin-20 (IL-20) to the development of paclitaxel-induced peripheral neuropathy. Increased serum levels of IL-20 in cancer patients with chemotherapy were accompanied by increased CIPN risk. In mouse models, proinflammatory IL-20 levels in serum and dorsal root ganglia fluctuated with paclitaxel treatment. Blocking IL-20 with the neutralizing antibody or genetic deletion of its receptors prevented CIPN, alleviated peripheral nerve damage, and dampened inflammatory responses, including macrophage infiltration and cytokine release. Mechanistically, paclitaxel upregulated IL-20 through dysregulated Ca homeostasis, which augmented chemotherapy-induced neurotoxicity. Importantly, IL-20 suppression did not alter paclitaxel efficacy on cancer treatment both in vitro and in vivo. Together, targeting IL-20 ameliorates paclitaxel-induced peripheral neuropathy by suppressing neuroinflammation and restoring Ca homeostasis. Therefore, the anti-IL-20 monoclonal antibody is a promising therapeutic for the prevention and treatment of paclitaxel-induced neuropathy.
Collapse
|
16
|
Uhelski ML, Li Y, Fonseca MM, Romero-Snadoval EA, Dougherty PM. Role of innate immunity in chemotherapy-induced peripheral neuropathy. Neurosci Lett 2021; 755:135941. [PMID: 33961945 DOI: 10.1016/j.neulet.2021.135941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.
Collapse
Affiliation(s)
- Megan L Uhelski
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Yan Li
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Miriam M Fonseca
- The Department of Anesthesiology, Wake Forest School of Medicine, United States
| | | | - Patrick M Dougherty
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States.
| |
Collapse
|
17
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
18
|
Shahid M, Subhan F, Islam NU, Ahmad N, Farooq U, Abbas S, Akbar S, Ullah I, Raziq N, Din ZU. The antioxidant N-(2-mercaptopropionyl)-glycine (tiopronin) attenuates expression of neuropathic allodynia and hyperalgesia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:603-617. [PMID: 33079239 DOI: 10.1007/s00210-020-01995-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The current pharmacotherapy of neuropathic pain is inadequate as neuropathic pain involves varied clinical manifestations with multifactorial etiology, modulated by a cascade of physical and molecular events leading to different clinical presentations of pain. There is an accumulating evidence of the involvement of oxidative stress in neuropathy, and antioxidants have shown promise in mitigating neuropathic pain syndromes. To explore the evidence supporting this beneficial proclivity of antioxidants, this study investigated the antinociceptive effectiveness of N-(2-mercaptopropionyl)glycine or tiopronin, a well-recognized aminothiol antioxidant, in a refined chronic constriction injury (CCI) rat model of neuropathic pain. Tiopronin (10, 30, and 90 mg/kg, i.p.) and pregabalin (30 mg/kg, i.p.) were administered daily after CCI surgery. The neuropathic paradigms of mechanical/cold allodynia and mechanical/heat hyperalgesia were assessed on days 3, 7, 14, and 21 post-nerve ligation. At the end of study, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were estimated in the sciatic nerve, dorsal root ganglion, and spinal cord for assessing the extent of oxidative stress. The expression of neuropathic nociception was attenuated by tiopronin which was observed as a significant attenuation of CCI-induced allodynia and hyperalgesia. Tiopronin reversed the neuronal oxidative stress by significantly reducing MDA, and increasing SOD, CAT, and GSH levels. Pregabalin also showed similar beneficial propensity on CCI-induced neuropathic aberrations. These findings suggest prospective neuropathic pain attenuating efficacy of tiopronin and further corroborated the notion that antioxidants are effective in mitigating the development and expression of neuropathic pain and underlying neuronal oxidative stress.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Nisar Ahmad
- Faculty of Pharmacy, National University of Pakistan, Sialkot, Punjab, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
19
|
Sonowal H, Saxena A, Qiu S, Srivastava S, Ramana KV. Aldose reductase regulates doxorubicin-induced immune and inflammatory responses by activating mitochondrial biogenesis. Eur J Pharmacol 2021; 895:173884. [PMID: 33482179 DOI: 10.1016/j.ejphar.2021.173884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
We have recently demonstrated that aldose reductase (AR) inhibitor; fidarestat prevents doxorubicin (Dox)-induced cardiotoxic side effects and inflammation in vitro and in vivo. However, the effect of fidarestat and its combination with Dox on immune cell activation and the immunomodulatory effects are not known. In this study, we examined the immunomodulatory effects of fidarestat in combination with Dox in vivo and in vitro. We observed that fidarestat decreased Dox-induced upregulation of CD11b in THP-1 monocytes. Fidarestat further attenuated Dox-induced upregulation of IL-6, IL-1β, and Nos2 in murine BMDM. Fidarestat also attenuated Dox-induced activation and infiltration of multiple subsets of inflammatory immune cells identified by expression of markers CD11b+, CD11b+F4/80+, Ly6C+CCR2high, and Ly6C+CD11b+ in the mouse spleen and liver. Furthermore, significant upregulation of markers of mitochondrial biogenesis PGC-1α, COX IV, TFAM, and phosphorylation of AMPKα1 (Ser485) was observed in THP-1 cells and livers of mice treated with Dox in combination with fidarestat. Our results suggest that fidarestat by up-regulating mitochondrial biogenesis exerts protection against Dox-induced immune and inflammatory responses in vitro and in vivo, providing further evidence for developing fidarestat as a combination agent with anthracycline drugs to prevent chemotherapy-induced inflammation and toxicity.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sumin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjay Srivastava
- Department of Environmental Cardiology, University of Louisville, KY, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
20
|
Brown T, Sykes D, Allen AR. Implications of Breast Cancer Chemotherapy-Induced Inflammation on the Gut, Liver, and Central Nervous System. Biomedicines 2021; 9:biomedicines9020189. [PMID: 33668580 PMCID: PMC7917715 DOI: 10.3390/biomedicines9020189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Breast Cancer is still one of the most common cancers today; however, with advancements in diagnostic and treatment methods, the mortality and survivorship of patients continues to decrease and increase, respectively. Commonly used treatments today consist of drug combinations, such as doxorubicin and cyclophosphamide; docetaxel, doxorubicin, and cyclophosphamide; or doxorubicin, cyclophosphamide, and paclitaxel. Although these combinations are effective at destroying cancer cells, there is still much to be understood about the effects that chemotherapy can have on normal organ systems such as the nervous system, gastrointestinal tract, and the liver. Patients can experience symptoms of cognitive impairments or “chemobrain”, such as difficulty in concentrating, memory recollection, and processing speed. They may also experience gastrointestinal (GI) distress symptoms such as diarrhea and vomiting, as well as hepatotoxicity and long term liver damage. Chemotherapy treatment has also been shown to induce peripheral neuropathy resulting in numbing, pain, and tingling sensations in the extremities of patients. Interestingly, researchers have discovered that this array of symptoms that cancer patients experience are interconnected and mediated by the inflammatory response.
Collapse
Affiliation(s)
- Taurean Brown
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - DeLawrence Sykes
- Department of Biology, Pomona College, Claremont, CA 91711, USA;
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-7335
| |
Collapse
|
21
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
22
|
Moschetti G, Kalpachidou T, Amodeo G, Lattanzi R, Sacerdote P, Kress M, Franchi S. Prokineticin Receptor Inhibition With PC1 Protects Mouse Primary Sensory Neurons From Neurotoxic Effects of Chemotherapeutic Drugs in vitro. Front Immunol 2020; 11:2119. [PMID: 33072073 PMCID: PMC7541916 DOI: 10.3389/fimmu.2020.02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Theodora Kalpachidou
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michaela Kress
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Shi CY, He XB, Zhao C, Wang HJ. Luteoloside Exerts Analgesic Effect in a Complete Freund's Adjuvant-Induced Inflammatory Model via Inhibiting Interleukin-1β Expression and Macrophage/Microglia Activation. Front Pharmacol 2020; 11:1158. [PMID: 32848767 PMCID: PMC7412990 DOI: 10.3389/fphar.2020.01158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Flavonoid monomers are proved to have an anti-inflammatory effect and may also be promising for chronic pain treatment. In the present study, the analgesic effect and the relevant mechanisms of luteoloside, one of the flavonoid monomers, were investigated. METHODS The analgesic effect of luteoloside was first evaluated in complete Freud's adjuvant induced inflammatory model by von Frey test and Hargreaves test in both male and female mice. The interleukin-1β levels in plantar tissue, serum, dorsal root ganglion, and the dorsal horn of the spinal cord were determined by enzyme-linked immunosorbent assay or immunofluorescence. The activation of macrophage/microglia was tested by Iba-1 staining. RESULTS Our data showed that luteoloside exhibited both acute and chronic analgesic phenotypes. Every single dose of luteoloside solution reached the peak transient analgesic effect 2 h after administration and lasted less than 6 h. About 14 consecutive days administration (one dose per day) later, luteoloside showed a sustained analgesic effect which lasted more than 24 h. Celecoxib 20 mg/kg combined with luteoloside 40 mg/kg achieved a similar analgesic effect as celecoxib 40 mg/kg alone. Luteoloside inhibited interleukin-1β expression in plantar tissue, dorsal root ganglion, the dorsal horn of spinal cord, and serum, after 14 days of continuous administration. Furthermore, our results also showed that the activation of macrophage/microglia in dorsal root ganglions were significantly inhibited 2 h after each single dose in daily luteoloside administration and recovered to a higher level 6 h later. These findings might be involved in the mechanisms of the acute analgesic effect of luteoloside. CONCLUSION Luteoloside presents an analgesic effect via anti-inflammatory and other mechanisms such as inhibiting the activation of macrophage/microglia.
Collapse
Affiliation(s)
- Chun-Yan Shi
- Institute of Chinese Medicine, Shanghai University of Chinese Medicine, Shanghai, China
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xi-Biao He
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital and MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br J Pharmacol 2020; 177:3127-3146. [PMID: 32352155 PMCID: PMC7312267 DOI: 10.1111/bph.15086] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
Taxane-derived drugs are antineoplastic agents used for the treatment of highly common malignancies. Paclitaxel and docetaxel are the most commonly used taxanes; however, other drugs and formulations have been used, such as cabazitaxel and nab-paclitaxel. Taxane treatment is associated with neurotoxicity, a well-known and relevant side effect, very prevalent amongst patients undergoing chemotherapy. Painful peripheral neuropathy is the most dose-limiting side effect of taxanes, affecting up to 97% of paclitaxel-treated patients. Central neurotoxicity is an emerging side effect of taxanes and it is characterized by cognitive impairment and encephalopathy. Besides impairing compliance to chemotherapy treatment, taxane-induced neurotoxicity (TIN) can adversely affect the patient's life quality on a long-term basis. Despite the clinical relevance, not many reviews have comprehensively addressed taxane-induced neurotoxicity when they are used therapeutically. This article provides an up-to-date review on the pathophysiology of TIN and the novel potential therapies to prevent or treat this side effect.
Collapse
Affiliation(s)
- Robson da Costa
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Giselle F. Passos
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Nara L.M. Quintão
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade do Vale do ItajaíItajaíSCBrazil
| | - Elizabeth S. Fernandes
- Instituto Pelé Pequeno PríncipeCuritibaPRBrazil
- Programa de Pós‐graduação em Biotecnologia Aplicada à Saúde da Criança e do AdolescenteFaculdades Pequeno PríncipeCuritibaPRBrazil
| | | | - Maria Martha Campos
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazil
| | - João B. Calixto
- Centro de Inovação e Ensaios Pré‐clínicos ‐ CIEnPFlorianópolisSCBrazil
| |
Collapse
|
25
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
26
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
27
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge, with increasing impact as oncological treatments, using potentially neurotoxic chemotherapy, improve cancer cure and survival. Acute CIPN occurs during chemotherapy, sometimes requiring dose reduction or cessation, impacting on survival. Around 30% of patients will still have CIPN a year, or more, after finishing chemotherapy. Accurate assessment is essential to improve knowledge around prevalence and incidence of CIPN. Consensus is needed to standardize assessment and diagnosis, with use of well-validated tools, such as the EORTC-CIPN 20. Detailed phenotyping of the clinical syndrome moves toward a precision medicine approach, to individualize treatment. Understanding significant risk factors and pre-existing vulnerability may be used to improve strategies for CIPN prevention, or to use targeted treatment for established CIPN. No preventive therapies have shown significant clinical efficacy, although there are promising novel agents such as histone deacetylase 6 (HDAC6) inhibitors, currently in early phase clinical trials for cancer treatment. Drug repurposing, eg, metformin, may offer an alternative therapeutic avenue. Established treatment for painful CIPN is limited. Following recommendations for general neuropathic pain is logical, but evidence for agents such as gabapentinoids and amitriptyline is weak. The only agent currently recommended by the American Society of Clinical Oncology is duloxetine. Mechanisms are complex with changes in ion channels (sodium, potassium, and calcium), transient receptor potential channels, mitochondrial dysfunction, and immune cell interactions. Improved understanding is essential to advance CIPN management. On a positive note, there are many potential sites for modulation, with novel analgesic approaches.
Collapse
Affiliation(s)
- Lesley A Colvin
- Chair of Pain Medicine, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| |
Collapse
|
28
|
Kubíčková L, Klusáková I, Dubový P. Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model. Histochem Cell Biol 2020; 153:239-255. [PMID: 32020274 DOI: 10.1007/s00418-020-01850-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Glial cells activated by peripheral nerve injury contribute to the induction and maintenance of neuropathic pain by releasing neuromodulating cytokines and chemokines. We investigated the activation of microglia and astrocytes as well as the cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis (TSC) ipsilateral and contralateral to infraorbital nerve ligature (IONL). The left infraorbital nerve was ligated under aseptic conditions, and sham controls were operated without nerve ligature. Tactile hypersensitivity was significantly increased bilaterally in vibrissal pads of both sham- and IONL-operated animals from day 1 to 7 and tended to normalize in sham controls surviving for 14 days. Activated microglial cells significantly increased bilaterally in the TSC of both sham- and IONL-operated animals with a marked but gradual increase in the ipsilateral TSC from 1 to 7 days followed by a decrease by day 14. In contrast, robust activation of astrocytes was found bilaterally in the TSC of IONL-operated rats from 3 to 14 days with a transient activation in the ipsilateral TSC of sham-operated animals. Cellular distribution of CCL2 varied with survival time. CCL2 immunofluorescence was detected in neurons within 3 days and in astrocytes at later time points. In contrast, CCR2 was found only in astrocytes at all time points with CCR2 intensity being dominant in the ipsilateral TSC. In summary, our results reveal bilateral activation of microglial cells and astrocytes as well as changes in the cellular distribution of CCL2 and its receptor CCR2 in the TSC during the development and maintenance of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|
29
|
Montague-Cardoso K, Pitcher T, Chisolm K, Salera G, Lindstrom E, Hewitt E, Solito E, Malcangio M. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav Immun 2020; 83:248-259. [PMID: 31669344 PMCID: PMC6928576 DOI: 10.1016/j.bbi.2019.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| | - Thomas Pitcher
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Kim Chisolm
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom
| | - Giorgia Salera
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | - Egle Solito
- William Harvey Research Institute, Bart's and The London School of Medicine Queen Mary, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-related Diseases, Guy's Hospital Campus, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
30
|
Moschetti G, Amodeo G, Paladini MS, Molteni R, Balboni G, Panerai A, Sacerdote P, Franchi S. Prokineticin 2 promotes and sustains neuroinflammation in vincristine treated mice: Focus on pain and emotional like behavior. Brain Behav Immun 2019; 82:422-431. [PMID: 31525509 DOI: 10.1016/j.bbi.2019.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Vincristine (VCR) treatment is often associated to painful neuropathy. Its development is independent from antitumoral mechanism and involves neuroinflammation. We investigated the role of the chemokine prokineticin (PK)2 in a mouse model of VCR induced neuropathy using a PK-receptors (PK-R) antagonist to counteract its development. We also evaluated emotional like deficits in VCR mice. VCR (0,1 mg/kg) was i.p. injected in C57BL/6J male mice once a day for 14 consecutive days. Pain, anxiety and depressive like behaviors were assessed in animals. PK2, PK-Rs, cytokines, neuroinflammatory markers (CD68, CD11b, GFAP, TLR4) and ATF3 were evaluated in DRG, spinal cord, prefrontal cortex and hippocampus. The PK-Rs antagonist PC1, was s.c. injected (150 μg/kg) twice a day from day 7 (hypersensitivity state) until day 14. Its effect on pain and neuroinflammation was evaluated. VCR mice developed neuropathic pain but not mood alterations. After 7 days of VCR treatment we observed a neuroinflammatory condition in DRG with high levels of PK-Rs, TLR4, CD68, ATF3 and IL-1β without relevant alterations in spinal cord. At day 14, an upregulation of PK system and a marked neuroinflammation was evident also in spinal cord. Moreover, at the same time, we observed initial alterations in supraspinal brain areas. PC1 treatment significantly counteracted neuropathic pain and blunted neuroinflammation.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
31
|
p38/TF/HIF- α Signaling Pathway Participates in the Progression of CIPN in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5347804. [PMID: 31380428 PMCID: PMC6652066 DOI: 10.1155/2019/5347804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a serious adverse effect of chemotherapeutics with limited pathogenetic mechanism been known. Whether microcirculatory disturbance is involved in CIPN has not been reported. Considering that tissue factor (TF) is an endogenous coagulation factor, we hypothesize CIPN may be induced by the high expression of TF in macrophages and sciatic nerve, which induces the molecular signal related to ischemia and hypoxia. Oxaliplatin (L-OHP) was used to establish CIPN model. Von Frey Hairs was used to measure nociception. The murine macrophage cell line Raw 264.7 was used for cell experiments. Gelatin zymography and western blotting were used to measure the activity or expression of protein. TF expression and MMP-9/2 activity in sciatic nerve and blood are significantly increased by L-OHP. L-OHP increased the release of HSP70 from macrophage and enhanced the expression of p-p38 and HIF-1α in vivo and in vitro. Hirudin significantly suppressed the overexpression of p38, HIF-1α and activation of MMP-9/2 induced by L-OHP and attenuated CIPN in mice. This study suggests that a novel HSP70-TLR-4-p38-TF-HIF-1a axis may play a pivotal role in the pathological process of CIPN. It is also shown that the use of anticoagulant Hirudin can inhibit the above mechanisms and improve CIPN.
Collapse
|
32
|
Luo X, Gu Y, Tao X, Serhan CN, Ji RR. Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Front Pharmacol 2019; 10:745. [PMID: 31333464 PMCID: PMC6624779 DOI: 10.3389/fphar.2019.00745] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Earlier studies have demonstrated that essential fatty acid-derived specialized pro-resolving mediators (SPMs) promote the resolution of inflammation and pain. However, the potential analgesic actions of SPMs in chemotherapy-induced peripheral neuropathy (CIPN) are not known. Recent results also showed sex dimorphism in immune cell signaling in neuropathic pain. Here, we evaluated the analgesic actions of D-series resolvins (RvD1, RvD2, RvD3, RvD4, and RvD5) on a CIPN in male and female mice. Paclitaxel (PTX, 2 mg/kg), given on days 0, 2, 4, and 6, produced robust mechanical allodynia in both sexes at 2 weeks. Intrathecal injection of RvD1 and RvD2 (100 ng, i.t.) at 2 weeks reversed PTX-induced mechanical allodynia in both sexes, whereas RvD3 and RvD4 (100 ng, i.t.) had no apparent effects on either sex. Interestingly, RvD5 (100 ng, i.t.) only reduced mechanical allodynia in male mice but not in female mice. Notably, PTX-induced mechanical allodynia was fully developed in Trpv1 or Trpa1 knockout mice, showing no sex differences. Also, intrathecal RvD5 reduced mechanical allodynia in male mice lacking Trpv1 or Trpa1, whereas female mice with Trpv1 or Trpa1 deficiency had no response to RvD5. Finally, RvD5-induced male-specific analgesia was also confirmed in an inflammatory pain condition. Formalin-induced second phase pain (licking and flinching) was reduced by intrathecal RvD5 in male but not female mice. These findings identified RvD5 as the first SPM that shows sex dimorphism in pain regulation. Moreover, these results suggest that specific resolvins may be used to treat CIPN, a rising health concern in cancer survivors.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
33
|
Macrophage Toll-like Receptor 9 Contributes to Chemotherapy-Induced Neuropathic Pain in Male Mice. J Neurosci 2019; 39:6848-6864. [PMID: 31270160 DOI: 10.1523/jneurosci.3257-18.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.
Collapse
|
34
|
|
35
|
Moschetti G, Amodeo G, Maftei D, Lattanzi R, Procacci P, Sartori P, Balboni G, Onnis V, Conte V, Panerai A, Sacerdote P, Franchi S. Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy. J Neuroinflammation 2019; 16:89. [PMID: 30995914 PMCID: PMC6471808 DOI: 10.1186/s12974-019-1461-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuropathy is a dose-limiting side effect of many chemotherapeutics, including bortezomib. The mechanisms underlying this condition are not fully elucidated even if a contribution of neuroinflammation was suggested. Here, we investigated the role of a chemokine family, the prokineticins (PKs), in the development of bortezomib-induced peripheral neuropathy (BIPN), and we used a PK receptor antagonist to counteract the development and progression of the pathology. METHODS Neuropathy was induced in male C57BL/6J mice by using a protocol capable to induce a detectable neuropathic phenotype limiting systemic side effects. The presence of allodynia (both mechanical and thermal) and thermal hyperalgesia was monitored over time. Mice were sacrificed at two different time points: 14 and 28 days after the first bortezomib (BTZ) injection. At these times, PK system activation (PK2 and PK-Rs), macrophage and glial activation markers, and cytokine production were evaluated in the main station involved in pain transmission (sciatic nerve, DRG, and spinal cord), and the effect of a PK receptors antagonist (PC1) on the same behavioral and biochemical parameters was assessed. Structural damage of DRG during BTZ treatment and an eventual protective effect of PC1 were also evaluated. RESULTS BTZ induces in mice a dose-related allodynia and hyperalgesia and a progressive structural damage to the DRG. We observed a precocious increase of macrophage activation markers and unbalance of pro- and anti-inflammatory cytokines in sciatic nerve and DRG together with an upregulation of GFAP in the spinal cord. At higher BTZ cumulative dose PK2 and PK receptors are upregulated in the PNS and in the spinal cord. The therapeutic treatment with the PK-R antagonist PC1 counteracts the development of allodynia and hyperalgesia, ameliorates the structural damage in the PNS, decreases the levels of activated macrophage markers, and prevents full neuroimmune activation in the spinal cord. CONCLUSIONS PK system may be a strategical pharmacological target to counteract BTZ-induced peripheral neuropathy. Blocking PK2 activity reduces progressive BTZ toxicity in the DRG, reducing neuroinflammation and structural damage to DRG, and it may prevent spinal cord sensitization.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Daniela Maftei
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Vanvitelli, 32, 20129, Milan, Italy.
| |
Collapse
|
36
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|