1
|
Rubio C, Romo-Parra H, López-Landa A, Rubio-Osornio M. Classification of Current Experimental Models of Epilepsy. Brain Sci 2024; 14:1024. [PMID: 39452036 PMCID: PMC11506208 DOI: 10.3390/brainsci14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION This article provides an overview of several experimental models, including in vivo, genetics, chemical, knock-in, knock-out, electrical, in vitro, and optogenetics models, that have been employed to investigate epileptogenesis. The present review introduces a novel categorization of these models, taking into account the fact that the most recent classification that gained widespread acceptance was established by Fisher in 1989. A significant number of such models have become virtually outdated. OBJECTIVE This paper specifically examines the models that have contributed to the investigation of partial seizures, generalized seizures, and status epilepticus. DISCUSSION A description is provided of the primary features associated with the processes that produce and regulate the symptoms of various epileptogenesis models. Numerous experimental epilepsy models in animals have made substantial contributions to the investigation of particular brain regions that are capable of inducing seizures. Experimental models of epilepsy have also enabled the investigation of the therapeutic mechanisms of anti-epileptic medications. Typically, animals are selected for the development and study of experimental animal models of epilepsy based on the specific form of epilepsy being investigated. CONCLUSIONS Currently, it is established that specific animal species can undergo epileptic seizures that resemble those described in humans. Nevertheless, it is crucial to acknowledge that a comprehensive assessment of all forms of human epilepsy has not been feasible. However, these experimental models, both those derived from channelopathies and others, have provided a limited comprehension of the fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Héctor Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01219, Mexico
| | - Alejandro López-Landa
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Stincic T, Gayet-Primo J, Taylor WR, Puthussery T. TARPγ2 Is Required for Normal AMPA Receptor Expression and Function in Direction-Selective Circuits of the Mammalian Retina. eNeuro 2023; 10:ENEURO.0158-23.2023. [PMID: 37491367 PMCID: PMC10431237 DOI: 10.1523/eneuro.0158-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.
Collapse
Affiliation(s)
- Todd Stincic
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jacqueline Gayet-Primo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
5
|
Mendez-Vazquez H, Roach RL, Nip K, Chanda S, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behavior. Proc Natl Acad Sci U S A 2023; 120:e2300773120. [PMID: 37216537 PMCID: PMC10235948 DOI: 10.1073/pnas.2300773120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene has been found in autism spectrum disorder (ASD) patients and results in loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we identify that the G34S mutation increases glycogen synthase kinase 3β (GSK3β)-dependent δ-catenin degradation to reduce δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, pharmacological inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behavior in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits.
Collapse
Affiliation(s)
| | - Regan L. Roach
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Kaila Nip
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
| | - Soham Chanda
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Matheus F. Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Tyler Garver
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Rosaline A. Danzman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Madeleine C. Moseley
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Jessica P. Roberts
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| | - Olivia N. Koch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | | | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Jyothi Arikkath
- Developmental Neuroscience, Munore-Meyer Institute, University of Nebraska Medical Center, Omaha, NE68198
| | - Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
- Cellular and Molecular Biology Program, Colorado State UniversityFort CollinsCO80523
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
6
|
Developmental Inhibitory Changes in the Primary Somatosensory Cortex of the Stargazer Mouse Model of Absence Epilepsy. Biomolecules 2023; 13:biom13010186. [PMID: 36671571 PMCID: PMC9856073 DOI: 10.3390/biom13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms. Recently, we reported a region-specific reduction in the whole-tissue and synaptic GABAA receptor (GABAAR) α1 subunit and an increase in whole-tissue GAD65 in the primary somatosensory cortex (SoCx) of the adult epileptic stargazer mouse compared with its non-epileptic (NE) littermate. The current study investigated whether these changes occurred prior to the onset of seizures on postnatal days (PN) 17-18, suggesting a causative role. Synaptic and cytosolic fractions were biochemically isolated from primary SoCx lysates followed by semiquantitative Western blot analyses for GABAAR α1 and GAD65. We found no significant changes in synaptic GABAAR α1 and cytosolic GAD65 in the primary SoCx of the stargazer mice at the critical developmental stages of PN 7-9, 13-15, and 17-18. This indicates that altered levels of GABAAR α1 and GAD65 in adult mice do not directly contribute to the initial onset of absence seizures but are a later consequence of seizure activity.
Collapse
|
7
|
Altered GABA A Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. Int J Mol Sci 2022; 23:ijms232415685. [PMID: 36555327 PMCID: PMC9778655 DOI: 10.3390/ijms232415685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Absence seizures are hyperexcitations within the cortico-thalamocortical (CTC) network, however the underlying causative mechanisms at the cellular and molecular level are still being elucidated and appear to be multifactorial. Dysfunctional feed-forward inhibition (FFI) is implicated as one cause of absence seizures. Previously, we reported altered excitation onto parvalbumin-positive (PV+) interneurons in the CTC network of the stargazer mouse model of absence epilepsy. In addition, downstream changes in GABAergic neurotransmission have also been identified in this model. Our current study assessed whether dysfunctional FFI affects GABAA receptor (GABAAR) subunit expression in the stargazer primary somatosensory cortex (SoCx). Global tissue expression of GABAAR subunits α1, α3, α4, α5, β2, β3, γ2 and δ were assessed using Western blotting (WB), while biochemically isolated subcellular fractions were assessed for the α and δ subunits. We found significant reductions in tissue and synaptic expression of GABAAR α1, 18% and 12.2%, respectively. However, immunogold-cytochemistry electron microscopy (ICC-EM), conducted to assess GABAAR α1 specifically at synapses between PV+ interneurons and their targets, showed no significant difference. These data demonstrate a loss of phasic GABAAR α1, indicating altered GABAergic inhibition which, coupled with dysfunctional FFI, could be one mechanism contributing to the generation or maintenance of absence seizures.
Collapse
|
8
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
9
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
10
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
11
|
Leitch B. The Impact of Glutamatergic Synapse Dysfunction in the Corticothalamocortical Network on Absence Seizure Generation. Front Mol Neurosci 2022; 15:836255. [PMID: 35237129 PMCID: PMC8882758 DOI: 10.3389/fnmol.2022.836255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy affecting 10–18% of all children with epilepsy. It is genetic in origin and the result of dysfunction within the corticothalamocortical (CTC) circuitry. Network dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds and thus account for the variability in patient response to currently available anti-epileptic drugs; 30% of children with absence seizures are pharmaco-resistant. This review considers the impact of deficits in AMPA receptor-mediated excitation of feed-forward inhibition (FFI) in the CTC, on absence seizure generation. AMPA receptors are glutamate activated ion channels and are responsible for most of the fast excitatory synaptic transmission throughout the CNS. In the stargazer mouse model of absence epilepsy, the genetic mutation is in stargazin, a transmembrane AMPA receptor trafficking protein (TARP). This leads to a defect in AMPA receptor insertion into synapses in parvalbumin-containing (PV+) inhibitory interneurons in the somatosensory cortex and thalamus. Mutation in the Gria4 gene, which encodes for the AMPA receptor subunit GluA4, the predominant AMPA receptor subunit in cortical and thalamic PV + interneurons, also leads to absence seizures. This review explores the impact of glutamatergic synapse dysfunction in the CTC network on absence seizure generation. It also discusses the cellular and molecular mechanisms involved in the pathogenesis of childhood absence epilepsy.
Collapse
|
12
|
Guo L, Du QQ, Cheng PQ, Yang TT, Xing CQ, Luo XZ, Peng XC, Qian F, Huang JR, Tang FR. Neuroprotective Effects of Lycium barbarum Berry on Neurobehavioral Changes and Neuronal Loss in the Hippocampus of Mice Exposed to Acute Ionizing Radiation. Dose Response 2021; 19:15593258211057768. [PMID: 34887716 PMCID: PMC8649475 DOI: 10.1177/15593258211057768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Brain exposure to ionizing radiation during the
radiotherapy of brain tumor or metastasis of peripheral cancer cells to the
brain has resulted in cognitive dysfunction by reducing neurogenesis in
hippocampus. The water extract of Lycium barbarum berry (Lyc),
containing water-soluble Lycium barbarum polysaccharides and
flavonoids, can protect the neuronal injury by reducing oxidative stress and
suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect
of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN,
calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in
BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc
at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve
irradiation-induced animal weight loss, depressive behaviors, spatial memory
impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated
that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus,
CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and
oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum
of the dentate gyrus after irradiation were significantly improved by Lyc
treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal
neurons may benefit the configuration of learning related neuronal networks and
then improve radiation induced neurobehavioral changes such as cognitive
impairment and depression. It suggests that Lycium
barbarum berry may be an alternative food supplement to prevent
radiation-induced neuron loss and neuropsychological disorders.
Collapse
Affiliation(s)
- Lei Guo
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qian-Qian Du
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Piao-Qin Cheng
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Chao-Qun Xing
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xue-Zhi Luo
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiang-Rong Huang
- Department of Traditional Chinese Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
13
|
Panthi S, Lyons NMA, Leitch B. Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:ijms22147740. [PMID: 34299369 PMCID: PMC8306481 DOI: 10.3390/ijms22147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Absence seizures are associated with generalised synchronous 2.5–4 Hz spike-wave discharges causing brief and sudden alteration of awareness during childhood, which is known as childhood absence epilepsy (CAE). CAE is also associated with impaired learning, psychosocial challenges, and physical danger. Absence seizures arise from disturbances within the cortico-thalamocortical (CTC) network, including dysfunctional feed-forward inhibition (FFI); however, the precise mechanisms remain unclear. In epileptic stargazers, a genetic mouse model of CAE with chronic seizures, levels of γ-aminobutyric acid (GABA), and expression of GABA receptors are altered within the CTC network, implicating altered GABAergic transmission in absence seizures. However, the expression of GABA synthesising enzymes (GAD65 and GAD67) and GABA transporters (GAT-1 and 3) have not yet been characterised within absence seizure models. We found a specific upregulation of GAD65 in the somatosensory cortex but not the thalamus of epileptic stargazer mice. No differences were detected in GAD67 and GAT-3 levels in the thalamus or somatosensory cortex. Then, we assessed if GAD65 upregulation also occurred in Gi-DREADD mice exhibiting acute absence seizures, but we found no change in the expression profiles of GAD65/67 or GAT-3. Thus, the upregulation of GAD65 in stargazers may be a compensatory mechanism in response to long-term dysfunctional FFI and chronic absence seizures.
Collapse
Affiliation(s)
| | | | - Beulah Leitch
- Correspondence: ; Tel.: +64-3-479-7618; Fax: +64-3-479-7254
| |
Collapse
|
14
|
Panthi S, Leitch B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front Cell Neurosci 2021; 15:688905. [PMID: 34122016 PMCID: PMC8193234 DOI: 10.3389/fncel.2021.688905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Parvalbumin-expressing (PV+) interneurons are a subset of GABAergic inhibitory interneurons that mediate feed-forward inhibition (FFI) within the cortico-thalamocortical (CTC) network of the brain. The CTC network is a reciprocal loop with connections between cortex and thalamus. FFI PV+ interneurons control the firing of principal excitatory neurons within the CTC network and prevent runaway excitation. Studies have shown that generalized spike-wave discharges (SWDs), the hallmark of absence seizures on electroencephalogram (EEG), originate within the CTC network. In the stargazer mouse model of absence epilepsy, reduced FFI is believed to contribute to absence seizure genesis as there is a specific loss of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synaptic inputs to PV+ interneurons within the CTC network. However, the degree to which this deficit is directly related to seizure generation has not yet been established. Using chemogenetics and in vivo EEG recording, we recently demonstrated that functional silencing of PV+ interneurons in either the somatosensory cortex (SScortex) or the reticular thalamic nucleus (RTN) is sufficient to generate absence-SWDs. Here, we used the same approach to assess whether activating PV+ FFI interneurons within the CTC network during absence seizures would prevent or reduce seizures. To target these interneurons, mice expressing Cre recombinase in PV+ interneurons (PV-Cre) were bred with mice expressing excitatory Gq-DREADD (hM3Dq-flox) receptors. An intraperitoneal dose of pro-epileptic chemical pentylenetetrazol (PTZ) was used to induce absence seizure. The impact of activation of FFI PV+ interneurons during seizures was tested by focal injection of the “designer drug” clozapine N-oxide (CNO) into either the SScortex or the RTN thalamus. Seizures were assessed in PVCre/Gq-DREADD animals using EEG/video recordings. Overall, DREADD-mediated activation of PV+ interneurons provided anti-epileptic effects against PTZ-induced seizures. CNO activation of FFI either prevented PTZ-induced absence seizures or suppressed their severity. Furthermore, PTZ-induced tonic-clonic seizures were also reduced in severity by activation of FFI PV+ interneurons. In contrast, administration of CNO to non-DREADD wild-type control animals did not afford any protection against PTZ-induced seizures. These data demonstrate that FFI PV+ interneurons within CTC microcircuits could be a potential therapeutic target for anti-absence seizure treatment in some patients.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Adotevi N, Su A, Peiris D, Hassan M, Leitch B. Altered Neurotransmitter Expression in the Corticothalamocortical Network of an Absence Epilepsy Model with impaired Feedforward Inhibition. Neuroscience 2021; 467:73-80. [PMID: 34048799 DOI: 10.1016/j.neuroscience.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
The episodes of brief unconsciousness in patients with childhood absence epilepsy are a result of corticothalamocortical circuitry dysfunction. This dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds. In previous studies using the epileptic stargazer mutant mouse, which experience frequent absence seizures, we reported a deficit in AMPAR-mediated feed-forward inhibition of parvalbumin-containing (PV+) interneurons. Currently, in order to determine the downstream effects of this impairment on neurotransmitter expression, we performed HPLC of tissue lysates and post-embedding electron microscopy from the cortical and thalamic regions. We report region-specific alterations in GABA expression, but not of glutamate, and most prominently at PV+ synaptic terminals. These results suggest that impaired feed forward inhibition may occur via reduced activation of these interneurons and concomitant decreased GABAergic signaling. Further investigations into GABAergic control of corticothalamocortical network activity could be key in our understanding of absence seizure pathogenesis.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Aini Su
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Danushi Peiris
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Hassan
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Tang S, Wang T, Zhang X, Guo Y, Xu P, Zeng J, Luo Z, Li D, Zheng Y, Luo Y, Yu C, Xu Z. Olfactomedin-3 Enhances Seizure Activity by Interacting With AMPA Receptors in Epilepsy Models. Front Cell Dev Biol 2020; 8:722. [PMID: 32850838 PMCID: PMC7431667 DOI: 10.3389/fcell.2020.00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background: OLFM3 (olfactomedin-3) is a member of the olfactomedin domain family, which has been found to stimulate the formation and adhesion of tight cell connections and to regulate cytoskeleton formation and cell migration. Differences in the gene coding for OLFM3 have been found between patients with epilepsy and controls. However, the exact role of OLFM3 in epilepsy has not been thoroughly investigated. Methods: Biochemical methods were used to assess OLFM3 expression and localization in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice. Electrophysiological recordings were used to measure the role of OLFM3 in regulating hippocampal excitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed in a pentylenetetrazol (PTZ)-induced seizure model, and electroencephalograms (EEGs) were recorded in the chronic phase of the kainic acid (KA)-induced epilepsy model in vivo. OLFM3 and its interaction with AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor) subunits were analyzed by co-immunoprecipitation. Results: The expression of OLFM3 was increased in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice compared with controls. Interestingly, lentivirus-mediated overexpression of OLFM3 in the hippocampus increased the susceptibility of mice to PTZ-induced seizures, and OLFM3 knockdown had the opposite effect. OLFM3 affected AMPAR currents in a brain-slice model of epileptiform activity induced by Mg2+-free medium. We found that OLFM3 co-immunoprecipitation with GluA1 and GluA2. Furthermore, downregulation or overexpression of OLFM3 in the hippocampus affected the membrane expression of GluA1 and GluA2 in epileptic mice. Conclusion: These findings reveal that OLFM3 may enhance seizure activity by interacting with GluA1 and GluA2, potentially indicating a molecular mechanism for new therapeutic strategies.
Collapse
Affiliation(s)
- Shirong Tang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Neurology, The Thirteenth People's Hospital of Chongqing, Chongqing, China
| | - Tiancheng Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaogang Zhang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongxu Li
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuemei Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Wang C, Wei Y, Yuan Y, Yu Y, Xie K, Dong B, Shi Y, Wang G. The role of PI3K-mediated AMPA receptor changes in post-conditioning of propofol in brain protection. BMC Neurosci 2019; 20:51. [PMID: 31570094 PMCID: PMC6771103 DOI: 10.1186/s12868-019-0532-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to study the role of amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) glutamate receptor 2 (GluR2) subunit trafficking, and activity changes in short-term neuroprotection provided by propofol post-conditioning. We also aimed to determine the role of phosphoinositide-3-kinase (PI3K) in the regulation of these processes. METHODS Rats underwent 1 h of focal cerebral ischemia followed by 23 h of reperfusion were randomly divided into 6 groups (n = 36 per group): sham- operation (S), ischemia-reperfusion (IR), propofol (P group, propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion), and LY294002 (PI3K non-selective antagonist) + sham (L + S, LY294002 of 1.5 mg/kg was infused 30 min before sham operation), LY294002+ ischemia-reperfusion (L + IR, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion), LY294002 + IR + propofol (L + P, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion and propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion). RESULTS Compared with group IR, rats in group P had significant lower neurologic defect scores and infarct volume. Additionally, consistent with enhanced expression of PI3K-AMPAR GluR2 subunit complex substances in ipsilateral hippocampus, GluR2 subunits showed increased levels in both the plasma and postsynaptic membranes of neurons, while pGluR2 expression was reduced in group P. Furthermore, LY294002, the PI3K non-selective antagonist, blocked those effects. CONCLUSION These observations demonstrated that propofol post-conditioning revealed acute neuroprotective role against transient MCAO in rats. The short-term neuroprotective effect was contributed by enhanced GluR2 subunits trafficking to membrane and postsynaptic membranes of neurons, as well as down-regulated the expression of pGluR2 in damaged hippocampus. Finally, the above-mentioned protective mechanism might be contributed by increased combination of PI3K to AMPAR GluR2 subunit, thus maintained the expression and activation of AMPAR GluR2 in the ipsilateral hippocampus.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Ying Wei
- Department of Anesthesiology, Tianjin People’s Hospital, Tianjin Union Medical Center, Tianjin, 300191 China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| |
Collapse
|
18
|
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132:104610. [PMID: 31494287 DOI: 10.1016/j.nbd.2019.104610] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Feed-forward inhibition (FFI) is an essential mechanism within the brain, to regulate neuronal firing and prevent runaway excitation. In the cortico-thalamocortical (CTC) network, fast spiking parvalbumin-expressing (PV+) inhibitory interneurons regulate the firing of pyramidal cells in the cortex and relay neurons in the thalamus. PV+ interneuron dysfunction has been implicated in several neurological disorders, including epilepsy. Previously, we demonstrated that loss of excitatory AMPA-receptors, specifically at synapses on PV+ interneurons in CTC feedforward microcircuits, occurs in the stargazer mouse model of absence epilepsy. These mice present with absence seizures characterized by spike and wave discharges (SWDs) on electroencephalogram (EEG) and concomitant behavioural arrest, similar to childhood absence epilepsy. The aim of the current study was to investigate the impact of loss of FFI within the CTC on absence seizure generation and behaviour using new Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology. We crossed PV-Cre mice with Cre-dependent hM4Di DREADD strains of mice, which allowed Cre-recombinase-mediated restricted expression of inhibitory Gi-DREADDs in PV+ interneurons. We then tested the impact of global and focal (within the CTC network) silencing of PV+ interneurons. CNO mediated silencing of all PV+ interneurons by intraperitoneal injection caused the impairment of motor control, decreased locomotion and increased anxiety in a dose-dependent manner. Such silencing generated pathological oscillations similar to absence-like seizures. Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits, induced SWD-like oscillations and associated behavioural arrest. Epileptiform activity on EEG appeared significantly sooner after focal injection compared to peripheral injection of CNO. However, the mean duration of each oscillatory burst and spike frequency was similar, irrespective of mode of CNO delivery. No significant changes were observed in vehicle-treated or non-DREADD wild-type control animals. These data suggest that dysfunctional feed-forward inhibition in CTC microcircuits may be an important target for future therapy strategies for some patients with absence seizures. Additionally, silencing of PV+ interneurons in other brain regions may contribute to anxiety related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
19
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Cortical expression of AMPA receptors during postnatal development in a genetic model of absence epilepsy. Int J Dev Neurosci 2018; 73:19-25. [PMID: 30593850 DOI: 10.1016/j.ijdevneu.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/25/2018] [Accepted: 12/25/2018] [Indexed: 11/23/2022] Open
Abstract
Childhood absence epilepsy has been associated with poor academic performance, behavioural difficulties, as well as increased risk of physical injury in some affected children. The frequent episodes of 'absence' arise from corticothalamocortical network dysfunction, with multifactorial mechanisms potentially involved in genetically different patients. Aberrations in glutamatergic neurotransmission has been implicated in some seizure models, and we have recently reported that reduced cortical AMPA receptor (AMPAR) expression (predominantly GluA4- containing AMPARs) in parvalbumin-containing (PV+) inhibitory interneurons, could underlie seizure generation in the stargazer mutant mouse. In the present study, we investigate AMPA receptor subunit changes occurring during postnatal development in the stargazer mouse, to determine when these changes occur relative to seizure onset and thus could be contributory to seizure generation. Using quantitative western blotting, we analysed the expression of AMPAR GluA1-4 subunits in the somatosensory cortex at three critical time points; two before seizure onset (postnatal days (PN) 7-9 and 13-15), and one at seizure onset (PN17-18) in stargazers. We report that compared to their non-epileptic littermates, in the stargazer somatosensory cortex, there was a significant reduction in expression of AMPARs containing GluA1, 3 and 4 subunits prior to seizure onset, whereas reduction in expression of GluA2-AMPARs appears to be a post-seizure event. Thus, while loss of GluA4-containing AMPARs (likely GluA1/4 and GluA3/4) may be linked to seizure induction, the loss of GluA2-containing AMPARs is a secondary post-seizure mechanism, which is most likely involved in seizure maintenance.
Collapse
|
21
|
Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci 2018; 19:ijms19092735. [PMID: 30213136 PMCID: PMC6164075 DOI: 10.3390/ijms19092735] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.
Collapse
|
22
|
Zhang H, Mu L, Wang D, Xia D, Salmon A, Liu Q, Wong‐Riley MTT. Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brain-derived neurotrophic factor. J Physiol 2018; 596:4511-4536. [PMID: 30055019 PMCID: PMC6138289 DOI: 10.1113/jp275814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS With daily electrophysiological recordings and neurochemical analysis, we uncovered a transient period of synaptic imbalance between enhanced inhibition and suppressed excitation in rat visual cortical neurons from the end of the fourth toward the end of the fifth postnatal weeks. The expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition, was down-regulated during that time, suggesting that this may contribute to the inhibition/excitation imbalance. An agonist of the BDNF receptor tropomyosin-related kinase B (TrkB) partially reversed the imbalance, whereas a TrkB antagonist accentuated the imbalance during the transient period. Monocular lid suture during the transient period is more detrimental to the function and neurochemical properties of visual cortical neurons than before or after this period. We regard the period of synaptic imbalance as the peak critical period of vulnerability, and its existence is necessary for neurons to transition from immaturity to a more mature state of functioning. ABSTRACT The mammalian visual cortex is immature at birth and undergoes postnatal structural and functional adjustments. The exact timing of the vulnerable period in rodents remains unclear. The critical period is characterized by inhibitory GABAergic maturation reportedly dependent on brain-derived neurotrophic factor (BDNF). However, most of the studies were performed on experimental/transgenic animals, questioning the relationship in normal animals. The present study aimed to conduct in-depth analyses of the synaptic and neurochemical development of visual cortical neurons in normal and monocularly-deprived rats and to determine specific changes, if any, during the critical period. We found that (i) against a gradual increase in excitation and inhibition with age, a transient period of synaptic and neurochemical imbalance existed with suppressed excitation and enhanced inhibition at postnatal days 28 to 33/34; (ii) during this window, the expression of BDNF and tropomyosin-related kinase B (TrkB) receptors decreased, along with glutamatergic GluN1 and GluA1 receptors and the metabolic marker cytochrome oxidase, whereas that of GABAA Rα1 receptors continued to rise; (iii) monocular deprivation reduced both excitatory and inhibitory synaptic activity and neurochemicals mainly during this period; and (iv) in vivo TrkB agonist partially reversed the synaptic imbalance in normal and monocularly-deprived neurons during this time, whereas a TrkB antagonist accentuated the imbalance. Thus, our findings highlight a transitory period of synaptic imbalance with a negative relationship between BDNF and inhibitory GABA. This brief critical period may be necessary in transitioning from an immature to a more mature state of visual cortical functioning.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Lianwei Mu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dandan Wang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dongdong Xia
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Alexander Salmon
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Qiuli Liu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | | |
Collapse
|