1
|
Santos VR, Jerow LG, LaSarge CL. Behavioral analyses in rodent models of tuberous sclerosis complex. Epilepsy Behav 2025; 165:110313. [PMID: 39978075 DOI: 10.1016/j.yebeh.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Tuberous sclerosis complex (TSC) is typically associated with epilepsy, but patients also present with a myriad of comorbid neuropsychiatric disorders. TSC is caused by mutations in the tuberous sclerosis complex genes 1 or 2 (TSC1, TSC2). This TSC1/2 complex serves as a negative regulator of the mammalian target of rapamycin (mTOR) signaling pathway, which plays a crucial role in regulating neuronal function, including cell proliferation, survival, growth, and protein synthesis. Mutations result in hyperactivation of the pathway. Animal models with mutations in Tsc1 or Tsc2 consistently exhibit epilepsy and behavioral phenotypes. Additionally, abnormal neuronal populations can impact the broader network, leading to deficits in learning and memory, anxiety-like behaviors, deficits in social behaviors, and perseverative and repetitive behaviors. This review aims to synthesize the existing animal literature linking TSC models to epileptogenesis and behavioral impairments, with insights on how modifications in TSC signaling influence both the structure and function of neurons and behavior. Understanding these relationships may provide valuable insights into potential therapeutic targets for managing epilepsy and neuropsychiatric disorders associated with TSC dysregulation.
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Biology Cell Graduate Program, Neuroscience Graduate Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, OH, USA.
| | - Candi L LaSarge
- Neuroscience Graduate Program, University of Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Blandin KJ, Narvaiz DA, Sullens DG, Womble PD, Hodges SL, Binder MS, Faust A, Nguyen PH, Pranske ZJ, Lugo JN. A Two-Hit Approach Inducing Flurothyl Seizures in Fmr1 Knockout Mice Impacts Anxiety and Repetitive Behaviors. Brain Sci 2024; 14:892. [PMID: 39335388 PMCID: PMC11429635 DOI: 10.3390/brainsci14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder (ASD) and is associated with seizures. We examined the impact of repeated seizures on the behavioral and molecular changes in male Fmr1 knockout (KO) mice and wild-type (WT) mice. METHODS Seizures were induced by administering three flurothyl seizures per day across postnatal days (PD) 7-11, for a total of 15 seizures. In adulthood, mice were tested in a battery of behavioral tasks to assess long-term behavioral deficits. RESULTS The two-hit impact of a Fmr1 knockout and seizures resulted in decreased anxiety-like behavior in the elevated plus maze test and a longer latency to their first nose poke (repetitive behavior). Seizures resulted in decreased activity, decreased repetitive behavior (grooming and rearings), and decreased social behavior, while they also increased habituation to auditory stimuli and increased freezing in delayed fear conditioning in both KO and control mice. KO mice displayed increased repetitive behavior in the open field task (clockwise revolutions) and repeated nose pokes, and decreased anxiety in the open field test. No differences in mTOR signaling were found. CONCLUSIONS These findings further illuminate the long-term effects of synergistic impact of two hits on the developing brain.
Collapse
Affiliation(s)
- Katherine J Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Samantha L Hodges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew S Binder
- Department of Neurosurgery, Yale University School of Medicine, East Haven, CT 06520, USA
| | - Amanda Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Phuoc H Nguyen
- Department of Neuroscience, University of Maryland, Baltimore, MD 20742, USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
3
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
6
|
Fusse EJ, Scarante FF, Vicente MA, Marrubia MM, Turcato F, Scomparin DS, Ribeiro MA, Figueiredo MJ, Brigante TAV, Guimarães FS, Campos AC. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett 2024; 818:137519. [PMID: 37852528 DOI: 10.1016/j.neulet.2023.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.
Collapse
Affiliation(s)
- Eduardo J Fusse
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria A Vicente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Mariana M Marrubia
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Flávia Turcato
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Davi S Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Melissa A Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria J Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Tamires A V Brigante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
8
|
Zhao S, Jiang X, Han L, Jiang Y, Wang Y, Meng J, Zhu X, Zhang X, Luo H, Zhang YW. Tau reduction attenuates autism-like features in Fmr1 knockout mice. Mol Autism 2023; 14:42. [PMID: 37936174 PMCID: PMC10629153 DOI: 10.1186/s13229-023-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading cause of autism spectrum disorder (ASD) and resulted from a loss of the FMR1-encoded fragile X messenger ribonucleoprotein 1 (FMRP) protein due to large CGG repeat expansions in the promoter region of the FMR1 gene. The microtubule-associated protein Tau is a promising target for Tauopathic diseases and our preliminary study found that Tau protein levels were increased in the brain of Fmr1 knockout (KO) mice, a model of FXS. However, whether Tau reduction can prevent autism-like features in Fmr1 KO mice and become a novel strategy for FXS treatment remain unknown. METHODS Tau was genetically reduced in Fmr1 KO mice through crossing Fmr1± female mice with Mapt± male mice. The male offspring with different genotypes were subjected to various autism-related behavioral tests, RNA sequencing, and biochemical analysis. Fmr1 KO male mice were treated with Tau-targeting antisense oligonucleotide (ASO) and then subjected to behavioral tests and biochemical analysis. RESULTS Tau expression was increased in the cortex of Fmr1 KO mice. Genetically reducing Tau prevented social defects, stereotyped and repetitive behavior, and spine abnormality in Fmr1 KO mice. Tau reduction also reversed increased periodic activity and partially rescued Per1 expression reduction in Fmr1 KO mice. Moreover, Tau reduction reversed compromised P38/MAPK signaling in Fmr1 KO mice. Finally, Tau-targeting ASO also effectively alleviated autism-like phenotypes and promoted P38/MAPK signaling in Fmr1 KO mice. LIMITATIONS Our study is limited to male mice, in agreement with the higher incidence of FXS in males than females. Whether Tau reduction also exerts protection in females deserves further scrutiny. Moreover, although Tau reduction rescues impaired P38/MAPK signaling in Fmr1 KO mice, whether this is the responsible molecular mechanism requires further determination. CONCLUSION Our data indicate that Tau reduction prevents autism-like phenotypes in Fmr1 KO mice. Tau may become a new target for FXS treatment.
Collapse
Affiliation(s)
- Shanshan Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiangyu Jiang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Linkun Han
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yiru Jiang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jian Meng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiang Zhu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xian Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hong Luo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
9
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
10
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
11
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
12
|
Shimada T, Yamagata K. Spine morphogenesis and synapse formation in tubular sclerosis complex models. Front Mol Neurosci 2022; 15:1019343. [PMID: 36606143 PMCID: PMC9807618 DOI: 10.3389/fnmol.2022.1019343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,*Correspondence: Tadayuki Shimada,
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Department of Psychiatry, Takada Nishishiro Hospital, Niigata, Japan,Kanato Yamagata,
| |
Collapse
|
13
|
Flanagan K, Baradaran-Heravi A, Yin Q, Dao Duc K, Spradling AC, Greenblatt EJ. FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics 2022; 221:6613139. [PMID: 35731217 PMCID: PMC9339308 DOI: 10.1093/genetics/iyac094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022] Open
Abstract
Mutations in FMR1 are the most common heritable cause of autism spectrum disorder. FMR1 encodes an RNA-binding protein, FMRP, which binds to long, autism-relevant transcripts and is essential for normal neuronal and ovarian development. In contrast to the prevailing model that FMRP acts to block translation elongation, we previously found that FMRP activates the translation initiation of large proteins in Drosophila oocytes. We now provide evidence that FMRP-dependent translation is conserved and occurs in the mammalian brain. Our comparisons of the mammalian cortex and Drosophila oocyte ribosome profiling data show that translation of FMRP-bound mRNAs decreases to a similar magnitude in FMRP-deficient tissues from both species. The steady-state levels of several FMRP targets were reduced in the Fmr1 KO mouse cortex, including a ∼50% reduction of Auts2, a gene implicated in an autosomal dominant autism spectrum disorder. To distinguish between effects on elongation and initiation, we used a novel metric to detect the rate-limiting ribosome stalling. We found no evidence that FMRP target protein production is governed by translation elongation rates. FMRP translational activation of large proteins may be critical for normal human development, as more than 20 FMRP targets including Auts2 are dosage sensitive and are associated with neurodevelopmental disorders caused by haploinsufficiency.
Collapse
Affiliation(s)
- Keegan Flanagan
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Qi Yin
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Ethan J Greenblatt
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| |
Collapse
|
14
|
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev 2022; 139:104722. [PMID: 35690123 DOI: 10.1016/j.neubiorev.2022.104722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Predictive models are essential for advancing knowledge of brain disorders. High variation in study outcomes hampers progress. To address the validity of predictive models, we performed a systematic review and meta-analysis on behavioural phenotypes of the knock-out rodent model for Fragile X syndrome according to the PRISMA reporting guidelines. In addition, factors accountable for the heterogeneity between findings were analyzed. The knock-out model showed good translational validity and replicability for hyperactivity, cognitive and seizure phenotypes. Despite low replicability, translational validity was also found for social behaviour and sensory sensitivity, but not for attention, aggression and cognitive flexibility. Anxiety, acoustic startle and prepulse inhibition phenotypes, despite low replicability, were opposite to patient symptomatology. Subgroup analyses for experimental factors moderately explain the low replicability, these analyses were hindered by under-reporting of methodologies and environmental conditions. Together, the model has translational validity for most clinical phenotypes, but caution must be taken due to low effect sizes and high inter-study variability. These findings should be considered in view of other rodent models in preclinical research.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - María Arroyo-Araujo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Geert Groteplein Zuid 21, 6525 EZ Nijmegen, the Netherlands.
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
15
|
Saré RM, Lemons A, Smith CB. Effects of Treatment With Hypnotics on Reduced Sleep Duration and Behavior Abnormalities in a Mouse Model of Fragile X Syndrome. Front Neurosci 2022; 16:811528. [PMID: 35720683 PMCID: PMC9202518 DOI: 10.3389/fnins.2022.811528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Many patients with fragile X syndrome (FXS) have sleep disturbances, and Fmr1 knockout (KO) mice (a model of FXS) have reduced sleep duration compared to wild type (WT). Sleep is important for brain development, and chronic sleep restriction during development has long-lasting behavioral effects in WT mice. We hypothesized that the sleep abnormalities in FXS may contribute to behavioral impairments and that increasing sleep duration might improve behavior. We treated adult male Fmr1 KO and WT mice subacutely with three different classes of hypnotics (DORA-22, ramelteon, and zolpidem) and caffeine, a methylxanthine stimulant, and we tested the effects of treatments on sleep duration and behavior. Behavior tests included activity response to a novel environment, anxiety-like behavior, and social behavior. As expected, all hypnotics increased, and caffeine decreased sleep duration in the circadian phase in which drugs were administered. Caffeine and DORA-22 treatment significantly reduced activity in the open field regardless of genotype. Other effects were not as apparent.
Collapse
|
16
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
17
|
Rosenheck M, Sheeler C, Saré RM, Gurney ME, Smith CB. Effects of chronic inhibition of phosphodiesterase-4D on behavior and regional rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis 2021; 159:105485. [PMID: 34411704 DOI: 10.1016/j.nbd.2021.105485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Fragile X Syndrome (FXS) is caused by silencing the FMR1 gene which results in intellectual disability, hyperactivity, sensory hypersensitivity, autistic-like behavior, and susceptibility to seizures. This X-linked disorder is also associated with reduced cAMP levels in humans as well as animal models. We assessed the therapeutic and neurochemical effects of chronic administration of the phosphodiesterase-4D negative allosteric modulator, BPN14770, in a mouse model of FXS (Fmr1 KO). Groups of male Fmr1 KO mice and control littermates were treated with dietary BPN14770 commencing postnatal day 21. A dose-response effect was investigated. At 90 days of age, mice underwent behavior tests including open field, novel object recognition, three chambered sociability and social novelty tests, passive avoidance, and sleep duration analysis. These tests were followed by in vivo measurement of regional rates of cerebral protein synthesis (rCPS) with the autoradiographic L-[1-14C]leucine method. BPN14770 treatment had positive effects on the behavioral phenotype in Fmr1 KO mice. Some effects such as increased sleep duration and increased social behavior occurred in both genotypes. In the open field, the hyperactivity response in Fmr1 KO mice was ameliorated by BPN14770 treatment at low and intermediate doses. BPN14770 treatment tended to increase rCPS in a dose-dependent manner in WT mice, whereas in Fmr1 KO mice effects on rCPS were less apparent. Results indicate BPN14770 treatment improves some behavior in Fmr1 KO mice. Results also suggest a genotype difference in the regulation of translation via a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Michael Rosenheck
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Mark E Gurney
- Tetra Discovery Partners, Inc, Grand Rapids, MI, USA
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
19
|
Hodges SL, Womble PD, Kwok EM, Darner AM, Senger SS, Binder MS, Faust AM, Condon SM, Nolan SO, Quintero SI, Lugo JN. Rapamycin, but not minocycline, significantly alters ultrasonic vocalization behavior in C57BL/6J pups in a flurothyl seizure model. Behav Brain Res 2021; 410:113317. [PMID: 33910029 DOI: 10.1016/j.bbr.2021.113317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Eliesse M Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Alyssa M Darner
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Savannah S Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Amanda M Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Siena M Condon
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Saul I Quintero
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
20
|
Cogram P, Alkon DL, Crockford D, Deacon RMJ, Hurley MJ, Altimiras F, Sun MK, Tranfaglia M. Chronic bryostatin-1 rescues autistic and cognitive phenotypes in the fragile X mice. Sci Rep 2020; 10:18058. [PMID: 33093534 PMCID: PMC7581799 DOI: 10.1038/s41598-020-74848-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS), an X-chromosome linked intellectual disability, is the leading monogenetic cause of autism spectrum disorder (ASD), a neurodevelopmental condition that currently has no specific drug treatment. Building upon the demonstrated therapeutic effects on spatial memory of bryostatin-1, a relatively specific activator of protein kinase C (PKC)ε, (also of PKCα) on impaired synaptic plasticity/maturation and spatial learning and memory in FXS mice, we investigated whether bryostatin-1 might affect the autistic phenotypes and other behaviors, including open field activity, activities of daily living (nesting and marble burying), at the effective therapeutic dose for spatial memory deficits. Further evaluation included other non-spatial learning and memory tasks. Interestingly, a short period of treatment (5 weeks) only produced very limited or no therapeutic effects on the autistic and cognitive phenotypes in the Fmr1 KO2 mice, while a longer treatment (13 weeks) with the same dose of bryostatin-1 effectively rescued the autistic and non-spatial learning deficit cognitive phenotypes. It is possible that longer-term treatment would result in further improvement in these fragile X phenotypes. This effect is clearly different from other treatment strategies tested to date, in that the drug shows little acute effect, but strong long-term effects. It also shows no evidence of tolerance, which has been a problem with other drug classes (mGluR5 antagonists, GABA-A and -B agonists). The results strongly suggest that, at appropriate dosing and therapeutic period, chronic bryostatin-1 may have great therapeutic value for both ASD and FXS.
Collapse
Affiliation(s)
- Patricia Cogram
- FRAXA-DVI, FRAXA, Santiago, Chile. .,IEB, Faculty of Science, University of Chile, Santiago, Chile.
| | | | | | - Robert M J Deacon
- FRAXA-DVI, FRAXA, Santiago, Chile.,IEB, Faculty of Science, University of Chile, Santiago, Chile
| | - Michael J Hurley
- Neuroimmunology, Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Francisco Altimiras
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | | | | |
Collapse
|
21
|
Neurobiological Mechanisms of Autism Spectrum Disorder and Epilepsy, Insights from Animal Models. Neuroscience 2020; 445:69-82. [DOI: 10.1016/j.neuroscience.2020.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 02/09/2023]
|
22
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
23
|
Yuskaitis CJ, Rossitto LA, Gurnani S, Bainbridge E, Poduri A, Sahin M. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice. Hum Mol Genet 2020; 28:2952-2964. [PMID: 31174205 DOI: 10.1093/hmg/ddz123] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023] Open
Abstract
DEPDC5 is now recognized as one of the genes most often implicated in familial/inherited focal epilepsy and brain malformations. Individuals with pathogenic variants in DEPDC5 are at risk for epilepsy, associated neuropsychiatric comorbidities and sudden unexplained death in epilepsy. Depdc5flox/flox-Syn1Cre (Depdc5cc+) neuronal-specific Depdc5 knockout mice exhibit seizures and neuronal mTORC1 hyperactivation. It is not known if Depdc5cc+ mice have a hyperactivity/anxiety phenotype, die early from terminal seizures or whether mTOR inhibitors rescue DEPDC5-related seizures and associated comorbidities. Herein, we report that Depdc5cc+ mice were hyperactive in open-field testing but did not display anxiety-like behaviors on the elevated-plus maze. Unlike many other mTOR-related models, Depdc5cc+ mice had minimal epileptiform activity and rare seizures prior to seizure-induced death, as confirmed by video-EEG monitoring. Treatment with the mTORC1 inhibitor rapamycin starting after 3 weeks of age significantly prolonged the survival of Depdc5cc+ mice and partially rescued the behavioral hyperactivity. Rapamycin decreased the enlarged brain size of Depdc5cc+ mice with corresponding decrease in neuronal soma size. Loss of Depdc5 led to a decrease in the other GATOR1 protein levels (NPRL2 and NPRL3). Rapamycin failed to rescue GATOR1 protein levels but rather rescued downstream mTORC1 hyperactivity as measured by phosphorylation of S6. Collectively, our data provide the first evidence of behavioral alterations in mice with Depdc5 loss and support mTOR inhibition as a rational therapeutic strategy for DEPDC5-related epilepsy in humans.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sarika Gurnani
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Elizabeth Bainbridge
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019; 39:9852-9863. [PMID: 31666356 PMCID: PMC6891051 DOI: 10.1523/jneurosci.0886-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.
Collapse
Affiliation(s)
| | | | - Seth Hays
- Department of Neuroscience, Dallas, and
| | | | | | | | - Karen Pawlowski
- Department of Otolaryngology and Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9035
| | | | | |
Collapse
|
25
|
Saré RM, Song A, Levine M, Lemons A, Loutaev I, Sheeler C, Hildreth C, Mfon A, Cooke S, Smith CB. Chronic Sleep Restriction in Developing Male Mice Results in Long Lasting Behavior Impairments. Front Behav Neurosci 2019; 13:90. [PMID: 31130852 PMCID: PMC6509425 DOI: 10.3389/fnbeh.2019.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Sleep abnormalities are prevalent in autism spectrum disorders (ASD). Moreover, the severity of ASD symptoms are correlated with the degree of disturbed sleep. We asked if disturbed sleep during brain development itself could lead to ASD-like symptoms, particularly behavioral manifestations. We reasoned that sleep is known to be important for normal brain development and plasticity, so disrupted sleep during development might result in changes that contribute to behavioral impairments associated with ASD. We sleep-restricted C57BL/6J male mice [beginning at postnatal day 5 (P5) and continuing through P52] 3 h per day by means of gentle handling and compared the data with a stress group (handled every 15 min during the 3-h period) and a control group (no additional handling). From P42–P52, we assessed the behavioral effects of sleep-restriction in this pre-recovery phase. Then, we allowed the mice to recover for 4 weeks and tested behavior once again. Compared to the control group, we found that sleep restricted-mice had long-lasting hypoactivity, and impaired social behavior; repetitive behavior was unaffected. These behavior changes were accompanied by an increase in the downstream signaling products of the mammalian target of rapamycin pathway. These data affirm the importance of undisturbed sleep during development and show that, at least in this model, sleep-restriction can play a causative role in the development of behavioral abnormalities. Assessing and treating sleep abnormalities in ASD may be important in alleviating some of the symptoms.
Collapse
Affiliation(s)
- Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Alex Song
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Merlin Levine
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Abigail Lemons
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Christine Hildreth
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Angel Mfon
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Spencer Cooke
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Kinase pathway inhibition restores PSD95 induction in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A 2019; 116:12007-12012. [PMID: 31118285 DOI: 10.1073/pnas.1812056116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates translation of numerous mRNA targets, some of which are present at synapses. While protein synthesis deficits have long been postulated as an etiology of FXS, how FMRP loss affects distributions of newly synthesized proteins is unknown. Here we investigated the role of FMRP in regulating expression of new copies of the synaptic protein PSD95 in an in vitro model of synaptic plasticity. We find that local BDNF application promotes persistent accumulation of new PSD95 at stimulated synapses and dendrites of cultured neurons, and that this accumulation is absent in FMRP-deficient mouse neurons. New PSD95 accumulation at sites of BDNF stimulation does not require known mechanisms regulating FMRP-mRNA interactions but instead requires the PI3K-mTORC1-S6K1 pathway. Surprisingly, in FMRP-deficient neurons, BDNF induction of new PSD95 accumulation can be restored by mTORC1-S6K1 blockade, suggesting that constitutively high mTORC1-S6K1 activity occludes PSD95 regulation by BDNF and that alternative pathways exist to mediate induction when mTORC1-S6K1 is inhibited. This study provides direct evidence for deficits in local protein synthesis and accumulation of newly synthesized protein in response to local stimulation in FXS, and supports mTORC1-S6K1 pathway inhibition as a potential therapeutic approach for FXS.
Collapse
|
27
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
28
|
Barone I, Hawks-Mayer H, Lipton JO. Mechanisms of sleep and circadian ontogeny through the lens of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 160:160-172. [DOI: 10.1016/j.nlm.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
29
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
30
|
Saré RM, Figueroa C, Lemons A, Loutaev I, Beebe Smith C. Comparative Behavioral Phenotypes of Fmr1 KO, Fxr2 Het, and Fmr1 KO/ Fxr2 Het Mice. Brain Sci 2019; 9:brainsci9010013. [PMID: 30654445 PMCID: PMC6356887 DOI: 10.3390/brainsci9010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene leading to loss of the protein product fragile X mental retardation protein (FMRP). FXS is the most common monogenic cause of intellectual disability. There are two known mammalian paralogs of FMRP, FXR1P, and FXR2P. The functions of FXR1P and FXR2P and their possible roles in producing or modulating the phenotype observed in FXS are yet to be identified. Previous studies have revealed that mice lacking Fxr2 display similar behavioral abnormalities as Fmr1 knockout (KO) mice. In this study, we expand upon the behavioral phenotypes of Fmr1 KO and Fxr2+/− (Het) mice and compare them with Fmr1 KO/Fxr2 Het mice. We find that Fmr1 KO and Fmr1 KO/Fxr2 Het mice are similarly hyperactive compared to WT and Fxr2 Het mice. Fmr1 KO/Fxr2 Het mice have more severe learning and memory impairments than Fmr1 KO mice. Fmr1 KO mice display significantly impaired social behaviors compared to WT mice, which are paradoxically reversed in Fmr1 KO/Fxr2 Het mice. These results highlight the important functional consequences of loss or reduction of FMRP and FXR2P.
Collapse
Affiliation(s)
- Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Christopher Figueroa
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Abigail Lemons
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| |
Collapse
|
31
|
Patel J, Lukkes JL, Shekhar A. Overview of genetic models of autism spectrum disorders. PROGRESS IN BRAIN RESEARCH 2018; 241:1-36. [PMID: 30447752 DOI: 10.1016/bs.pbr.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopment disorders that are characterized by heterogenous cognitive deficits and genetic factors. As more ASD risk genes are identified, genetic animal models have been developed to parse out the underlying neurobiological mechanisms of ASD. In this review, we discuss a subset of genetic models of ASD, focusing on those that have been widely studied and strongly linked to ASD. We focus our discussion of these models in the context of the theories and potential mechanisms of ASD, including disruptions in cell growth and proliferation, spine dynamics, synaptic transmission, excitation/inhibition balance, intracellular signaling, neuroinflammation, and behavior. In addition to ASD pathophysiology, we examine the limitations and challenges that genetic models pose for the study of ASD biology. We end with a review of innovative techniques and concepts of ASD pathology that can be further applied to and studied using genetic ASD models.
Collapse
Affiliation(s)
- Jheel Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
32
|
Sun J, Liu Y, Jia Y, Hao X, Lin WJ, Tran J, Lynch G, Baudry M, Bi X. UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. eLife 2018; 7:37993. [PMID: 30020076 PMCID: PMC6063731 DOI: 10.7554/elife.37993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. p18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.
Collapse
Affiliation(s)
- Jiandong Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Yousheng Jia
- Department of Psychiatry, University of California, Irvine, United States
| | - Xiaoning Hao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Wei Ju Lin
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Jennifer Tran
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Gary Lynch
- Department of Psychiatry, University of California, Irvine, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Xiaoning Bi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| |
Collapse
|
33
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|