1
|
Chen Y, Cui H, Han Z, Xu L, Wang L, Zhang Y, Liu L. LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. Neurochem Res 2024; 49:2910-2925. [PMID: 39060766 PMCID: PMC11365926 DOI: 10.1007/s11064-024-04213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, National Center for Mental Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhuanzhuan Han
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lei Xu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Lin Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuefei Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
2
|
Zhao J, Tian XC, Zhang JQ, Huang C, Sun Y, Qiao S, Jiang SL. Mechanism Exploration of Euphorbia fischeriana Steud. for Liver Cancer Based on Aspartic Acid Identification in Metabolomics. Chin J Integr Med 2024; 30:507-514. [PMID: 37861961 DOI: 10.1007/s11655-023-3706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the anti-liver cancer effects and aspartic acid (Asp)-related action mechanism of Euphorbia fischeriana Steud. (Lang Du, LD). METHODS The mice model of liver cancer was established by injection of H22 cells. After 5 days, mice were randomly divided into model group, sorafenib group (20 mg/kg), LD high-dose (LDH, 1.36 g/kg) group, LD medium-dose (LDM, 0.68 g/kg) group, and LD low-dose (LDL, 0.34 g/kg) group, 10 mice each group. Drugs were intragastrically administered to the mice once daily for 10 days, respectively. Body weight, tumor size and tumor weight were recorded. Hepatic index was calculated. Pathological changes of liver cancer tissues were evaluated by hematoxylin and eosin staining and TUNEL staining. Liquid chromatography-mass spectrometer was used to analyze different metabolites between the model and LDH groups. RESULTS After LD treatment, tumor weight, tumor size and hepatic index were reduced compared with the model group. Necrocytosis and karyorrhexis of tumor cells were found. Moreover, 61 differential metabolites (18 up-regulated, 43 down-regulated) were affirmed and 20 pathways of KEGG (P<0.05) were gotten. In addition, Bel-7402, HepG2 and H22 cell viabilities were significantly increased after adding Asp into the medium. And then, the cell proliferation effect induced by Asp was ameliorated by LD. CONCLUSION The anti-liver cancer efficacy of LD extract was validated in H22 mice model, and inhibition of Asp level might be the underlying mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Xin-Chen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Jia-Qi Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Chen Huang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Yan Sun
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Sen Qiao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Shu-Long Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
3
|
Wolf NI, Engelen M, van der Knaap MS. MRI pattern recognition in white matter disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:37-50. [PMID: 39322391 DOI: 10.1016/b978-0-323-99209-1.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Magnetic resonance imaging (MRI) pattern recognition is a powerful tool for quick diagnosis of genetic and acquired white matter disorders. In many cases, distribution and character of white matter abnormalities directly point to a specific diagnosis and guide confirmatory testing. Knowledge of normal brain development is essential to interpret white matter changes in young children. MRI is also used for disease staging and treatment decisions in leukodystrophies and acquired disorders as multiple sclerosis, and as a biomarker to follow treatment effects.
Collapse
Affiliation(s)
- Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Lian P, Cai X, Wang C, Liu K, Yang X, Wu Y, Zhang Z, Ma Z, Cao X, Xu Y. Identification of metabolism-related subtypes and feature genes in Alzheimer's disease. J Transl Med 2023; 21:628. [PMID: 37715200 PMCID: PMC10504766 DOI: 10.1186/s12967-023-04324-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/01/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Owing to the heterogeneity of Alzheimer's disease (AD), its pathogenic mechanisms are yet to be fully elucidated. Evidence suggests an important role of metabolism in the pathophysiology of AD. Herein, we identified the metabolism-related AD subtypes and feature genes. METHODS The AD datasets were obtained from the Gene Expression Omnibus database and the metabolism-relevant genes were downloaded from a previously published compilation. Consensus clustering was performed to identify the AD subclasses. The clinical characteristics, correlations with metabolic signatures, and immune infiltration of the AD subclasses were evaluated. Feature genes were screened using weighted correlation network analysis (WGCNA) and processed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, three machine-learning algorithms were used to narrow down the selection of the feature genes. Finally, we identified the diagnostic value and expression of the feature genes using the AD dataset and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS Three AD subclasses were identified, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. MCA contained signatures associated with high AD progression and may represent a high-risk subclass compared with the other two subclasses. MCA exhibited a high expression of genes related to glycolysis, fructose, and galactose metabolism, whereas genes associated with the citrate cycle and pyruvate metabolism were downregulated and associated with high immune infiltration. Conversely, MCB was associated with citrate cycle genes and exhibited elevated expression of immune checkpoint genes. Using WGCNA, 101 metabolic genes were identified to exhibit the strongest association with poor AD progression. Finally, the application of machine-learning algorithms enabled us to successfully identify eight feature genes, which were employed to develop a nomogram model that could bring distinct clinical benefits for patients with AD. As indicated by the AD datasets and qRT-PCR analysis, these genes were intimately associated with AD progression. CONCLUSION Metabolic dysfunction is associated with AD. Hypothetical molecular subclasses of AD based on metabolic genes may provide new insights for developing individualized therapy for AD. The feature genes highly correlated with AD progression included GFAP, CYB5R3, DARS, KIAA0513, EZR, KCNC1, COLEC12, and TST.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Zhu J, Guo X, Ran N, Liang J, Liu F, Liu J, Wang R, Jiang L, Yang D, Liu M. Leukoencephalopathy hypomyelination with brainstem and spinal cord involvement and leg spasticity caused by DARS1 mutations. Front Genet 2023; 13:1009230. [PMID: 36712860 PMCID: PMC9878823 DOI: 10.3389/fgene.2022.1009230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by aspartyl-tRNA synthetase (DARS1) gene mutations, is extremely rare, with only a few cases reported worldwide; thus, reports on HBSL treatment are few. In this review, we summarized the clinical manifestations, imaging features, treatment methods, and gene mutations responsible for HBSL based on relevant studies and cases.
Collapse
Affiliation(s)
- Jingyi Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Guo
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingtao Liang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| | - Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| |
Collapse
|
8
|
Fröhlich D, Kalotay E, von Jonquieres G, Bongers A, Lee B, Suchowerska AK, Housley GD, Klugmann M. Dual-function AAV gene therapy reverses late-stage Canavan disease pathology in mice. Front Mol Neurosci 2022; 15:1061257. [PMID: 36568275 PMCID: PMC9772617 DOI: 10.3389/fnmol.2022.1061257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Dominik Fröhlich,
| | - Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K. Suchowerska
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia,Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany,Matthias Klugmann,
| |
Collapse
|
9
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Klugmann M, Kalotay E, Delerue F, Ittner LM, Bongers A, Yu J, Morris MJ, Housley GD, Fröhlich D. Developmental delay and late onset HBSL pathology in hypomorphic Dars1 M256L mice. Neurochem Res 2022; 47:1972-1984. [PMID: 35357600 PMCID: PMC9217827 DOI: 10.1007/s11064-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.
Collapse
Affiliation(s)
- Matthias Klugmann
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| | - Elizabeth Kalotay
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Josephine Yu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Liu M, Xiao W, Yang F, Wang X, Chen C, Jin S, Ran N, Chen W, Yang D. Case Report: DARS Mutations Responsible for Hypomyelination With Brain Stem and Spinal Cord Involvement and Leg Spasticity. Front Genet 2022; 13:845967. [PMID: 35571067 PMCID: PMC9094363 DOI: 10.3389/fgene.2022.845967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a rare form of leukodystrophy presenting with varying clinical and imaging features. We report a case of HBSL to investigate the clinical and radiological characteristics of HBSL resulting from cytoplasmic aspartyl-tRNA synthetase gene (DARS) mutations. Subjects: We report a patient of HBSL with compound heterozygous mutations in DARS1. To study the potential genetic variations of the patient, targeted next-generation sequencing, whole-exome sequencing, and Sanger sequencing were used. We reviewed the clinical and radiological features of the patient. The literature was thoroughly evaluated. Results: The patient suffered from developmental regression associated with lower limbs spasticity, developmental delay, and paralysis of the lower limbs since childhood. Decreased T1 and increased T2 signals were observed on the bilateral basal, centrum ovale, frontal lobe, parietal lobe, and ganglia in cervical cord magnetic resonance imaging (MRI). The patient had two compound heterozygous mutations (NM_001349:c.1363T > C and NM_001349:c.821C > G) in the DARS1 gene. Conclusion: Two mutations in DARS1 were found to be associated with HBSL, one of them being reported for the first time. These findings can be valuable for diagnosing and providing genetic counseling to HBSL patients in the future.
Collapse
Affiliation(s)
- Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Xiao
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueqing Wang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuoguo Jin
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyin Chen
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Zhang M, Zhou Z, Liu Z, Liu F, Zhao C. Exploring the potential biomarkers for prognosis of glioblastoma via weighted gene co-expression network analysis. PeerJ 2022; 10:e12768. [PMID: 35111402 PMCID: PMC8781321 DOI: 10.7717/peerj.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor in the central system with a poor prognosis. Due to the complexity of its molecular mechanism, the recurrence rate and mortality rate of GBM patients are still high. Therefore, there is an urgent need to screen GBM biomarkers to prove the therapeutic effect and improve the prognosis. RESULTS We extracted data from GBM patients from the Gene Expression Integration Database (GEO), analyzed differentially expressed genes in GEO and identified key modules by weighted gene co-expression network analysis (WGCNA). GSE145128 data was obtained from the GEO database, and the darkturquoise module was determined to be the most relevant to the GBM prognosis by WGCNA (r = - 0.62, p = 0.01). We performed enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the interaction activity in the selected modules. Then Kaplan-Meier survival curve analysis was used to extract genes closely related to GBM prognosis. We used Kaplan-Meier survival curves to analyze the 139 genes in the darkturquoise module, identified four genes (DARS/GDI2/P4HA2/TRUB1) associated with prognostic GBM. Low expression of DARS/GDI2/TRUB1 and high expression of P4HA2 had a poor prognosis. Finally, we used tumor genome map (TCGA) data, verified the characteristics of hub genes through Co-expression analysis, Drug sensitivity analysis, TIMER database analysis and GSVA analysis. We downloaded the data of GBM from the TCGA database, the results of co-expression analysis showed that DARS/GDI2/P4HA2/TRUB1 could regulate the development of GBM by affecting genes such as CDC73/CDC123/B4GALT1/CUL2. Drug sensitivity analysis showed that genes are involved in many classic Cancer-related pathways including TSC/mTOR, RAS/MAPK.TIMER database analysis showed DARS expression is positively correlated with tumor purity (cor = 0.125, p = 1.07e-02)), P4HA2 expression is negatively correlated with tumor purity (cor =-0.279, p = 6.06e-09). Finally, GSVA analysis found that DARS/GDI2/P4HA2/TRUB1 gene sets are closely related to the occurrence of cancer. CONCLUSION We used two public databases to identify four valuable biomarkers for GBM prognosis, namely DARS/GDI2/P4HA2/TRUB1, which have potential clinical application value and can be used as prognostic markers for GBM.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Zhouyang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
14
|
von Jonquieres G, Rae CD, Housley GD. Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Front Cell Neurosci 2021; 15:661857. [PMID: 34239416 PMCID: PMC8258421 DOI: 10.3389/fncel.2021.661857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future.
Collapse
Affiliation(s)
- Georg von Jonquieres
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Shaker MR, Pietrogrande G, Martin S, Lee JH, Sun W, Wolvetang EJ. Rapid and Efficient Generation of Myelinating Human Oligodendrocytes in Organoids. Front Cell Neurosci 2021; 15:631548. [PMID: 33815061 PMCID: PMC8010307 DOI: 10.3389/fncel.2021.631548] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Human stem cell derived brain organoids are increasingly gaining attention as an ideal model system for investigating neurological diseases, particularly those that involve myelination defects. However, current protocols for generating brain organoids with sufficiently mature oligodendrocytes that deposit myelin on endogenously produced neurons are lengthy and complicated. Taking advantage of a human pluripotent stem cell line that reports on SOX10 expression, we developed a protocol that involves a 42 day exposure of neuroectoderm-derived organoids to a cocktail of growth factors and small molecules that collectively foster oligodendrocyte specification and survival. Importantly, the resulting day 42 brain organoids contain both myelinating oligodendrocytes, cortical neuronal cells and astrocytes. These oligodendrocyte brain organoids therefore constitute a valuable and tractable platform for functional neurogenomics and drug screening for white matter diseases.
Collapse
Affiliation(s)
- Mohammed R. Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Sally Martin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Muthiah A, Housley GD, Klugmann M, Fröhlich D. The Leukodystrophies HBSL and LBSL-Correlates and Distinctions. Front Cell Neurosci 2021; 14:626610. [PMID: 33574740 PMCID: PMC7870476 DOI: 10.3389/fncel.2020.626610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) accurately charge tRNAs with their respective amino acids. As such, they are vital for the initiation of cytosolic and mitochondrial protein translation. These enzymes have become increasingly scrutinized in recent years for their role in neurodegenerative disorders caused by the mutations of ARS-encoding genes. This review focuses on two such genes-DARS1 and DARS2-which encode cytosolic and mitochondrial aspartyl-tRNA synthetases, and the clinical conditions associated with mutations of these genes. We also describe attempts made at modeling these conditions in mice, which have both yielded important mechanistic insights. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a disease caused by a range of mutations in the DARS2 gene, initially identified in 2003. Ten years later, hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by mutations of cytosolic DARS1, was discovered. Multiple parallels have been drawn between the two conditions. The Magnetic Resonance Imaging (MRI) patterns are strikingly similar, but still set these two conditions apart from other leukodystrophies. Clinically, both conditions are characterized by lower limb spasticity, often associated with other pyramidal signs. However, perhaps due to earlier detection, a wider range of symptoms, including peripheral neuropathy, as well as visual and hearing changes have been described in LBSL patients. Both HBSL and LBSL are spectrum disorders lacking genotype to phenotype correlation. While the fatal phenotype of Dars1 or Dars2 single gene deletion mouse mutants revealed that the two enzymes lack functional redundancy, further pursuit of disease modeling are required to shed light onto the underlying disease mechanism, and enable examination of experimental treatments, including gene therapies.
Collapse
Affiliation(s)
| | | | | | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
17
|
Fröhlich D, Mendes MI, Kueh AJ, Bongers A, Herold MJ, Salomons GS, Housley GD, Klugmann M. A Hypomorphic Dars1 D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Front Cell Neurosci 2021; 14:625879. [PMID: 33551752 PMCID: PMC7855723 DOI: 10.3389/fncel.2020.625879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a leukodystrophy caused by missense mutations of the aspartyl-tRNA synthetase-encoding gene DARS1. The clinical picture includes the regression of acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Morphologically, HBSL is characterized by a distinct pattern of hypomyelination in the central nervous system including the anterior brainstem, the cerebellar peduncles and the supratentorial white matter as well as the dorsal columns and the lateral corticospinal tracts of the spinal cord. Adequate HBSL animal models are lacking. Dars1 knockout mice are embryonic lethal precluding examination of the etiology. To address this, we introduced the HBSL-causing Dars1 D367Y point mutation into the mouse genome. Surprisingly, mice carrying this mutation homozygously were phenotypically normal. As hypomorphic mutations are more severe in trans to a deletion, we crossed Dars1 D367Y/D367Y mice with Dars1-null carriers. The resulting Dars1 D367Y/- offspring displayed a strong developmental delay compared to control Dars1 D367Y/+ littermates, starting during embryogenesis. Only a small fraction of Dars1 D367Y/- mice were born, and half of these mice died with hydrocephalus during the first 3 weeks of life. Of the few Dars1 D367Y/- mice that were born at term, 25% displayed microphthalmia. Throughout postnatal life, Dars1 D367Y/- mice remained smaller and lighter than their Dars1 D367Y/+ littermates. Despite this early developmental deficit, once they made it through early adolescence Dars1 D367Y/- mice were phenotypically inconspicuous for most of their adult life, until they developed late onset motor deficits as well as vacuolization and demyelination of the spinal cord white matter. Expression levels of the major myelin proteins were reduced in Dars1 D367Y/- mice compared to controls. Taken together, Dars1 D367Y/- mice model aspects of the clinical picture of the corresponding missense mutation in HBSL. This model will enable studies of late onset deficits, which is precluded in Dars1 knockout mice, and can be leveraged to test potential HBSL therapeutics including DARS1 gene replacement therapy.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Marisa I. Mendes
- Metabolic Unit/Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory, UNSW Sydney, Kensington, NSW, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gajja S. Salomons
- Metabolic Unit/Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gary D. Housley
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
18
|
Das A, Fröhlich D, Achanta LB, Rowlands BD, Housley GD, Klugmann M, Rae CD. L-Aspartate, L-Ornithine and L-Ornithine-L-Aspartate (LOLA) and Their Impact on Brain Energy Metabolism. Neurochem Res 2020; 45:1438-1450. [PMID: 32424601 DOI: 10.1007/s11064-020-03044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
L-Ornithine-L-aspartate (LOLA), a crystalline salt, is used primarily in the management of hepatic encephalopathy. The degree to which it might penetrate the brain, and the effects it might have on metabolism in brain are poorly understood. Here, to investigate the effects of LOLA on brain energy metabolism we incubated brain cortical tissue slices from guinea pig (Cavea porcellus) with the constituent amino acids of LOLA, L-ornithine or L-aspartate, as well as LOLA, in the presence of [1-13C]D-glucose and [1,2-13C]acetate; these labelled substrates are useful indicators of brain metabolic activity. L-Ornithine produced significant "sedative" effects on brain slice metabolism, most likely via conversion of ornithine to GABA via the ornithine aminotransferase pathway, while L-aspartate showed concentration-dependent excitatory effects. The metabolic effects of LOLA reflected a mix of these two different processes and were concentration-dependent. We also investigated the effect of an intraperitoneal bolus injection of L-ornithine, L-aspartate or LOLA on levels of metabolites in kidney, liver and brain cortex and brain stem in mice (C57Bl6J) 1 h later. No significant changes in metabolite levels were seen following the bolus injection of L-aspartate, most likely due to rapid metabolism of aspartate before reaching the target tissue. Brain cortex glutamate was decreased by L-ornithine but no other brain effects were observed with any other compound. Kidney levels of aspartate were increased after injection of L-ornithine and LOLA which may be due to interference by ornithine with the kidney urea cycle. It is likely that without optimising chronic intravenous infusion, LOLA has minimal impact on healthy brain energy metabolism due to systemic clearance and the blood - brain barrier.
Collapse
Affiliation(s)
- Abhijit Das
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Kensington, 2052, Australia
| | - Lavanya B Achanta
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Kensington, 2052, Australia
| | - Benjamin D Rowlands
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Kensington, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Kensington, 2052, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Kensington, 2052, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia. .,School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Itoh M, Dai H, Horike SI, Gonzalez J, Kitami Y, Meguro-Horike M, Kuki I, Shimakawa S, Yoshinaga H, Ota Y, Okazaki T, Maegaki Y, Nabatame S, Okazaki S, Kawawaki H, Ueno N, Goto YI, Kato Y. Biallelic KARS pathogenic variants cause an early-onset progressive leukodystrophy. Brain 2020; 142:560-573. [PMID: 30715177 DOI: 10.1093/brain/awz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
The leukodystrophies cause severe neurodevelopmental defects from birth and follow an incurable and progressive course that often leads to premature death. It has recently been reported that abnormalities in aminoacyl t-RNA synthetase (ARS) genes are linked to various unique leukodystrophies and leukoencephalopathies. Aminoacyl t-RNA synthetase proteins are fundamentally known as the first enzymes of translation, catalysing the conjugation of amino acids to cognate tRNAs for protein synthesis. It is known that certain aminoacyl t-RNA synthetase have multiple non-canonical roles in both transcription and translation, and their disruption results in varied and complicated phenotypes. We clinically and genetically studied seven patients (six male and one female; aged 2 to 12 years) from five unrelated families who all showed the same phenotypes of severe developmental delay or arrest (7/7), hypotonia (6/7), deafness (7/7) and inability to speak (6/7). The subjects further developed intractable epilepsy (7/7) and nystagmus (6/6) with increasing age. They demonstrated characteristic laboratory data, including increased lactate and/or pyruvate levels (7/7), and imaging findings (7/7), including calcification and abnormal signals in the white matter and pathological involvement (2/2) of the corticospinal tracts. Through whole-exome sequencing, we discovered genetic abnormalities in lysyl-tRNA synthetase (KARS). All patients harboured the variant [c.1786C>T, p.Leu596Phe] KARS isoform 1 ([c.1702C>T, p.Leu568Phe] of KARS isoform 2) either in the homozygous state or compound heterozygous state with the following KARS variants, [c.879+1G>A; c.1786C>T, p.Glu252_Glu293del; p.Leu596Phe] ([c.795+1G>A; c.1702C>T, p.Glu224_Glu255del; p.Leu568Phe]) and [c.650G>A; c.1786C>T, p.Gly217Asp; p.Leu596Phe] ([c.566G>A; c.1702C>T, p.Gly189Asp; p.Leu568Phe]). Moreover, similarly disrupted lysyl-tRNA synthetase (LysRS) proteins showed reduced enzymatic activities and abnormal CNSs in Xenopus embryos. Additionally, LysRS acts as a non-canonical inducer of the immune response and has transcriptional activity. We speculated that the complex functions of the abnormal LysRS proteins led to the severe phenotypes in our patients. These KARS pathological variants are novel, including the variant [c.1786C>T; p.Leu596Phe] (c.1702C>T; p.Leu568Phe) shared by all patients in the homozygous or compound-heterozygous state. This common position may play an important role in the development of severe progressive leukodystrophy. Further research is warranted to further elucidate this relationship and to investigate how specific mutated LysRS proteins function to understand the broad spectrum of KARS-related diseases.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hongmei Dai
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - John Gonzalez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yoshikazu Kitami
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Ichiro Kuki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | | | - Harumi Yoshinaga
- Department of Child Neurology, Okayama University, Okayama, Japan
| | - Yoko Ota
- Department of Pathology and Experimental Medicine, Okayama University, Okayama, Japan
| | - Tetsuya Okazaki
- Department of Child Neurology, University of Tottori, Yonago, Japan
| | | | - Shin Nabatame
- Department of Pediatrics, Osaka University, Osaka, Japan
| | - Shin Okazaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Hisashi Kawawaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Natural Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoichi Kato
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
20
|
Qin C, Xu PP, Zhang X, Zhang C, Liu CB, Yang DG, Gao F, Yang ML, Du LJ, Li JJ. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 2020; 15:212-221. [PMID: 31552886 PMCID: PMC6905339 DOI: 10.4103/1673-5374.265560] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs (tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs (tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points: (1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes. (2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. (3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma. (4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
Collapse
Affiliation(s)
- Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|