1
|
Imamura A, Araki R, Takahashi Y, Miyatake K, Kato F, Honjoh S, Tsurugizawa T. Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice. Neuroimage 2025; 307:121024. [PMID: 39805408 DOI: 10.1016/j.neuroimage.2025.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw. ZTE exhibited higher temporal signal-to-noise ratios than conventional fMRI sequences. Electrical sensory stimulation of the hind paw evoked ZTE signal increase in the primary somatosensory cortex. Formalin injection into the hind paw evoked early and latent change of ZTE signals throughout the whole brain including the subregions of amygdala. Furthermore, resting-state fMRI using ZTE demonstrated the functional connectivity, including that of the amygdala. These results indicate the feasibility of ZTE for whole brain fMRI including the amygdala and we first show acute and latent activity in different subnuclei of the amygdala complex after nociceptive stimulation.
Collapse
Affiliation(s)
- Ayako Imamura
- Ph. D. Program in Humanics, University of Tsukuba, Tsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan; Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichi Miyatake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Sakiko Honjoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan; Universite du Quebec a Trios-Rivieres, Trois- Rivières, Canada.
| |
Collapse
|
2
|
Obray JD, Wilkes ET, Scofield MD, Chandler LJ. Adolescent alcohol exposure promotes mechanical allodynia and alters synaptic function at inputs from the basolateral amygdala to the prelimbic cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.17.599360. [PMID: 38948749 PMCID: PMC11212875 DOI: 10.1101/2024.06.17.599360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Binge drinking is common among adolescents despite mounting evidence linking it to various adverse health outcomes that include heightened pain perception. The prelimbic (PrL) cortex is vulnerable to insult from adolescent alcohol exposure and receives input from the basolateral amygdala (BLA) while sending projections to the ventrolateral periaqueductal gray (vlPAG) - two brain regions implicated in nociception. In this study, adolescent intermittent ethanol (AIE) exposure was carried out in male and female rats using a vapor inhalation procedure. Assessments of mechanical and thermal sensitivity revealed that AIE exposure induced protracted mechanical allodynia. To investigate synaptic function at BLA inputs onto defined populations of PrL neurons, retrobeads and viral labelling were combined with optogenetics and slice electrophysiology. Recordings from retrobead labelled cells in the PrL revealed AIE reduced BLA driven feedforward inhibition of neurons projecting from the PrL to the vlPAG, resulting in augmented excitation/inhibition (E/I) balance and increased intrinsic excitability. Consistent with this finding, recordings from virally tagged PrL parvalbumin interneurons (PVINs) demonstrated that AIE exposure reduced both E/I balance at BLA inputs onto PVINs and PVIN intrinsic excitability. These findings provide compelling evidence that AIE alters synaptic function and intrinsic excitability within a prefrontal nociceptive circuit.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| | - Erik T. Wilkes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425
| |
Collapse
|
3
|
Ma L, Yue L, Liu S, Zhang Y, Zhang M, Cui S, Liu FY, Yi M, Wan Y. Dynamic Changes of the Infralimbic Cortex and Its Regulation of the Prelimbic Cortex in Rats with Chronic Inflammatory Pain. Neurosci Bull 2024; 40:872-886. [PMID: 38180711 PMCID: PMC11250740 DOI: 10.1007/s12264-023-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024] Open
Abstract
The prelimbic cortex (PL) is actively engaged in pain modulation. The infralimbic cortex (IL) has been reported to regulate the PL. However, how this regulation affects pain remains unclear. In the present study, we recorded temporary hyper-activity of PL pyramidal neurons responding to nociceptive stimuli, but a temporary hypo-function of the IL by in vivo electrophysiological recording in rats with peripheral inflammation. Manipulation of the PL or IL had opposite effects on thermal hyperalgesia. Furthermore, the functional connectivity and chemogenetic regulation between the subregions indicated an inhibitory influence of the IL on the PL. Activation of the pathway from the IL to the PL alleviated thermal hyperalgesia, whereas its inhibition exacerbated chronic pain. Overall, our results suggest a new mechanism underlying the role of the medial prefrontal cortex in chronic pain: hypo-function of the IL leads to hyperactivity of the PL, which regulates thermal hyperalgesia, and thus contributes to the chronicity of pain.
Collapse
Affiliation(s)
- Longyu Ma
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, 100101, China
| | - Shuting Liu
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Yu Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Meng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shuang Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Feng-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Ming Yi
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Fu S, Sun H, Wang J, Gao S, Zhu L, Cui K, Liu S, Qi X, Guan R, Fan X, Liu Q, Chen W, Su L, Cui S, Liao F, Liu F, Wong CCL, Yi M, Wan Y. Impaired neuronal macroautophagy in the prelimbic cortex contributes to comorbid anxiety-like behaviors in rats with chronic neuropathic pain. Autophagy 2024; 20:1559-1576. [PMID: 38522078 PMCID: PMC11210912 DOI: 10.1080/15548627.2024.2330038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
A large proportion of patients with chronic pain experience co-morbid anxiety. The medial prefrontal cortex (mPFC) is proposed to underlie this comorbidity, but the molecular and neuronal mechanisms are not fully understood. Here, we reported that impaired neuronal macroautophagy in the prelimbic cortical (PrL) subregion of the mPFC paralleled the occurrence of anxiety-like behaviors in rats with chronic spared nerve injury (SNI). Intriguingly, such macroautophagy impairment was mainly observed in a FOS/c-Fos+ neuronal subpopulation in the PrL. Chemogenetic inactivation of this comorbid anxiety-related neuronal ensemble relieved pain-induced anxiety-like behaviors. Rescuing macroautophagy impairment in this neuronal ensemble relieved chronic pain-associated anxiety and mechanical allodynia and restored synaptic homeostasis at the molecular level. By contrast, artificial disruption of macroautophagy induced early-onset co-morbid anxiety in neuropathic rats, but not general anxiety in normal rats. Taken together, our work identifies causal linkage between PrL neuronal macroautophagy dysfunction and comorbid anxiety in neuropathic pain and provides novel insights into the role of PrL by differentiating its contribution in pain-induced comorbid anxiety from its modulation over general anxiety-like behaviors.Abbreviation: AAV: adeno-associated viruses; ACC: anterior cingulate cortex; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CNO: clozapine-N-oxide; CQ: chloroquine; DIA: data independent acquisition; DIO: double floxed inverse orf; DLG4/PSD-95: discs large MAGUK scaffold protein 4; Dox: doxycycline; GABA: γ-aminobutyric acid; GFP: green fluorescent protein; GO: gene ontology; Gi: inhibitory guanine nucleotide-binding proteins; HsCHRM4/M4D: human cholinergic receptor muscarinic 4; HsSYN: human synapsin; KEGG: Kyoto encyclopedia of genes and genomes; LAMP1: lysosomal-associated membrane protein 1; LC3-II: PE conjugated microtubule-associated protein 1 light chain3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mPFC: medial prefrontal cortex; P2A: 2A self-cleaving peptide; PPI: protein-protein interaction networks; PrL: prelimbic cortex; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; rtTA: reverse tetracycline-transactivator; SDS-PAGE: sodium dodecylsulfate-polyacrylamide gel electrophoresis; SHANK3: SH3 and multiple ankyrin repeat domains 3; SLC1A1/EAAC1: solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, systemXag), member 1; SNAP23: synaptosomal-associated protein 23; SNI:spared nerve injury; SQSTM1/p62: sequestosome 1; SYT3: synaptotagmin 3; TRE: tetracycline-responsive element; TRE3G: third-generation tetracycline-responsive element.
Collapse
Affiliation(s)
- Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
- UCL School of Pharmacy, University College London, London, UK
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shuaixin Gao
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Human Nutrition Program, Department of Human Sciences & James Comprehensive Cancer Center, 309 Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Liu Zhu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shimeng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Rui Guan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Xiaocen Fan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Qingying Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Wen Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Li Su
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Feifei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P.R. China
| |
Collapse
|
5
|
Balali-Dehkordi S, Habibian-Dehkordi S, Amini-Khoei H, Mohajerian R. Ferulic acid via attenuation of oxidative stress and neuro-immune response utilizes antinociceptive effect in mouse model of formalin test. IBRO Neurosci Rep 2024; 16:51-56. [PMID: 38145175 PMCID: PMC10733636 DOI: 10.1016/j.ibneur.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Plenty evidences suggests that neuroinflammation and oxidative stress augmented the neural sensitivity specifying that neuro-immune response is involved in the pathophysiology of pain. Ferulic acid (FA), a natural antioxidant found in various fruits, has various pharmacological properties. The purpose of the current study was to assess the antinociceptive effect of FA in a mouse model of formalin test with focus on its anti-neuroinflammatory and antioxidative stress effects. Methods The injection of FA (40 mg/kg), piroxicam (2 mg/kg), and saline (0.9% NaCl) (1 ml/kg) was done intraperitoneally and after one hour, formalin injected into the plantar surface of the hind paw of mice. Then pain behavior was documented during 60 min. Then mice were euthanized and prefrontal cortex (PFC) samples were taken. Malondialdehyde (MDA) level, antioxidant capacity and expression of inflammatory genes, counting tumor necrosis factor (TNF-) and interleukine 1 (IL-1) evaluated in the PFC. Results exhibited that FA declined the pain behavior following injection of formalin. Besides, FA significantly diminished the MDA level and increased the antioxidant capacity in the PFC. We revealed that FA diminished the expression of TNF-α and IL-1β genes in the PFC. Conclusion We conclude that FA exerted antinociceptive effects in the formalin test in mice, at least partially, by reducing oxidative stress and neuroimmune response in the PFC.
Collapse
Affiliation(s)
- Shima Balali-Dehkordi
- Department of Basic Sciences, Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | | | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahil Mohajerian
- Department of Basic Sciences, Veterinary Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Qi X, Cui K, Zhang Y, Wang L, Tong J, Sun W, Shao S, Wang J, Wang C, Sun X, Xiao L, Xi K, Cui S, Liu F, Ma L, Zheng J, Yi M, Wan Y. A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity. Cell Rep 2022; 41:111833. [PMID: 36516746 DOI: 10.1016/j.celrep.2022.111833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.
Collapse
Affiliation(s)
- Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, P.R. China
| | - Linshu Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Cheng Wang
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, P.R. China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Liming Xiao
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Ke Xi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P.R. China.
| |
Collapse
|
7
|
Mitra S, Thomas SA, Martin JA, Williams J, Woodhouse K, Chandra R, Li JX, Lobo MK, Sim FJ, Dietz DM. EGR3 regulates opioid-related nociception and motivation in male rats. Psychopharmacology (Berl) 2022; 239:3539-3550. [PMID: 36098762 PMCID: PMC10094589 DOI: 10.1007/s00213-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Collapse
Affiliation(s)
- Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
- Department of Biomedical Sciences, John C. Edwards School of Medicine, Marshall University, 1700, 3rd Avenue, Huntington, WV, 25755, USA.
| | - Shruthi A Thomas
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jennifer A Martin
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jamal Williams
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Kristen Woodhouse
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Jun Xu Li
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - David M Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Vizcarra VS, Barber KR, Franca-Solomon G, Majuta L, Smith A, Langlais PR, Largent-Milnes TM, Vanderah TW, Riegel AC. Targeting 5-HT 2A receptors and Kv7 channels in PFC to attenuate chronic neuropathic pain in rats using a spared nerve injury model. Neurosci Lett 2022; 789:136864. [PMID: 36063980 PMCID: PMC10088904 DOI: 10.1016/j.neulet.2022.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Translational Biomedical Sciences Graduate Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box URNI, Rochester, NY, 14642, USA
| | - Kara R Barber
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Gabriela Franca-Solomon
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Lisa Majuta
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Angela Smith
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 52242, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona, 85721, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Arthur C Riegel
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA; Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, 85721, USA; James C. Wyant College of Optical Sciences, the University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
9
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
10
|
Zheng XQ, Wu YH, Huang JF, Wu AM. Neurophysiological mechanisms of cancer-induced bone pain. J Adv Res 2022; 35:117-127. [PMID: 35003797 PMCID: PMC8721251 DOI: 10.1016/j.jare.2021.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cancer-induced Bone Pain (CIBP) is an important factor affecting their quality of life of cancer survivors. In addition, current clinical practice and scientific research suggest that neuropathic pain is a representative component of CIBP. However, given the variability of cancer conditions and the complexity of neuropathic pain, related mechanisms have been continuously supplemented but have not been perfected. Aim of Review Therefore, the current review highlights the latest progress in basic research on the field and proposes potential therapeutic targets, representative drugs and upcoming therapies. Key Scientific Concepts of Review Notably, factors such as central sensitization, neuroinflammation, glial cell activation and an acidic environment are considered to be related to neuropathic pain in CIBP. Nonetheless, further research is needed to ascertain the mechanism of CIBP in order to develop highly effective drugs. Moreover, more attention needs to be paid to the care of patients with advanced cancer.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu-hao Wu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jin-feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
11
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Cardenas A, Papadogiannis A, Dimitrov E. The role of medial prefrontal cortex projections to locus ceruleus in mediating the sex differences in behavior in mice with inflammatory pain. FASEB J 2021; 35:e21747. [PMID: 34151467 DOI: 10.1096/fj.202100319rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
13
|
Yu ML, Wei RD, Zhang T, Wang JM, Cheng Y, Qin FF, Fu SP, Lu ZG, Lu SF. Electroacupuncture Relieves Pain and Attenuates Inflammation Progression Through Inducing IL-10 Production in CFA-Induced Mice. Inflammation 2021; 43:1233-1245. [PMID: 32198725 DOI: 10.1007/s10753-020-01203-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic effect of electroacupuncture (EA) on inflammatory pain has been well recognized clinically, but the mechanism is unclear. Interleukin-10 (IL-10), which is produced by regulatory T (Treg) cell, is a key anti-inflammatory cytokine for relieving inflammatory pain. Therefore, the aim of this study is to investigate whether EA could inhibit CFA-induced pain and attenuate inflammation progression by regulating the activation of immunocyte and inducing the expression of IL-10. In this study, mice were treated with EA (2/100 Hz, 2 mA) for five consecutive days after 1 day of CFA injection. The behavioral tests were measured and analyzed after the daily EA treatment; then, hind paw, spinal cord, and spleen tissues were prepared for assessment. The results showed that EA treatment significantly increased the mechanical threshold and thermal latency after CFA injection and boosted the expression of IL-10 in paw and spinal cord tissues. EA treatment promoted Treg cells; suppressed macrophage and neutrophils cells; reduced the expression of IL-1β, NLRP3, and TNF-α; and ultimately relieved inflammatory pain. The findings suggested that the analgesic and anti-inflammatory effect of EA treatment could be partially associated with suppression of pro-inflammatory cytokines mediated by induction of IL-10.
Collapse
Affiliation(s)
- Mei-Ling Yu
- Nanjing University of Chinese Medicine, First Clinical Medical College, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui-de Wei
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Cheng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fen-Fen Qin
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Gang Lu
- Nanjing University of Chinese Medicine, First Clinical Medical College, Nanjing, China. .,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
14
|
Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain 2021; 162:1848-1863. [PMID: 33449512 DOI: 10.1097/j.pain.0000000000002193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Lateral and ventral lateral subregions of the periaqueductal gray (l/vlPAG) have been proved to be pivotal components in descending circuitry of itch processing, and their effects are related to the subclassification of neurons that were meditated. In this study, lateral parabrachial nucleus (LPB), one of the most crucial relay stations in the ascending pathway, was taken as the input nucleus to examine the modulatory effect of l/vlPAG neurons that received LPB projections. Anatomical tracing, chemogenetic, optogenetic, and local pharmacological approaches were used to investigate the participation of the LPB-l/vlPAG pathway in itch and pain sensation in mice. First, morphological evidence for projections from vesicular glutamate transporter-2-containing neurons in the LPB to l/vlPAG involved in itch transmission has been provided. Furthermore, chemogenetic and optogenetic activation of the LPB-l/vlPAG pathway resulted in both antipruritic effect and analgesic effect, whereas pharmacogenetic inhibition strengthened nociceptive perception without affecting spontaneous scratching behavior. Finally, in vivo pharmacology was combined with optogenetics which revealed that AMPA receptor-expressing neurons in l/vlPAG might play a more essential role in pathway modulation. These findings provide a novel insight about the connections between 2 prominent transmit nuclei, LPB and l/vlPAG, in both pruriceptive and nociceptive sensations and deepen the understanding of l/vlPAG modulatory roles in itch sensation by chosen LPB as source of ascending efferent projections.
Collapse
|
15
|
Fan XC, Ma CN, Song JC, Liao ZH, Huang N, Liu X, Ma L. Rac1 Signaling in Amygdala Astrocytes Regulates Fear Memory Acquisition and Retrieval. Neurosci Bull 2021; 37:947-958. [PMID: 33909243 DOI: 10.1007/s12264-021-00677-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
The importance of astrocytes in behavior control is increasingly appreciated, but little is known about the effects of their dynamic activity in regulating learning and memory. In the present study, we constructed AAVs of photoactivatable and photoinactivatable Ras-related C3 botulinum toxin substrate 1 (Rac1) under the mGFAP promoter, which enabled the manipulation of Rac1 activity in astrocytes by optical stimulation in free-moving mice. We found that both up-regulation and down-regulation of astrocytic Rac1 activity in the basolateral amygdala (BLA) attenuated memory acquisition in a fear conditioning mouse model. Meanwhile, neuronal activation in the BLA induced by memory acquisition was inhibited under both the up- and down-regulation of astrocytic Rac1 activity during training. In terms of the impact on fear memory retrieval, we found both up- and down-regulation of BLA astrocytic Rac1 activity impaired memory retrieval of fear conditioning and memory retrieval-induced neuronal activation. Notably, the effect of astrocytic Rac1 on memory retrieval was reversible. Our results demonstrate that the normal activity of astrocytic Rac1 is necessary for the activation of neurons and memory formation. Both activation and inactivation of astrocytic Rac1 activity in the BLA reduced the excitability of neurons, and thereby impaired fear memory acquisition and retrieval.
Collapse
Affiliation(s)
- Xiao-Cen Fan
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chao-Nan Ma
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jia-Chen Song
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhao-Hui Liao
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Nan Huang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing Liu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Lan Ma
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
CB1-cannabinoid-, TRPV1-vanilloid- and NMDA-glutamatergic-receptor-signalling systems interact in the prelimbic cerebral cortex to control neuropathic pain symptoms. Brain Res Bull 2020; 165:118-128. [DOI: 10.1016/j.brainresbull.2020.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
|
17
|
Kumar S, Mohapatra AN, Pundir AS, Kumari M, Din U, Sharma S, Datta A, Arora V, Iyengar S. Blocking Opioid Receptors in a Songbird Cortical Region Modulates the Acoustic Features and Levels of Female-Directed Singing. Front Neurosci 2020; 14:554094. [PMID: 33071736 PMCID: PMC7533562 DOI: 10.3389/fnins.2020.554094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
The organization of the anterior forebrain pathway (AFP) of songbirds important for context-dependent singing is similar to that of cortical basal ganglia loops (CBG) in mammals, which underlie motor behaviors including vocalization. Since different components of the AFP express high levels of μ-opioid receptors (μ-ORs) as do CBG loops, songbirds act as model systems to study the role of opioid modulation on vocalization and the motivation to sing. The AFP in songbirds includes the cortical/pallial region LMAN (lateral magnocellular nucleus of the anterior nidopallium) which projects to Area X, a nucleus of the avian basal ganglia. In the present study, microdialysis was used to infuse different doses of the opioid antagonist naloxone in LMAN of adult male zebra finches. Whereas all doses of naloxone led to significant decreases in the number of FD (female-directed) songs, only 100 and 200 ng/ml of naloxone affected their acoustic properties. The decrease in FD song was not accompanied by changes in levels of attention toward females or those of neurotransmitters (dopamine, glutamate, and GABA) in LMAN. An earlier study had shown that similar manipulations in Area X did not lead to alterations in the number of FD songs but had significantly greater effects on their acoustic properties. Taken together, our results suggest that there are reciprocal effects of OR modulation on cortical and basal ganglia components of the AFP in songbirds.
Collapse
Affiliation(s)
| | | | | | | | - Uzma Din
- National Brain Research Centre, Manesar, India
| | | | - Atanu Datta
- National Brain Research Centre, Manesar, India
| | - Vasav Arora
- National Brain Research Centre, Manesar, India
| | | |
Collapse
|
18
|
Ulker E, Caillaud M, Patel T, White A, Rashid D, Alqasem M, Lichtman AH, Bryant CD, Damaj MI. C57BL/6 substrain differences in formalin-induced pain-like behavioral responses. Behav Brain Res 2020; 390:112698. [PMID: 32428630 PMCID: PMC7375808 DOI: 10.1016/j.bbr.2020.112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Substantial evidence from preclinical models of pain suggests that basal and noxious nociceptive sensitivity, as well as antinociceptive responses to drugs, show significant heritability. Individual differences to these responses have been observed across species from rodents to humans. The use of closely related C57BL/6 inbred mouse substrains can facilitate gene mapping of acute nociceptive behaviors in preclinical pain models. In this study, we investigated behavioral differences between C57BL/6 J (B6 J) and C57BL/6 N (B6 N) substrains in the formalin test, a widely used tonic inflammatory pain model, using a battery of pain-related phenotypes, including reflexive tests, nesting, voluntary wheel running, sucrose preference and anxiety-like behavior in the light/dark test at two different time points (1-h and 24-h). Our results show that these substrains did not differ in reflexive thermal and mechanical responses at the 1-h time point. However, B6 N substrain mice showed increased sensitivity to spontaneous pain-like behaviors. In addition, B6 N substrain continued to show higher levels of mechanical hypersensitivity compared to controls at 24-h. indicating that mechanical hypersensitivity is a more persistent pain-related phenotype induced by formalin. Finally, no sex differences were observed in our outcome measures. Our results provide a comprehensive behavioral testing paradigm in response to an inflammatory agent for future mouse genetic studies in pain.
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | - Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Trusha Patel
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Danyal Rashid
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Mashael Alqasem
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
19
|
Mai L, Zhu X, Huang F, He H, Fan W. p38 mitogen-activated protein kinase and pain. Life Sci 2020; 256:117885. [PMID: 32485175 DOI: 10.1016/j.lfs.2020.117885] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Inflammatory and neuropathic pain is initiated by tissue inflammation and nerve injury, respectively. Both are characterized by increased activity in the peripheral and central nervous system, where multiple inflammatory cytokines and other active molecules activate different signaling pathways that involve in the development and/or maintenance of pain. P38 mitogen-activated protein kinase (MAPK) is one member of the MAPK family, which is activated in neurons and glia and contributes importantly to inflammatory and neuropathic pain. The aim of this review is to summarize the latest advances made about the implication of p38 MAPK signaling cascade in pain. It can deepen our understanding of the molecular mechanisms of pain and may help to offer new targets for pain treatment.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China.
| |
Collapse
|
20
|
Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020; 21:247-263. [PMID: 32231315 PMCID: PMC7610550 DOI: 10.1038/s41583-020-0289-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
Compulsion is a cardinal symptom of drug addiction (severe substance use disorder). However, compulsion is observed in only a small proportion of individuals who repeatedly seek and use addictive substances. Here, we integrate accounts of the neuropharmacological mechanisms that underlie the transition to compulsion with overarching learning theories, to outline how compulsion develops in addiction. Importantly, we emphasize the conceptual distinctions between compulsive drug-seeking behaviour and compulsive drug-taking behaviour (that is, use). In the latter, an individual cannot stop using a drug despite major negative consequences, possibly reflecting an imbalance in frontostriatal circuits that encode reward and aversion. By contrast, an individual may compulsively seek drugs (that is, persist in seeking drugs despite the negative consequences of doing so) when the neural systems that underlie habitual behaviour dominate goal-directed behavioural systems, and when executive control over this maladaptive behaviour is diminished. This distinction between different aspects of addiction may help to identify its neural substrates and new treatment strategies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Chen QY, Zhang ZL, Liu Q, Chen CJ, Zhang XK, Xu PY, Zhuo M. Presynaptic long-term potentiation requires extracellular signal-regulated kinases in the anterior cingulate cortex. Mol Pain 2020; 16:1744806920917245. [PMID: 32264746 PMCID: PMC7144679 DOI: 10.1177/1744806920917245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinases are widely expressed protein kinases in neurons, which serve as important intracellular signaling molecules for central plasticity such as long-term potentiation. Recent studies demonstrate that there are two major forms of long-term potentiation in cortical areas related to pain: postsynaptic long-term potentiation and presynaptic long-term potentiation. In particular, presynaptic long-term potentiation in the anterior cingulate cortex has been shown to contribute to chronic pain-related anxiety. In this review, we briefly summarized the components and roles of extracellular signal-regulated kinases in neuronal signaling, especially in the presynaptic long-term potentiation of anterior cingulate cortex, and discuss the possible molecular mechanisms and functional implications in pain-related emotional disorders.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhi-Ling Zhang
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao-Jun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangdong, China
| | - Xiao-Kang Zhang
- The First Affiliated Hospital of Gan-Nan Medical University, Ganzhopu, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Zhu Z, Wang H, Jiang Y, Hua T, Zhang C. Heroin exposure and withdrawal differentially influence expression of NMDA receptor NR2 subunits in the prelimbic region of rat medial prefrontal cortex. Neurosci Lett 2020; 721:134819. [PMID: 32032749 DOI: 10.1016/j.neulet.2020.134819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/19/2022]
Abstract
It is widely reported that drug addiction involves the strengthening of specific reward circuits through N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic potentiation, and several lines of evidence strongly implicate NMDA receptor 2 (NR2) subunits in drug abuse. To explore the potential mechanism of heroin dependence, this study examined changes in the expression levels of NR2 subunits NR2A-D in the prelimbic (PL) region of the medial prefrontal cortex (mPFC) after repeated heroin administration and subsequent abstinence. The conditioned place preference (CPP) test confirmed successful induction of heroin dependence and withdrawal. Western blotting and qRT-PCR revealed no differences in NR2A subunit expression among heroin-exposure, heroin-withdrawal, and control group rats; in contrast, expression of NR2B was significantly higher in the heroin-exposure group, whereas expression levels of NR2C and NR2D were significantly higher in the heroin-withdrawal group relative to the controls. Further studies are needed to identify the functional significance based on alterations of NR2 subunits.
Collapse
Affiliation(s)
- Zaiman Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China; Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Hui Wang
- Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Yuxin Jiang
- Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Changzheng Zhang
- Department of Psychology & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
23
|
He JH, Yu L, Wang ZY, Wang Q, Cao JL, Gu LB. Inhibition Of Monocarboxylate Transporter 1 In Spinal Cord Horn Significantly Reverses Chronic Inflammatory Pain. J Pain Res 2019; 12:2981-2990. [PMID: 31807055 PMCID: PMC6842320 DOI: 10.2147/jpr.s219359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic inflammatory pain is a common condition in the clinic, and the underlying mechanism is not being completely understood. Various studies have demonstrated that central and peripheral sensitization and synaptic plasticity could play crucial functions in chronic inflammatory pain. Moreover, families of monocarboxylate transporters (MCTs) are closely related to cellular metabolism and synaptic plasticity, and it is also reported that MCTs participate in chronic inflammatory pain. Nevertheless, there is a probability of the engaging role of MCT 1 is in chronic inflammatory pain, but its specific cellular level mechanism is yet to be investigated. In our study, we hypothesized that MCT 1 in the spinal dorsal horn plays an important part in chronic inflammatory pain. Methods In experiment A, rats were gone through nociceptive behavioral testing at 1 d day before and 1 d, 3 d, and 7 d after completing complete Freund’s adjuvant (CFA) injection. The specimens collected for detecting MCT 1 by Western blotting. In experiment B, rats were randomly divided into four groups. Intrathecal injection of MCT 1 inhibitor and nociceptive behavioral tests were performed 1 d day before and 1 d, 3 d, 7 d, 14 d, and 21 d after CFA injection. MCT 1 and p-ERK levels in spinal dorsal horn were measured by Western blotting, and GFAP in spinal dorsal horn was detected by immunofluorescence. Results The expression of MCT 1 in the spinal dorsal horn was increased during chronic inflammatory pain in rats. The intrathecal injection of an MCT 1 inhibitor evidently diminished the expression of MCT 1 and GFAP in the spinal dorsal horn, and the behavioral nociceptive responses were also attenuated. Meanwhile, the expression of p-ERK was also decreased by the intrathecal injection of an MCT 1 inhibitor. Conclusion Our results indicate that MCT 1 very likely play a critical role in regulating chronic inflammatory pain and may influence the regulation of synaptic plasticity via ERK in the spinal dorsal horn of rats.
Collapse
Affiliation(s)
- Jian-Hua He
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ling Yu
- Department of Ultrasound, Affiliated Hospital of Integrate Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing,People's Republic of China
| | - Zhi-Yong Wang
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Wang
- Department of Anesthesiology, Nanjing Meishan Hospital, Nanjing, People's Republic of China
| | - Jun-Li Cao
- Jiangsu Key Laboratory of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lian-Bing Gu
- Department of Anesthesiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Ma L, Yue L, Zhang Y, Wang Y, Han B, Cui S, Liu FY, Wan Y, Yi M. Spontaneous Pain Disrupts Ventral Hippocampal CA1-Infralimbic Cortex Connectivity and Modulates Pain Progression in Rats with Peripheral Inflammation. Cell Rep 2019; 29:1579-1593.e6. [DOI: 10.1016/j.celrep.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
|
25
|
Medeiros P, de Freitas RL, Boccella S, Iannotta M, Belardo C, Mazzitelli M, Romano R, De Gregorio D, Coimbra NC, Palazzo E, Maione S. Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice. J Neurosci Res 2019; 98:338-352. [PMID: 31396990 DOI: 10.1002/jnr.24501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The chronic constriction injury (CCI) of the sciatic nerve is a nerve injury-based model of neuropathic pain (NP). Comorbidities of NP such as depression, anxiety, and cognitive deficits are associated with a functional reorganization of the medial prefrontal cortex (mPFC). Here, we have employed an adapted model of CCI by placing one single loose ligature around the sciatic nerve in mice for investigating the alterations in sensory, motor, affective, and cognitive behavior and in electrophysiological and biochemical properties in the prelimbic division (PrL) of the mPFC. Our adapted model of CCI induced mechanical allodynia, motor, and cognitive impairments and anxiety- and depression-like behavior. In the PrL division of mPFC was observed an increase in GABA and a decrease in d-aspartate levels. Moreover an increase in the activity of neurons responding to mechanical stimulation with an excitation, mPFC (+), and a decrease in those responding with an inhibition, mPFC (-), was found. Altogether these findings demonstrate that a single ligature around the sciatic nerve was able to induce sensory, affective, cognitive, biochemical, and functional alterations already observed in other neuropathic pain models and it may be an appropriate and easily reproducible model for studying neuropathic pain mechanisms and treatments.
Collapse
Affiliation(s)
- Priscila Medeiros
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.,Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Renato Leonardo de Freitas
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.,Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL), Alfenas (MG), Brazil
| | - Serena Boccella
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Monica Iannotta
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Carmela Belardo
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Mariacristina Mazzitelli
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Rosaria Romano
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Ribeirão Preto, Brazil.,Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Enza Palazzo
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
26
|
Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 2019; 160:805-823. [PMID: 30681984 DOI: 10.1097/j.pain.0000000000001457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stability of local medial prefrontal cortex (mPFC) network activity is believed to be critical for sustaining cognitive processes such as working memory (WM) and decision making. Dysfunction of the mPFC has been identified as a leading cause to WM deficits in several chronic pain conditions; however, the underlying mechanisms remain largely undetermined. Here, to address this issue, we implanted multichannel arrays of electrodes in the prelimbic region of the mPFC and recorded the neuronal activity during a food-reinforced delayed nonmatch to sample (DNMS) task of spatial WM. In addition, we used an optogenetic technique to selectively suppress the activity of excitatory pyramidal neurons that are considered the neuronal substrate for memory retention during the delay period of the behavioral task. Within-subject behavioral performance and pattern of neuronal activity were assessed after the onset of persistent pain using the spared nerve injury model of peripheral neuropathy. Our results show that the nerve lesion caused a disruption in WM and prelimbic spike activity and that this disruption was reversed by the selective inhibition of prelimbic glutamatergic pyramidal neurons during the delay period of the WM task. In spared nerve injury animals, photoinhibition of excitatory neurons improved the performance level and restored neural activity to a similar profile observed in the control animals. In addition, we found that selective inhibition of excitatory neurons does not produce antinociceptive effects. Together, our findings suggest that disruption of balance in local prelimbic networks may be crucial for the neurological and cognitive deficits observed during painful syndromes.
Collapse
|
27
|
Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY, Hu L, Liu WT, Zhao YL, Shu Y, Pan HL, Li M. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J Neuroinflammation 2019; 16:34. [PMID: 30755236 PMCID: PMC6373126 DOI: 10.1186/s12974-019-1411-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic pain is a major clinical problem with limited treatment options. Previous studies have demonstrated that activation of adenosine monophosphate-activated protein kinase (AMPK) can attenuate neuropathic pain. Inflammation/immune response at the site of complete Freund's adjuvant (CFA) injection is known to be a critical trigger of the pathological changes that produce inflammatory pain. However, whether activation of AMPK produces an analgesic effect through inhibiting the proinflammatory cytokines, including interleukin-1β (IL-1β), in inflammatory pain remains unknown. METHODS Inflammatory pain was induced in mice injected with CFA. The effects of AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside, an AMPK activator), Compound C (an AMPK inhibitor), and IL-1ra (an IL-1 receptor antagonist) were tested at day 4 after CFA injection. Inflammatory pain was assessed with von Frey filaments and hot plate. Immunoblotting, hematoxylin and eosin (H&E) staining, and immunofluorescence were used to assess inflammation-induced biochemical changes. RESULTS The AMPK activator AICAR produced an analgesic effect and inhibited the level of proinflammatory cytokine IL-1β in the inflamed skin in mice. Moreover, activation of AMPK suppressed CFA-induced NF-κB p65 translocation from the cytosol to the nucleus in activated macrophages (CD68+ and CX3CR1+) of inflamed skin tissues. Subcutaneous injection of IL-1ra attenuated CFA-induced inflammatory pain. The AMPK inhibitor Compound C and AMPKα shRNA reversed the analgesic effect of AICAR and the effects of AICAR on IL-1β and NF-κB activation in inflamed skin tissues. CONCLUSIONS Our study provides new information that AMPK activation produces the analgesic effect by inhibiting NF-κB activation and reducing the expression of IL-1β in inflammatory pain.
Collapse
Affiliation(s)
- Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ru-Yue Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Lin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Xu Y, Tian NX, Bai QY, Chen Q, Sun XH, Wang Y. Gait Assessment of Pain and Analgesics: Comparison of the DigiGait™ and CatWalk™ Gait Imaging Systems. Neurosci Bull 2019; 35:401-418. [PMID: 30659524 PMCID: PMC6527535 DOI: 10.1007/s12264-018-00331-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Investigation of pain requires measurements of nociceptive sensitivity and other pain-related behaviors. Recent studies have indicated the superiority of gait analysis over traditional evaluations (e.g., skin sensitivity and sciatic function index [SFI]) in detecting subtle improvements and deteriorations in animal models. Here, pain-related gait parameters, whose criteria include (1) alteration in pain models, (2) correlation with nociceptive threshold, and (3) normalization by analgesics, were identified in representative models of neuropathic pain (spared nerve injury: coordination data) and inflammatory pain (intraplantar complete Freund’s adjuvant: both coordination and intensity data) in the DigiGait™ and CatWalk™ systems. DigiGait™ had advantages in fixed speed (controlled by treadmill) and dynamic SFI, while CatWalk™ excelled in intrinsic velocity, intensity data, and high-quality 3D images. Insights into the applicability of each system may provide guidance for selecting the appropriate gait imaging system for different animal models and optimization for future pain research.
Collapse
Affiliation(s)
- Yu Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Qing-Yang Bai
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Qi Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - Xiao-Hong Sun
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
29
|
Chung G, Kim SJ, Kim SK. Metabotropic Glutamate Receptor 5 in the Medial Prefrontal Cortex as a Molecular Determinant of Pain and Ensuing Depression. Front Mol Neurosci 2018; 11:376. [PMID: 30349459 PMCID: PMC6186831 DOI: 10.3389/fnmol.2018.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/21/2018] [Indexed: 12/27/2022] Open
Abstract
Pain and depression affect one another, and this bidirectional interaction implies the existence of common or interacting neural pathways. Among the neural circuits relevant to negative affection, the medial prefrontal cortex (mPFC) is known to be involved in both pain and depression. Persistent stress from physical pain and mental distress can evoke maladaptive changes in mPFC circuits to induce depression. Conversely, the unpleasant mood condition alters mPFC circuits to distort the appraisal of aversion and make individuals vulnerable to pain. In this article, recent findings regarding mPFC in chronic pain and/or depression are reviewed, with particular focus on the metabotropic glutamate receptor 5 (mGluR5). Although the involvement of mGluR5 within the mPFC in both pain and depressive disorders has been extensively studied, there are controversies regarding changes in the activity of the mPFC during chronic pain and depression, and the functional roles of mGluR5 on altered mPFC activity. We discuss alterations in the availability of mGluR5 in the mPFC in these disorders, its role in behavioral manifestations, and its possible influence on cellular subpopulations that mediate dysfunction in the mPFC. We also propose molecular mechanisms that may cause expressional changes in mGluR5 within the mPFC circuitry.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
30
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|