1
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024; 57:22-32. [PMID: 39632657 PMCID: PMC11802343 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On the one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Feiyan Liu
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Yu Zhou
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
3
|
Naseem M, Khan H, Parvez S. TrkB-BDNF Signalling and Arc/Arg3.1 Immediate Early Genes in the Anterior Cingulate Cortex and Hippocampus: Insights into Novel Memory Milestones Through Behavioural Tagging. Mol Neurobiol 2024; 61:8307-8319. [PMID: 38485841 DOI: 10.1007/s12035-024-04071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 09/21/2024]
Abstract
In recent years, there has been a surge in interest in investigating the mechanisms underlying memory consolidation. However, our understanding of the behavioural tagging (BT) model and its establishment in diverse brain regions remains limited. This study elucidates the contributions of the anterior cingulate cortex (ACC) and hippocampus in the formation of long-term memory (LTM) employing behaviour tagging as a model for studying the underlying mechanism of LTM formation in rats. Existing knowledge highlights a protein synthesis-dependent phase as imperative for LTM. Brain-derived neurotrophic factor (BDNF) stands as a pivotal plasticity-related protein (PRP) in mediating molecular alterations crucial for long-term synaptic plasticity and memory consolidation. Our study offers evidence suggesting that tropomyosin receptor kinase B (TrkB), the receptor of BDNF, may act as a combined "behavioural tag/PRP". Interfering with the expression of these molecules resulted in impaired LTM after 24 h. Furthermore, augmenting BDNF expression led to an elevation in Arc protein levels in both the ACC and hippocampus regions. Introducing novelty around weak inhibitory avoidance (IA) training resulted in heightened step-down latencies and expression of these molecules, respectively. We also demonstrate that the increase in Arc expression relies on BDNF synthesis, which is vital for the memory consolidation process. Additionally, inhibiting BDNF using an anti-BDNF function-blocking antibody impacted Arc expression in both the ACC and hippocampus regions, disrupting the transformations from labile to robust memory. These findings mark the initial identification of a "behavioural tag/PRP" combination and underscore the involvement of the TrkB-BDNF-Arc cascade in the behavioural tagging model of learning and memory.
Collapse
Affiliation(s)
- Mehar Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Gu W, Luozhong S, Cai S, Londhe K, Elkasri N, Hawkins R, Yuan Z, Su-Greene K, Yin Y, Cruz M, Chang YW, McMullen P, Wu C, Seo C, Guru A, Gao W, Sarmiento T, Schaffer C, Nishimura N, Cerione R, Yu Q, Warden M, Langer R, Jiang S. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat Biomed Eng 2024; 8:415-426. [PMID: 38374224 DOI: 10.1038/s41551-023-01150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/26/2023] [Indexed: 02/21/2024]
Abstract
The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.
Collapse
Affiliation(s)
- Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Simian Cai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ketaki Londhe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nadine Elkasri
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Robert Hawkins
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhefan Yuan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Kai Su-Greene
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yujie Yin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Margaret Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yu-Wei Chang
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chunyan Wu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Wenting Gao
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Tara Sarmiento
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Richard Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Melissa Warden
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
6
|
Beletskiy A, Zolotar A, Fortygina P, Chesnokova E, Uroshlev L, Balaban P, Kolosov P. Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin. Cells 2024; 13:383. [PMID: 38474347 PMCID: PMC10930765 DOI: 10.3390/cells13050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.
Collapse
Affiliation(s)
- Alexander Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Anastasia Zolotar
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Leonid Uroshlev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
He F, Yu X, Zhang J, Cui J, Tang L, Zou S, Pu J, Ran P. Biomass-related PM 2.5 induced inflammatory microenvironment via IL-17F/IL-17RC axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123048. [PMID: 38036089 DOI: 10.1016/j.envpol.2023.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.
Collapse
Affiliation(s)
- Fang He
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jieda Cui
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China
| | - Lei Tang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Siqi Zou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
8
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Hong D, Jeong S. 3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs. Mol Cells 2023; 46:48-56. [PMID: 36697237 PMCID: PMC9880603 DOI: 10.14348/molcells.2023.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/27/2023] Open
Abstract
Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.
Collapse
Affiliation(s)
- Dawon Hong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| | - Sunjoo Jeong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| |
Collapse
|
10
|
3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency. PLoS One 2022; 17:e0269534. [PMID: 35776773 PMCID: PMC9249230 DOI: 10.1371/journal.pone.0269534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2).
Collapse
|
11
|
Mohan HM, Trzeciakiewicz H, Pithadia A, Crowley EV, Pacitto R, Safren N, Trotter B, Zhang C, Zhou X, Zhang Y, Basrur V, Paulson HL, Sharkey LM. RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cell Mol Life Sci 2022; 79:176. [PMID: 35247097 PMCID: PMC9376861 DOI: 10.1007/s00018-022-04170-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
The brain-expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington's disease where it promotes the clearance of mutant Huntingtin. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. RTL8 also facilitates UBQLN2's nuclear translocation during heat shock. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.
Collapse
Affiliation(s)
- Harihar Milaganur Mohan
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | | | - Amit Pithadia
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Emily V Crowley
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Regina Pacitto
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bryce Trotter
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
12
|
Srinivasan B, Samaddar S, Mylavarapu SVS, Clement JP, Banerjee S. Homeostatic scaling is driven by a translation-dependent degradation axis that recruits miRISC remodeling. PLoS Biol 2021; 19:e3001432. [PMID: 34813590 PMCID: PMC8610276 DOI: 10.1371/journal.pbio.3001432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3' UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.
Collapse
Affiliation(s)
| | | | | | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | |
Collapse
|
13
|
An increase in VGF expression through a rapid, transcription-independent, autofeedback mechanism improves cognitive function. Transl Psychiatry 2021; 11:383. [PMID: 34238925 PMCID: PMC8266826 DOI: 10.1038/s41398-021-01489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The release of neuropeptides from dense core vesicles (DCVs) modulates neuronal activity and plays a critical role in cognitive function and emotion. The granin family is considered a master regulator of DCV biogenesis and the release of DCV cargo molecules. The expression of the VGF protein (nonacronymic), a secreted neuropeptide precursor that also belongs to the extended granin family, has been previously shown to be induced in the brain by hippocampus-dependent learning, and its downregulation is mechanistically linked to neurodegenerative diseases such as Alzheimer's disease and other mood disorders. Currently, whether changes in translational efficiency of Vgf and other granin mRNAs may be associated and regulated with learning associated neural activity remains largely unknown. Here, we show that either contextual fear memory training or the administration of TLQP-62, a peptide derived from the C-terminal region of the VGF precursor, acutely increases the translation of VGF and other granin proteins, such as CgB and Scg2, via an mTOR-dependent signaling pathway in the absence of measurable increases in mRNA expression. Luciferase-based reporter assays confirmed that the 3'-untranslated region (3'UTR) of the Vgf mRNA represses VGF translation. Consistently, the truncation of the endogenous Vgf mRNA 3'UTR results in substantial increases in VGF protein expression both in cultured primary neurons and in brain tissues from knock in mice expressing a 3'UTR-truncation mutant encoded by the modified Vgf gene. Importantly, Vgf 3'UTR-truncated mice exhibit enhanced memory performance and reduced anxiety- and depression-like behaviors. Our results therefore reveal a rapid, transcription-independent induction of VGF and other granin proteins after learning that are triggered by the VGF-derived peptide TLQP-62. Our findings suggest that the rapid, positive feedforward increase in the synthesis of granin family proteins might be a general mechanism to replenish DCV cargo molecules that have been released in response to neuronal activation and is crucial for memory function and mood stability.
Collapse
|
14
|
Mitschka S, Mayr C. Endogenous p53 expression in human and mouse is not regulated by its 3'UTR. eLife 2021; 10:65700. [PMID: 33955355 PMCID: PMC8137139 DOI: 10.7554/elife.65700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
15
|
Yoo DY, Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Hwang IK. Entacapone promotes hippocampal neurogenesis in mice. Neural Regen Res 2021; 16:1005-1110. [PMID: 33269743 PMCID: PMC8224137 DOI: 10.4103/1673-5374.300447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Entacapone, a catechol-O-methyltransferase inhibitor, can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease. However, few studies are reported on whether entacapone can affect hippocampal neurogenesis in mice. To investigate the effects of entacapone, a modulator of dopamine, on proliferating cells and immature neurons in the mouse hippocampal dentate gyrus, 60 mice (7 weeks old) were randomly divided into a vehicle-treated group and the groups treated with 10, 50, or 200 mg/kg entacapone. The results showed that 50 and 200 mg/kg entacapone increased the exploration time for novel object recognition. Immunohistochemical staining results revealed that after entacapone treatment, the numbers of Ki67-positive proliferating cells, doublecortin-positive immature neurons, and phosphorylated cAMP response element-binding protein (pCREB)-positive cells were significantly increased. Western blot analysis results revealed that treatment with tyrosine kinase receptor B (TrkB) receptor antagonist significantly decreased the exploration time for novel object recognition and inhibited the expression of phosphorylated TrkB and brain-derived neurotrophic factor (BDNF). Entacapone treatment antagonized the effects of TrkB receptor antagonist. These results suggest that entacapone treatment promoted hippocampal neurogenesis and improved memory function through activating the BDNF-TrkB-pCREB pathway. This study was approved by the Institutional Animal Care and Use Committee of Seoul National University (approval No. SNU-130730-1) on February 24, 2014.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul; Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
17
|
Levitan D, Liu C, Yang T, Shima Y, Lin JY, Wachutka J, Marrero Y, Ali Marandi Ghoddousi R, da Veiga Beltrame E, Richter TA, Katz DB, Nelson SB. Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory. eLife 2020; 9:e61036. [PMID: 32779566 PMCID: PMC7445010 DOI: 10.7554/elife.61036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA also impaired memory. STK11 and C-FOS activation were independent of one another. These data suggest key roles for Stk11 and Fos in CTA long-term memory formation, dependent at least partly through convergent action on BLApn intrinsic excitability.
Collapse
Affiliation(s)
- David Levitan
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Chenghao Liu
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Tracy Yang
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Yasuyuki Shima
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Jian-You Lin
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | - Yasmin Marrero
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | | | | | - Troy A Richter
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Sacha B Nelson
- Departments of Biology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
18
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
19
|
Andreassi C, Crerar H, Riccio A. Post-transcriptional Processing of mRNA in Neurons: The Vestiges of the RNA World Drive Transcriptome Diversity. Front Mol Neurosci 2018; 11:304. [PMID: 30210293 PMCID: PMC6121099 DOI: 10.3389/fnmol.2018.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their extraordinary cytoarchitecture. This formidable task is achieved, at least in part, by targeting mRNA to subcellular compartments where they are rapidly translated. mRNA transcripts are the conveyor of genetic information from DNA to the translational machinery, however, they are also endowed with additional functions linked to both the coding sequence (open reading frame, or ORF) and the flanking 5′ and 3′ untranslated regions (UTRs), that may harbor coding-independent functions. In this review, we will highlight recent evidences supporting new coding-dependent and -independent functions of mRNA and discuss how nuclear and cytoplasmic post-transcriptional modifications of mRNA contribute to localization and translation in mammalian cells with specific emphasis on neurons. We also describe recently developed techniques that can be employed to study RNA dynamics at subcellular level in eukaryotic cells in developing and regenerating neurons.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Hamish Crerar
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|