1
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
2
|
Zhou X, Lv Y, Xie H, Li Y, Liu C, Zheng M, Wu R, Zhou S, Gu X, Li J, Mi D. RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration. Neural Regen Res 2024; 19:1812-1821. [PMID: 38103248 PMCID: PMC10960293 DOI: 10.4103/1673-5374.387980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00035/figure1/v/2023-12-16T180322Z/r/image-tiff Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.
Collapse
Affiliation(s)
- Xinyang Zhou
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Nantong Stomatological Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jingjing Li
- Department of General Practice, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Cescon M, Gambarotta G, Calabrò S, Cicconetti C, Anselmi F, Kankowski S, Lang L, Basic M, Bleich A, Bolsega S, Steglich M, Oliviero S, Raimondo S, Bizzotto D, Haastert-Talini K, Ronchi G. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 2024; 16:2363015. [PMID: 38845453 PMCID: PMC11164225 DOI: 10.1080/19490976.2024.2363015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Luisa Lang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Matthias Steglich
- Research Core Unit Genomics, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
4
|
Gu X, Rahman FS, Bendale G, Tran B, Miyata JF, Hernandez A, Anand S, Romero-Ortega MI. Pleiotrophin-Neuregulin1 promote axon regeneration and sorting in conduit repair of critical nerve gap injuries. RESEARCH SQUARE 2023:rs.3.rs-3429258. [PMID: 37986821 PMCID: PMC10659554 DOI: 10.21203/rs.3.rs-3429258/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Significant challenges remain in the treatment of critical nerve gap injuries using artificial nerve conduits. We previously reported successful axon regeneration across a 40 mm nerve gap using a biosynthetic nerve implant (BNI) with multi-luminal synergistic growth factor release. However, axon sorting, remyelination, and functional recovery were limited. Neuregulin1 (NRG1) plays a significant role in regulating the proliferation and differentiation of Schwann cells (SCs) during development and after injury. We hypothesize that the release of NRG1 type III combined with pleiotrophin (PTN) in the BNI will enhance axon growth, remyelination, and function of regenerated nerves across a critical gap. A rabbit 40 mm peroneal gap injury model was used to investigate the therapeutic efficacy of BNIs containing either NRG1, PTN, or PTN+NRG1 growth factor release. We found that NRG1 treatment doubled the number of regenerated axons (1276±895) compared to empty controls (633±666) and PTN tripled this number (2270±989). NRG1 also significantly increased the number of SOX10+ Schwann cells in mid-conduit (20.42%±11.78%) and reduced the number of abnormal Remak axon bundles. The combination of PTN+NRG1 increased axon diameter (1.70±1.06) vs control (1.21±0.77) (p<0.01), with 15.35% of axons above 3 μm, comparable to autograft. However, the total number of remyelinated axons was not increased by the added NRG1 release, which correlated with absence of axonal NRG1 type III expression in the regenerated axons. Electrophysiological evaluation showed higher muscle force recruitment (23.8±16.0 mN vs 17.4±1.4 mN) and maximum evoked compound motor action potential (353 μV vs 37 μV) in PTN-NRG1 group versus control, which correlated with the improvement in the toe spread recovery observed in PTN-NRG1 treated animals (0.64±0.02) vs control (0.50±0.01). These results revealed the need of a combination of pro-regenerative and remyelinating growth factor combination therapy for the repair of critical nerve gaps.
Collapse
Affiliation(s)
- Xingjian Gu
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - Farial S. Rahman
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - G Bendale
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - B Tran
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - JF Miyata
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - A Hernandez
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - S Anand
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | | |
Collapse
|
5
|
Shin SM, Itson-Zoske B, Fan F, Gani U, Rahman M, Hogan QH, Yu H. Peripheral sensory neurons and non-neuronal cells express functional Piezo1 channels. Mol Pain 2023; 19:17448069231174315. [PMID: 37247618 PMCID: PMC10240879 DOI: 10.1177/17448069231174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Here, we present evidence showing Piezo1 protein expression in the primary sensory neurons (PSNs) and non-neuronal cells of rat peripheral nervous system. Using a knockdown/knockout validated antibody, we detected Piezo1 immunoreactivity (IR) in ∼60% of PSNs of rat dorsal root ganglia (DRG) with higher IR density in the small- and medium-sized neurons. Piezo1-IR was clearly identified in DRG perineuronal glia, including satellite glial cells (SGCs) and Schwann cells; in sciatic nerve Schwann cells surrounding the axons and cutaneous afferent endings; and in skin epidermal Merkel cells and melanocytes. Neuronal and non-neuronal Piezo1 channels were functional since various cells (dissociated PSNs and SGCs from DRGs, isolated Schwann cells, and primary human melanocytes) exhibited a robust response to Piezo1 agonist Yoda1 by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses were abolished by non-specific Piezo1 antagonist GsMTx4. Immunoblots showed elevated Piezo1 protein in DRG proximal to peripheral nerve injury-induced painful neuropathy, while PSNs and SGCs from rats with neuropathic pain showed greater Yoda1-evoked elevation of [Ca2+]i and an increased frequency of cells responding to Yoda1, compared to controls. Sciatic nerve application of GsMTx4 alleviated mechanical hypersensitivity induced by Yoda1. Overall, our data show that Piezo1 is widely expressed by the neuronal and non-neuronal cells in the peripheral sensory pathways and that painful nerve injury appeared associated with activation of Piezo1 in PSNs and peripheral glial cells.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Uarda Gani
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mahmudur Rahman
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
May AJ, Mattingly AJ, Gaylord EA, Griffin N, Sudiwala S, Cruz-Pacheco N, Emmerson E, Mohabbat S, Nathan S, Sinada H, Lombaert IMA, Knox SM. Neuronal-epithelial cross-talk drives acinar specification via NRG1-ERBB3-mTORC2 signaling. Dev Cell 2022; 57:2550-2565.e5. [PMID: 36413949 PMCID: PMC9727910 DOI: 10.1016/j.devcel.2022.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.
Collapse
Affiliation(s)
- Alison J May
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Aaron J Mattingly
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Nathan Griffin
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sonia Sudiwala
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Seayar Mohabbat
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sara Nathan
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Hanan Sinada
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
9
|
Fibroblasts Colonizing Nerve Conduits Express High Levels of Soluble Neuregulin1, a Factor Promoting Schwann Cell Dedifferentiation. Cells 2020; 9:cells9061366. [PMID: 32492853 PMCID: PMC7349576 DOI: 10.3390/cells9061366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Conduits for the repair of peripheral nerve gaps are a good alternative to autografts as they provide a protected environment and a physical guide for axonal re-growth. Conduits require colonization by cells involved in nerve regeneration (Schwann cells, fibroblasts, endothelial cells, macrophages) while in the autograft many cells are resident and just need to be activated. Since it is known that soluble Neuregulin1 (sNRG1) is released after injury and plays an important role activating Schwann cell dedifferentiation, its expression level was investigated in early regeneration steps (7, 14, 28 days) inside a 10 mm chitosan conduit used to repair median nerve gaps in Wistar rats. In vivo data show that sNRG1, mainly the isoform α, is highly expressed in the conduit, together with a fibroblast marker, while Schwann cell markers, including NRG1 receptors, were not. Primary culture analysis shows that nerve fibroblasts, unlike Schwann cells, express high NRG1α levels, while both express NRG1β. These data suggest that sNRG1 might be mainly expressed by fibroblasts colonizing nerve conduit before Schwann cells. Immunohistochemistry analysis confirmed NRG1 and fibroblast marker co-localization. These results suggest that fibroblasts, releasing sNRG1, might promote Schwann cell dedifferentiation to a “repair” phenotype, contributing to peripheral nerve regeneration.
Collapse
|
10
|
Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front Cell Neurosci 2019; 13:93. [PMID: 30949030 PMCID: PMC6436609 DOI: 10.3389/fncel.2019.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination. We will detail how they control neuregulin-1 (NRG-1) activity at the post-translational level, as the concerted action of alpha, beta and gamma secretases cooperates to balance activating and inhibitory signals necessary for physiological myelination and remyelination. In addition, we will discuss the role of other proteases in nerve repair, among which A Disintegrin And Metalloproteinases (ADAMs) and gamma-secretases substrates. Moreover, we will present how matrix metalloproteinases (MMPs) and proteases of the blood coagulation cascade participate in forming newly synthetized myelin and in regulating axonal regeneration. Overall, we will highlight how a deeper comprehension of secretases and proteases mechanism of action in Wallerian degeneration might be useful to develop new therapies with the potential of readily and efficiently improve the regenerative process.
Collapse
Affiliation(s)
- Marta Pellegatta
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Gordon T, Wood P, Sulaiman OAR. Long-Term Denervated Rat Schwann Cells Retain Their Capacity to Proliferate and to Myelinate Axons in vitro. Front Cell Neurosci 2019; 12:511. [PMID: 30666188 PMCID: PMC6330764 DOI: 10.3389/fncel.2018.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Functional recovery is poor after peripheral nerve injury and delayed surgical repair or when nerves must regenerate over long distances to reinnervate distant targets. A reduced capacity of Schwann cells (SCs) in chronically denervated distal nerve stumps to support and interact with regenerating axons may account for the poor outcome. In an in vitro system, we examined the capacity of adult, long-term denervated rat SCs to proliferate and to myelinate neurites in co-cultures with fetal dorsal root ganglion (DRG) neurons. Non-neuronal cells were counted immediately after their isolation from the distal sciatic nerve stumps that were subjected to acute denervation of 7 days or chronic denervation of either 7 weeks or 17 months. Thereafter, equal numbers of the non-neural cells were co-cultured with purified dissociated DRG neurons for 5 days. The co-cultures were then treated with 3H-Thymidine for 24 h to quantitate SC proliferation with S100 immunostaining and autoradiography. After a 24-day period of co-culture, Sudan Black staining was used to visualize and count myelin segments that were elaborated around DRG neurites by the SCs. Isolated non-neural cells from 7-week chronically denervated nerve stumps increased 2.5-fold in number compared to ~2 million in 7 day acutely denervated stumps. There were only <0.2 million cells in the 17-week chronically denervated stumps. Nonetheless, these chronically denervated SCs maintained their proliferative capacity although the capacity was reduced to 30% in the 17-month chronically denervated distal nerve stumps. Moreover, the chronically denervated SCs retained their capacity to myelinate DRG neurites: there was extensive myelination of the neurites by the acutely and chronically denervated SCs after 24 days co-culture. There were no significant differences in the extent of myelination. We conclude that the low numbers of surviving SCs in chronically denervated distal nerve stumps retain their ability to respond to axonal signals to divide and to elaborate myelin. However, their low numbers consequent to their poor survival and their reduced capacity to proliferate account, at least in part, for the poor functional recovery after delayed surgical repair of injured nerve and/or the repair of injured nerves far from their target organs.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Patrick Wood
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, United States
| | - Olawale A R Sulaiman
- Department of Neurosurgery, Ochsner Medical Center, New Orleans, LA, United States
| |
Collapse
|
12
|
El Soury M, Gambarotta G. Soluble neuregulin-1 (NRG1): a factor promoting peripheral nerve regeneration by affecting Schwann cell activity immediately after injury. Neural Regen Res 2019; 14:1374-1375. [PMID: 30964058 PMCID: PMC6524519 DOI: 10.4103/1673-5374.253516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|