1
|
Wang B, He X, Zhang J, Zhang Y. Cell surface GRP78: A potential therapeutic target for high glucose-induced endothelial injury. Biochem Biophys Res Commun 2024; 692:149347. [PMID: 38056158 DOI: 10.1016/j.bbrc.2023.149347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Endothelial cell inflammation and oxidative stress are critical to developing diabetic vascular complications. GRP78 translocation to the cell surface has been observed in different types of endothelial cells, but the potential role of cell surface GRP78 in modulating endothelial inflammation and oxidative stress remains uncertain. In this study, we investigated whether inhibiting cell surface GRP78 function using a novel anti-GRP78 monoclonal antibody (MAb159) could suppress high glucose (HG)-induced endothelial inflammation and oxidative stress. Our findings demonstrated that the expression of cell surface GRP78 was increased in HG-treated HUVECs. Inhibition of cell surface GRP78 using MAb159 attenuated HG-induced endothelial injury, inflammation and oxidative stress, while activation of GRP78 by recombinant GRP78 further amplified HG-induced endothelial damage, inflammation and oxidative stress. Additionally, we discovered that cell surface GRP78 promoted HG-induced inflammation and oxidative stress by activating the TLR4/NF-κB signalling pathway. Moreover, HG-induced GRP78 translocation to the cell surface is dependent on ER stress. Our data demonstrate that targeting cell surface GRP78 could be a promising therapeutic strategy for mitigating endothelial injury, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Bo Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xin He
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jingliang Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yingjie Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
2
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
3
|
Ji C, Tang Y, Zhang Y, Huang X, Li C, Yang Y, Wu Q, Xia X, Cai Q, Qi XR, Zheng JC. Glutaminase 1 deficiency confined in forebrain neurons causes autism spectrum disorder-like behaviors. Cell Rep 2023; 42:112712. [PMID: 37384529 DOI: 10.1016/j.celrep.2023.112712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
An abnormal glutamate signaling pathway has been proposed in the mechanisms of autism spectrum disorder (ASD). However, less is known about the involvement of alterations of glutaminase 1 (GLS1) in the pathophysiology of ASD. We show that the transcript level of GLS1 is significantly decreased in the postmortem frontal cortex and peripheral blood of ASD subjects. Mice lacking Gls1 in CamKIIα-positive neurons display a series of ASD-like behaviors, synaptic excitatory and inhibitory (E/I) imbalance, higher spine density, and glutamate receptor expression in the prefrontal cortex, as well as a compromised expression pattern of genes involved in synapse pruning and less engulfed synaptic puncta in microglia. A low dose of lipopolysaccharide treatment restores microglial synapse pruning, corrects synaptic neurotransmission, and rescues behavioral deficits in these mice. In summary, these findings provide mechanistic insights into Gls1 loss in ASD symptoms and identify Gls1 as a target for the treatment of ASD.
Collapse
Affiliation(s)
- Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaoyan Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yuhong Yang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai 200331, China
| | - Qingyuan Cai
- Franklin and Marshall College, 415 Harrisburg Avenue, Lancaster, PA 17603, USA
| | - Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai 200331, China.
| |
Collapse
|
4
|
Nardi L, Chhabra S, Leukel P, Krueger-Burg D, Sommer CJ, Schmeisser MJ. Neuroanatomical changes of ionotropic glutamatergic and GABAergic receptor densities in male mice modeling idiopathic and syndromic autism spectrum disorder. Front Psychiatry 2023; 14:1199097. [PMID: 37547211 PMCID: PMC10401048 DOI: 10.3389/fpsyt.2023.1199097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.
Collapse
Affiliation(s)
- Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dilja Krueger-Burg
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Hollestein V, Poelmans G, Forde NJ, Beckmann CF, Ecker C, Mann C, Schäfer T, Moessnang C, Baumeister S, Banaschewski T, Bourgeron T, Loth E, Dell'Acqua F, Murphy DGM, Puts NA, Tillmann J, Charman T, Jones EJH, Mason L, Ambrosino S, Holt R, Bölte S, Buitelaar JK, Naaijen J. Excitatory/inhibitory imbalance in autism: the role of glutamate and GABA gene-sets in symptoms and cortical brain structure. Transl Psychiatry 2023; 13:18. [PMID: 36681677 PMCID: PMC9867712 DOI: 10.1038/s41398-023-02317-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The excitatory/inhibitory (E/I) imbalance hypothesis posits that imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) mechanisms underlies the behavioral characteristics of autism. However, how E/I imbalance arises and how it may differ across autism symptomatology and brain regions is not well understood. We used innovative analysis methods-combining competitive gene-set analysis and gene-expression profiles in relation to cortical thickness (CT) to investigate relationships between genetic variance, brain structure and autism symptomatology of participants from the AIMS-2-TRIALS LEAP cohort (autism = 359, male/female = 258/101; neurotypical control participants = 279, male/female = 178/101) aged 6-30 years. Using competitive gene-set analyses, we investigated whether aggregated genetic variation in glutamate and GABA gene-sets could be associated with behavioral measures of autism symptoms and brain structural variation. Further, using the same gene-sets, we corelated expression profiles throughout the cortex with differences in CT between autistic and neurotypical control participants, as well as in separate sensory subgroups. The glutamate gene-set was associated with all autism symptom severity scores on the Autism Diagnostic Observation Schedule-2 (ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R) within the autistic group. In adolescents and adults, brain regions with greater gene-expression of glutamate and GABA genes showed greater differences in CT between autistic and neurotypical control participants although in opposing directions. Additionally, the gene expression profiles were associated with CT profiles in separate sensory subgroups. Our results suggest complex relationships between E/I related genetics and autism symptom profiles as well as brain structure alterations, where there may be differential roles for glutamate and GABA.
Collapse
Affiliation(s)
- Viola Hollestein
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine Ecker
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Caroline Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Sarah Baumeister
- Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council (MRC) Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nicolaas A Puts
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council (MRC) Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, London, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, London, UK
| | - Sara Ambrosino
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Sci Rep 2022; 12:22230. [PMID: 36564435 PMCID: PMC9789112 DOI: 10.1038/s41598-022-26402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose hallmarks are social deficits, language impairment, repetitive behaviors, and sensory alterations. It has been reported that patients with ASD show differential activity in cortical regions, for instance, increased neuronal activity in visual processing brain areas and atypical visual perception compared with healthy subjects. The causes of these alterations remain unclear, although many studies demonstrate that ASD has a strong genetic correlation. An example is Phelan-McDermid syndrome, caused by a deletion of the Shank3 gene in one allele of chromosome 22. However, the neuronal consequences relating to the haploinsufficiency of Shank3 in the brain remain unknown. Given that sensory abnormalities are often present along with the core symptoms of ASD, our goal was to study the tuning properties of the primary visual cortex to orientation and direction in awake, head-fixed Shank3+/- mice. We recorded neural activity in vivo in response to visual gratings in the primary visual cortex from a mouse model of ASD (Shank3+/- mice) using the genetically encoded calcium indicator GCaMP6f, imaged with a two-photon microscope through a cranial window. We found that Shank3+/- mice showed a higher proportion of neurons responsive to drifting gratings stimuli than wild-type mice. Shank3+/- mice also show increased responses to some specific stimuli. Furthermore, analyzing the distributions of neurons for the tuning width, we found that Shank3+/- mice have narrower tuning widths, which was corroborated by analyzing the orientation selectivity. Regarding this, Shank3+/- mice have a higher proportion of selective neurons, specifically neurons showing increased selectivity to orientation but not direction. Thus, the haploinsufficiency of Shank3 modified the neuronal response of the primary visual cortex.
Collapse
|
8
|
Yoo YE, Yoo T, Kang H, Kim E. Brain region and gene dosage-differential transcriptomic changes in Shank2-mutant mice. Front Mol Neurosci 2022; 15:977305. [PMID: 36311025 PMCID: PMC9612946 DOI: 10.3389/fnmol.2022.977305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 12/20/2022] Open
Abstract
Shank2 is an abundant excitatory postsynaptic scaffolding protein that has been implicated in various neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD), intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. Shank2-mutant mice show ASD-like behavioral deficits and altered synaptic and neuronal functions, but little is known about how different brain regions and gene dosages affect the transcriptomic phenotypes of these mice. Here, we performed RNA-Seq-based transcriptomic analyses of the prefrontal cortex, hippocampus, and striatum in adult Shank2 heterozygous (HT)- and homozygous (HM)-mutant mice lacking exons 6–7. The prefrontal cortical, hippocampal, and striatal regions showed distinct transcriptomic patterns associated with synapse, ribosome, mitochondria, spliceosome, and extracellular matrix (ECM). The three brain regions were also distinct in the expression of ASD-related and ASD-risk genes. These differential patterns were stronger in the prefrontal cortex where the HT transcriptome displayed increased synaptic gene expression and reverse-ASD patterns whereas the HM transcriptome showed decreased synaptic gene expression and ASD-like patterns. These results suggest brain region- and gene dosage-differential transcriptomic changes in Shank2-mutant mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Eunjoon Kim,
| |
Collapse
|
9
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
11
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
12
|
Wang Y, He Y, Zhu Y, He T, Xu J, Kuang Q, Ji Y, Xu R, Li F, Zhou F. Effect of the Minor C Allele of CNTN4 rs2619566 on Medial Hypothalamic Connectivity in Early-Stage Patients of Chinese Han Ancestry with Sporadic Amyotrophic Lateral Sclerosis. Neuropsychiatr Dis Treat 2022; 18:437-448. [PMID: 35250268 PMCID: PMC8888333 DOI: 10.2147/ndt.s339456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Clinical symptoms such as major defects in energy metabolism may involve the hypothalamus in amyotrophic lateral sclerosis (ALS) patients. Our recent study discovered that the single-nucleotide polymorphisms (SNPs) of rs2619566, rs79609816 and rs10260404 are associated with sporadic ALS (sALS). Thus, this study aims to investigate the hypothalamic functional reorganization and its association with the above polymorphisms risk alleles in sALS patients of Chinese Han ancestry. METHODS Forty-four sALS patients (28 males/16 females) and 40 healthy subjects (HS; 28 males/12 females) underwent resting-state functional MRI, genotyping and clinical assessments. A two-sample t test (P < 0.01, GRF correction at P < 0.05) was performed to compare hypothalamic connectivity for group-level analysis in disease diagnosis and genotype, and then the genotype-diagnosis interaction effect was assessed. Finally, Spearman correlation analyses were performed to assess the relationship between the altered functional connectivity and their clinical characteristics. RESULTS The sALS patients showed a short disease duration (median = 12 months). Regarding the diagnosis effect, the sALS patients showed widespread hypothalamic hyperconnectivity with the left superior temporal gyrus/middle temporal gyrus, right inferior frontal gyrus, and left precuneus/posterior cingulate gyrus. For the genotype effect of SNPs, hyperconnectivity was observed in only the medial hypothalamus when the sALS patients harboring the minor C allele of rs2619566 in contactin-4 (CNTN4), while the sALS patients with the TT allele showed a hyperconnectivity network in the right lateral hypothalamus. This connectivity pattern was not observed in other SNPs. No significant genotype-diagnosis interaction was found. Moreover, altered functional connectivity was not significantly correlated with clinical characteristics (P : 0.11-0.90). CONCLUSION These results demonstrated widespread hypothalamic hyperconnectivity in sALS. The risk allele C of the CNTN4 gene may therefore influence functional reorganization of the medial hypothalamus. The effects of the CNTN4 rs2619566 polymorphism may exist in the hypothalamic functional connectivity of patients with sALS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yujie He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Jie Xu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Qinmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yuqi Ji
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| |
Collapse
|
13
|
In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312431. [PMID: 34886158 PMCID: PMC8657206 DOI: 10.3390/ijerph182312431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Adolescent neuropsychiatric disorders have been recently increasing due to genetic and environmental influences. Abnormal brain development before and after birth contribute to the pathology of neuropsychiatric disorders. However, it is difficult to experimentally investigate because of the complexity of brain and ethical constraints. Recently generated human brain organoids from pluripotent stem cells are considered as a promising in vitro model to recapitulate brain development and diseases. To better understand how brain organoids could be applied to investigate neuropsychiatric disorders, we analyzed the key consideration points, including how to generate brain organoids from pluripotent stem cells, the current application of brain organoids in recapitulating neuropsychiatric disorders and the future perspectives. This review covered what have been achieved on modeling the cellular and neural circuit deficits of neuropsychiatric disorders and those challenges yet to be solved. Together, this review aims to provide a fundamental understanding of how to generate brain organoids to model neuropsychiatric disorders, which will be helpful in improving the mental health of adolescents.
Collapse
|
14
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
15
|
Zhao R, Zhu T, Liu Q, Tian Q, Wang M, Chen J, Tong D, Yu B, Guo H, Xia K, Qiu Z, Hu Z. The autism risk gene CNTN4 modulates dendritic spine formation. Hum Mol Genet 2021; 31:207-218. [PMID: 34415325 DOI: 10.1093/hmg/ddab233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Contactin 4 (CNTN4) is a crucial synaptic adhesion protein that belongs to the contactin superfamily. Evidence from both human genetics and mouse models suggests that synapse formation and structural deficits strongly correlate with neurodevelopmental disorders, including autism. In addition, several lines of evidence suggest that CNTN4 is associated with the risk of autism. However, the biological functions of CNTN4 in neural development and disease pathogenesis are poorly understood. In this study, we investigated whether and how CNTN4 is autonomously involved in the development of dendrites and dendritic spines in cortical neurons. Disruption of Cntn4 decreased the number of excitatory synapses, which led to a reduction in neural activity. Truncated proteins lacking the signal peptide, FnIII domains, or GPI domain lacked the ability to regulate dendritic spine formation, indicating that CNTN4 regulates dendritic spine density through a mechanism dependent on FnIII domains. Importantly, we revealed that autism-related variants lacked the ability to regulate spine density and neural activity. In conclusion, our study suggests that CNTN4 is essential for promoting dendrite growth and dendritic spine formation and that disruptive variants of CNTN4 interfere with abnormal synapse formation and may increase the risk of autism.
Collapse
Affiliation(s)
- Rongjuan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Department of Critical Care Medicine, The Third people's hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiong Liu
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingjing Chen
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dali Tong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bin Yu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:683196. [PMID: 34177464 PMCID: PMC8226033 DOI: 10.3389/fnmol.2021.683196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Anatomy, School of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
17
|
Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res 2021; 54:5. [PMID: 33593425 PMCID: PMC7885507 DOI: 10.1186/s40659-021-00329-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.
Collapse
Affiliation(s)
- Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
18
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Meguro A, Yamane T, Takeuchi M, Miyake M, Fan Q, Zhao W, Wang IJ, Mizuki Y, Yamada N, Nomura N, Tsujikawa A, Matsuda F, Hosoda Y, Saw SM, Cheng CY, Tsai TH, Yoshida M, Iijima Y, Teshigawara T, Okada E, Ota M, Inoko H, Mizuki N. Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis. Ophthalmology 2020; 127:1612-1624. [PMID: 32428537 DOI: 10.1016/j.ophtha.2020.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To identify novel susceptibility loci for high myopia. DESIGN Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS A total of 14 096 samples from East and Southeast Asian populations (2549 patients with high myopia and 11 547 healthy controls). METHODS We performed a GWAS in 3269 Japanese individuals (1668 with high myopia and 1601 control participants), followed by replication analysis in a total of 10 827 additional samples (881 with high myopia and 9946 control participants) from Japan, Singapore, and Taiwan. To confirm the biological role of the identified loci in the pathogenesis of high myopia, we performed functional annotation and Gene Ontology (GO) analyses. MAIN OUTCOME MEASURES We evaluated the association of single nucleotide polymorphisms with high myopia and GO terms enriched among genes identified in the current study. RESULTS We identified 9 loci with genome-wide significance (P < 5.0 × 10-8). Three loci were previously reported myopia-related loci (ZC3H11B on 1q41, GJD2 on 15q14, and RASGRF1 on 15q25.1), and the other 6 were novel (HIVEP3 on 1p34.2, NFASC/CNTN2 on 1q32.1, CNTN4/CNTN6 on 3p26.3, FRMD4B on 3p14.1, LINC02418 on 12q24.33, and AKAP13 on 15q25.3). The GO analysis revealed a significant role of the nervous system related to synaptic signaling, neuronal development, and Ras/Rho signaling in the pathogenesis of high myopia. CONCLUSIONS The current study identified 6 novel loci associated with high myopia and demonstrated an important role of the nervous system in the disease pathogenesis. Our findings give new insight into the genetic factors underlying myopia, including high myopia, by connecting previous findings and allowing for a clarified interpretation of the cause and pathophysiologic features of myopia at the molecular level.
Collapse
Affiliation(s)
- Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuki Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norihiro Yamada
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoko Nomura
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuhito Iijima
- Department of Ophthalmology, Aoto Eye Clinic, Yokohama, Japan
| | - Takeshi Teshigawara
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka, Japan; Department of Ophthalmology, Tsurumi Chuoh Eye Clinic, Yokohama, Japan
| | - Eiichi Okada
- Department of Ophthalmology, Okada Eye Clinic, Yokohama, Japan
| | - Masao Ota
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
20
|
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr Neurosci 2020; 25:387-410. [PMID: 32338174 DOI: 10.1080/1028415x.2020.1755793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
21
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
22
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Patel AM, Wierda K, Thorrez L, van Putten M, De Smedt J, Ribeiro L, Tricot T, Gajjar M, Duelen R, Van Damme P, De Waele L, Goemans N, Tanganyika-de Winter C, Costamagna D, Aartsma-Rus A, van Duyvenvoorde H, Sampaolesi M, Buyse GM, Verfaillie CM. Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Transl Psychiatry 2019; 9:200. [PMID: 31434868 PMCID: PMC6704264 DOI: 10.1038/s41398-019-0535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines. DMD astrocytes displayed cytoskeletal abnormalities, defects in Ca+2 homeostasis and nitric oxide signaling. In addition, defects in glutamate clearance were identified in DMD PSC-derived astrocytes; these deficits were related to a decreased neurite outgrowth and hyperexcitability of neurons derived from healthy PSC. Read-through molecule restored dystrophin expression in DMD PSC-derived astrocytes harboring a premature stop codon mutation, corrected the defective astrocyte glutamate clearance and prevented associated neurotoxicity. We propose a role for dystrophin deficiency in defective astroglial glutamate homeostasis which initiates defects in neuronal development.
Collapse
Affiliation(s)
- Abdulsamie M. Patel
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Lieven Thorrez
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium
| | - Maaike van Putten
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan De Smedt
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Luis Ribeiro
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Tine Tricot
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Madhavsai Gajjar
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Philip Van Damme
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fLaboratory of Neurobiology, Department of Neuroscience, KU Leuven, Leuven, Belgium ,0000 0004 0626 3338grid.410569.fNeurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium ,0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fVesalius Research Center, Laboratory of Neurobiology, KU Leuven, Leuven, Belgium
| | - Nathalie Goemans
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christa Tanganyika-de Winter
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Domiziana Costamagna
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Annemieke Aartsma-Rus
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermine van Duyvenvoorde
- 0000000089452978grid.10419.3dLaboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurilio Sampaolesi
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine M. Verfaillie
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
The role of PTB domain containing adaptor proteins on PICALM-mediated APP endocytosis and localization. Biochem J 2019; 476:2093-2109. [DOI: 10.1042/bcj20180840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
AbstractOne hallmark of Alzheimer's disease (AD) is the presence of amyloid plaques, which mainly consist of the amyloid precursor protein (APP) cleavage product amyloid β (Aβ). For cleavage to occur, the APP must be endocytosed from the cell surface. The phosphatidylinositol binding clathrin assembly protein (PICALM) is involved in clathrin-mediated endocytosis and polymorphisms in and near the gene locus were identified as genetic risk factors for AD. PICALM overexpression enhances APP internalization and Aβ production. Furthermore, PICALM shuttles into the nucleus, but its function within the nucleus is still unknown. Using co-immunoprecipitation, we demonstrated an interaction between PICALM and APP, which is abrogated by mutation of the APP NPXY-motif. Since the NPXY-motif is an internalization signal that binds to phosphotryrosine-binding domain-containing adaptor proteins (PTB-APs), we hypothesized that PTB-APs can modulate the APP-PICALM interaction. We found that interaction between PICALM and the PTB-APs (Numb, JIP1b and GULP1) enhances the APP-PICALM interaction. Fluorescence activated cell sorting analysis and internalization assays revealed differentially altered APP cell surface levels and endocytosis rates that depended upon the presence of PICALM and co-expression of distinct PTB-APs. Additionally, we were able to show an impact of PICALM nuclear shuttling upon co-expression of PTB-APs and PICALM, with the magnitude of the effect depending on which PTB-AP was co-expressed. Taken together, our results indicate a modulating effect of PTB-APs on PICALM-mediated APP endocytosis and localization.
Collapse
|
25
|
Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plast 2019; 2019:2382639. [PMID: 31354805 PMCID: PMC6636579 DOI: 10.1155/2019/2382639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring. Clinical trials conducted in parallel confirmed the usefulness of bumetanide treatment to attenuate the symptoms in children with ASD. Collectively, these observations suggest that an alteration of the GABA developmental sequence is a hallmark of ASD. Here, we investigated whether similar alterations occur in the Shank3 mouse model of ASD. We report that in CA3 pyramidal neurons, the driving force and inhibitory action of GABA are not different in naïve and Shank3-mutant age-matched animals at birth and during the second postnatal week. In contrast, the frequency of spontaneous excitatory postsynaptic currents is already enhanced at birth and persists through postnatal day 15. Therefore, in CA3 pyramidal neurons of Shank3-mutant mice, glutamatergic but not GABAergic activity is affected at early developmental stages, hence reflecting the heterogeneity of mechanisms underlying the pathogenesis of ASD.
Collapse
|
26
|
Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, Bae YC, Kim E. Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Front Mol Neurosci 2019; 12:155. [PMID: 31275112 PMCID: PMC6591539 DOI: 10.3389/fnmol.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3 Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3 Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3 Q321R/Q321R hippocampus show decreased neuronal excitability but normal excitatory and inhibitory synaptic transmission. Behaviorally, Shank3 Q321R/Q321R mice show moderately enhanced self-grooming and anxiolytic-like behavior, but normal locomotion, social interaction, and object recognition and contextual fear memory. In addition, these mice show abnormal electroencephalogram (EEG) patterns and decreased susceptibility to induced seizures. These results indicate that the Q321R mutation alters Shank3 protein stability, neuronal excitability, repetitive and anxiety-like behavior, EEG patterns, and seizure susceptibility in mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hye-Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
27
|
Chung C, Ha S, Kang H, Lee J, Um SM, Yan H, Yoo YE, Yoo T, Jung H, Lee D, Lee E, Lee S, Kim J, Kim R, Kwon Y, Kim W, Kim H, Duffney L, Kim D, Mah W, Won H, Mo S, Kim JY, Lim CS, Kaang BK, Boeckers TM, Chung Y, Kim H, Jiang YH, Kim E. Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank2 -/- Mice. Biol Psychiatry 2019; 85:534-543. [PMID: 30466882 PMCID: PMC6420362 DOI: 10.1016/j.biopsych.2018.09.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symptoms at early stages of life. Many autism spectrum disorder-related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear. METHODS We used Shank2-/- mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysiology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice. RESULTS Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank2-/- mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype-NMDAR hyperfunction-at an earlier preweaning stage (∼P14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (∼P24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7-P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (∼P28 and P56). CONCLUSIONS Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank2-/- mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Seungmin Ha
- Department of Biological Sciences, South Korea
| | - Hyojin Kang
- Department of Convergence Technology Research, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Haidun Yan
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Ye-Eun Yoo
- Department of Biological Sciences, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Dongwon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, South Korea
| | | | - Woohyun Kim
- Department of Biological Sciences, South Korea
| | - Hyosang Kim
- Department of Biological Sciences, South Korea
| | - Lara Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyejung Won
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Seojung Mo
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Chae-Seok Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute for Science and Technology, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Cell and Molecular Biology Program, Duke University, Durham, North Carolina; Duke Institute of Brain Science, Duke University, Durham, North Carolina; Genomics and Genetics Program, Duke University, Durham, North Carolina
| | - Eunjoon Kim
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea.
| |
Collapse
|
28
|
Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behav Brain Res 2019; 367:101-110. [PMID: 30926483 DOI: 10.1016/j.bbr.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/01/2023]
Abstract
Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders and are commonly seen in rodent models as well. While rodent studies of ARBs continue to dominate the field, mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may therefore be a novel model organism for ARB research. In addition to clear practical research advantages as a model species, zebrafish share high genetic and physiological homology to humans and rodents, including multiple ARB-related genes and robust behaviors relevant to ARB. Here, we discuss a wide spectrum of stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying mechanisms.
Collapse
|