1
|
Dong X, Pei G, Yang Z, Huang S. Flavonoid chrysin activates both TrkB and FGFR1 receptors while upregulates their endogenous ligands such as brain derived neurotrophic factor to promote human neurogenesis. Cell Prolif 2025; 58:e13732. [PMID: 39331585 DOI: 10.1111/cpr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) and plays a crucial role in neurological diseases. The process involves a series of steps, including NSC proliferation, migration and differentiation, which are regulated by multiple pathways such as neurotrophic Trk and fibroblast growth factor receptors (FGFR) signalling. Despite the discovery of numerous compounds capable of modulating individual stages of neurogenesis, it remains challenging to identify an agent that can regulate multiple cellular processes of neurogenesis. Here, through screening of bioactive compounds in dietary functional foods, we identified a flavonoid chrysin that not only enhanced the human NSCs proliferation but also facilitated neuronal differentiation and neurite outgrowth. Further mechanistic study revealed the effect of chrysin was attenuated by inhibition of neurotrophic tropomyosin receptor kinase-B (TrkB) receptor. Consistently, chrysin activated TrkB and downstream ERK1/2 and AKT. Intriguingly, we found that the effect of chrysin was also reduced by FGFR1 blockade. Moreover, extended treatment of chrysin enhanced levels of brain-derived neurotrophic factor, as well as FGF1 and FGF8. Finally, chrysin was found to promote neurogenesis in human cerebral organoids by increasing the organoid expansion and folding, which was also mediated by TrkB and FGFR1 signalling. To conclude, our study indicates that activating both TrkB and FGFR1 signalling could be a promising avenue for therapeutic interventions in neurological diseases, and chrysin appears to be a potential candidate for the development of such treatments.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024; 12:2519. [PMID: 39595087 PMCID: PMC11592205 DOI: 10.3390/biomedicines12112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The cortisol awakening response (CAR) is a pivotal component of the body's stress response, yet its dynamics under repeated acute stress and its interplay with immune biomarkers remain inadequately understood. Methods: This study examined 80 second-year military medical students undergoing a 5-day intensive surgical simulation designed to elicit stress responses. Salivary samples were collected daily upon waking and 30 min thereafter to measure cortisol and a panel of cytokines using bead-based multiplex ELISA. Results: Analysis revealed a significant blunting of the CAR on the third day of training (p = 0.00006), followed by a recovery on the fourth day (p = 0.0005). Concurrently, specific cytokines such as CXCL1 (r = 0.2, p = 0.0005), IL-6 (r = 0.13, p = 0.02), IL-10 (r = 0.14, p = 0.02), and VEGF-A (r = 0.17, p = 0.003) displayed patterns correlating with the CAR, with increased strength of associations observed when assessing cytokine levels against the CAR of the preceding day (CXCL1 r = 0.41, p = 0.0002. IL-6 r = 0.38, p = 0.0006. IL-10 r = 0.3, p = 0.008. VEGF-A r = 0.41, p = 0.0002). Conclusions: These results suggest a temporal relationship between stress-induced cortisol dynamics and immune regulation. The CAR pattern demonstrated in this study may represent induction of and recovery from psychological burnout. Moreover, the observed cytokine associations provide insight into the mechanisms by which stress can influence immune function. The results may have broader implications for managing stress in high-performance environments, such as military and medical professions, and for identifying individuals at risk of stress-related immune suppression.
Collapse
Affiliation(s)
- Madison A. Propp
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Dean Paz
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
- Department of Emergency Medicine, University of Texas at Austin Dell, 1500 Red River St, Austin, TX 78701, USA
| | - Sukhrob Makhkamov
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Mark E. Payton
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Qamrul Choudhury
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Melodie Nutter
- Arizona College of Nursing, 8363 West Sunset Road, Las Vegas, NV 89113, USA;
| | - Rebecca Ryznar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| |
Collapse
|
3
|
Shimada T, Kohyama K, Yoshida T, Yamagata K. Neuritin Controls Axonal Branching in Serotonin Neurons: A Possible Mediator Involved in the Regulation of Depressive and Anxiety Behaviors via FGF Signaling. J Neurosci 2024; 44:e0129232024. [PMID: 39197941 PMCID: PMC11466069 DOI: 10.1523/jneurosci.0129-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Abnormal neuronal morphological features, such as dendrite branching, axonal branching, and spine density, are thought to contribute to the symptoms of depression and anxiety. However, the role and molecular mechanisms of aberrant neuronal morphology in the regulation of mood disorders remain poorly characterized. Here, we show that neuritin, an activity-dependent protein, regulates the axonal morphology of serotonin neurons. Male neuritin knock-out (KO) mice harbored impaired axonal branches of serotonin neurons in the medial prefrontal cortex and basolateral region of the amygdala (BLA), and male neuritin KO mice exhibited depressive and anxiety-like behaviors. We also observed that the expression of neuritin was decreased by unpredictable chronic stress in the male mouse brain and that decreased expression of neuritin was associated with reduced axonal branching of serotonin neurons in the brain and with depressive and anxiety behaviors in mice. Furthermore, the stress-mediated impairments in axonal branching and depressive behaviors were reversed by the overexpression of neuritin in the BLA. The ability of neuritin to increase axonal branching in serotonin neurons involves fibroblast growth factor (FGF) signaling, and neuritin contributes to FGF-2-mediated axonal branching regulation in vitro. Finally, the oral administration of an FGF inhibitor reduced the axonal branching of serotonin neurons in the brain and caused depressive and anxiety behaviors in male mice. Our results support the involvement of neuritin in models of stress-induced depression and suggest that neuronal morphological plasticity may play a role in controlling animal behavior.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kuniko Kohyama
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Department of Psychiatry, Takada Nishishiro Hospital, Joetsu, Niigata 943-0834, Japan
| |
Collapse
|
4
|
Zou T, Sugimoto K, Zhao Y, Li B, Zhou X, Peng C. Zhi-zi-chi decoction mitigates depression by enhancing lncRNA Six3os1 expression and promoting histone H3K4 methylation at the BDNF promoter. J Cell Mol Med 2024; 28:e18365. [PMID: 38818577 PMCID: PMC11140235 DOI: 10.1111/jcmm.18365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
Traditional Chinese medicine, particularly Zhi-zi-chi decoction (ZZCD), is gaining recognition as a potential treatment for depression. This study aimed to uncover the molecular mechanisms behind ZZCD's antidepressant effects, focusing on lncRNA Six3os1 and histone H3K4 methylation at the BDNF promoter. Network pharmacology and in vivo experiments were conducted to identify ZZCD targets and evaluate its impact on depression-related behaviours and neuron injury. The role of Six3os1 in recruiting KMT2A to the BDNF promoter and its effects on oxidative stress and neuron injury were investigated. ZZCD reduced depression-like behaviours and neuron injury in mice subjected to chronic stress. It upregulated Six3os1, which facilitated KMT2A recruitment to the BDNF promoter, leading to increased histone H3K4 methylation and enhanced BDNF expression. ZZCD also inhibited CORT-induced neuron injury, inflammatory response and oxidative stress in vitro. ZZCD's antidepressant properties involve Six3os1 upregulation, which exerts neuroprotective effects by inhibiting oxidative stress and neuron injury, thereby alleviating depressive symptoms. Targeting Six3os1 upregulation may offer a potential therapeutic intervention for depression.
Collapse
Affiliation(s)
- Tianyu Zou
- Department of EncephalopathyShenzhen Luohu District Hospital of Traditional Chinese MedicineShenzhenChina
- Department of EncephalopathyShenzhen Hospital of Shanghai University of Traditional Chinese MedicineShenzhenChina
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Institute for Brain DisordersBeijing University of Chinese MedicineBeijingChina
| | - Yu Zhao
- Department of Acupuncture, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Baitao Li
- Department of Acupuncture, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Xiaomao Zhou
- Department of EncephalopathyShenzhen Luohu District Hospital of Traditional Chinese MedicineShenzhenChina
- Department of EncephalopathyShenzhen Hospital of Shanghai University of Traditional Chinese MedicineShenzhenChina
| | - Cheng Peng
- Department of EncephalopathyShenzhen Luohu District Hospital of Traditional Chinese MedicineShenzhenChina
- Department of EncephalopathyShenzhen Hospital of Shanghai University of Traditional Chinese MedicineShenzhenChina
| |
Collapse
|
5
|
Uzay B, Bahadır-Varol A, Hökelekli FÖ, Yılmaz M, Esen EC, Başar K, Ayhan Y, Dalkara T, Eren-Koçak E. FGF2 gene's antisense protein, NUDT6, plays a depressogenic role by promoting inflammation and suppressing neurogenesis without altering FGF2 signalling. J Physiol 2024; 602:1427-1442. [PMID: 38468384 DOI: 10.1113/jp285479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.
Collapse
Affiliation(s)
- Burak Uzay
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Brain Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Aslıhan Bahadır-Varol
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Fatma Özlem Hökelekli
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX, USA
| | - Murat Yılmaz
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Emre Cem Esen
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Koray Başar
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yavuz Ayhan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Liu H, Du Y, Liu LL, Liu QS, Mao HH, Cheng Y. Anti-depression-like effect of Mogroside V is related to the inhibition of inflammatory and oxidative stress pathways. Eur J Pharmacol 2023; 955:175828. [PMID: 37364672 DOI: 10.1016/j.ejphar.2023.175828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Siraitia grosvenorii (SG) is an edible medicinal plant found mainly in Guangxi, China, and Mogroside V (MGV) is the main component of SG extract. Previous research has shown that SG and MGV exert anti-inflammatory, antioxidative and neuroprotective effects. However, it is not clear whether MGV has anti-depression-like effect. In this study, we evaluated the neuroprotective effects and anti-depression-like effect of MGV both in vitro and in vivo. By performing in vitro tests, we evaluated the protective effects of MGV on PC12 cells with corticosterone-induced injury. In vivo tests, we used the chronic unpredictable mild stress (CUMS) depression model. Fluoxetine (10 mg/kg/day) and MGV (10 or 30 mg/kg/day) were administered by gavage for 21 days, and the open field test (OFT), novelty suppressed feeding test (NSFT), Tail suspension test (TST), and forced Swimming test (FST) were used to evaluate the depressive-like behaviors. In addition, we investigated the role of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-4) in the hippocampal and cortex tissues. The levels of Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in hippocampal and cortex tissues were also measured. Pathological changes in the hippocampal dentate gyrus and cortex regions were detected by immunofluorescence and Western blotting was used to measure the protein expression of BDNF, TrkB, TNF-α, and AKT. The results showed that MGV had a protective effect on PC12 cells with corticosterone-induced incurred injury. In addition, MGV treatment relieved the depressive symptoms and significantly reduced inflammatory levels (IL-1β, IL-6, and TNF-α). MGV also significantly reduced oxidative stress damage and reduced the levels of apoptosis in hippocampal nerve cells. These results suggested that the anti-depressive effect of MGV may occur through the inhibition of inflammatory and oxidative stress pathways and the BDNF/TrkB/AKT pathway. These findings provide a new concept for the identification of new anti-depressive strategies.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lian Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qing Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - He Hui Mao
- Department of Breast Surgery, School of Medicine, Women and Children's Hospital, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
7
|
Du Y, Wang YL, Chen L, Li QE, Cheng Y. Anti-depressant-like effects of rannasangpei and its active ingredient crocin-1 on chronic unpredictable mild stress mice. Front Pharmacol 2023; 14:1143286. [PMID: 37007014 PMCID: PMC10060548 DOI: 10.3389/fphar.2023.1143286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Major depressive disorder is one of the most common neuropsychiatric diseases and it is a global public health problem that leads to disabilities. Currently, there is a growing need to explore novel strategy to cure major depressive disorder due to the limitation of available treatments. Rannasangpei (RSNP) is a traditional Tibetan medicine which acts as a therapeutic agent in various acute or chronic diseases, including cardiovascular diseases and neurodegenerative diseases. Crocin-1 a coloring ingredient of saffron which exhibited anti-oxidative and anti-inflammatory properties. Here, we aimed to illustrate whether RSNP and its active ingredient crocin-1 rescue depressive-like phenotypes in chronic unpredictable mild stress (CUMS) induced mouse model of depression. Our results showed that peripheral administration of RSNP or crocin-1 ameliorated the depressive-like behaviors in CUMS-treated mice, as demonstrated by the forced swimming test and tail suspension test. Furthermore, RSNP or crocin-1 treatment reduced oxidative stress in the peripheral blood and hippocampus of the CUMS-treated mice. Additionally, the dysregulated immune system response, as demonstrated by the increased expression of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6) and the decreased expression of the anti-inflammatory factor-interleukin-10 in the prefrontal cortex and/or hippocampus of CUMS-treated mice, were at least partially restored by RSNP or crocin-1 treatment. RSNP or crocin-1 also restored apoptotic protein marker (Bcl-2 and Bax) levels in the prefrontal cortex and hippocampus of the CUMS-treated mice. Moreover, our data indicated that RSNP or crocin-1 increased astrocyte number and brain-derived neurotrophic factor levels in the hippocampus of CUMS-treated mice after RSNP or crocin-1 administration. Taken together, our study for the first time revealed an anti-depressant effect of RSNP and its active ingredient crocin-1 in a mouse model of depression, with involvement of oxidative stress, inflammatory response and apoptotic pathway.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yan-Li Wang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qi-En Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
- *Correspondence: Qi-En Li, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
- NHC Key Laboratory of Birth Defect Research, Prevention and Treatment (Hunan Provincial Maternal and Child Healthcare Hospital), Changsha, Hunan, China
- *Correspondence: Qi-En Li, ; Yong Cheng,
| |
Collapse
|
8
|
Wang J, Men Y, Wang Z. Polydatin Alleviates Chronic Stress-Induced Depressive and Anxiety-like Behaviors in a Mouse Model. ACS Chem Neurosci 2023; 14:977-987. [PMID: 36802487 DOI: 10.1021/acschemneuro.2c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
We aimed to investigate whether polydatin could suppress stress-induced depression- and anxiety-like behaviors in a mouse model. Mice were divided into the control group, chronic unpredictable mild stress (CUMS) exposure group, and CUMS mice treated with polydatin group. Following CUMS exposure and polydatin treatment, mice were subjected to behavioral assays to assess depressive-like and anxiety-like behaviors. Synaptic function was determined by the levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD95), and synaptophysin (SYN) in the hippocampus and cultured hippocampal neurons. The number and length of dendrites were assessed in cultured hippocampal neurons. Finally, we investigated the effect of polydatin on CUMS-induced inflammation and oxidative stress in the hippocampus by measuring inflammatory cytokine levels, oxidative stress markers such as reactive oxygen species, glutathione peroxidase, catalase, and superoxide dismutase, as well as components of the Nrf2 signaling pathway. Polydatin alleviated CUMS-induced depressive-like behaviors in forced swimming, tail suspension and sucrose preference tests, and anxiety-like behaviors in marble-burying and elevated plus maze tests. Polydatin increased the number and length of dendrites of cultured hippocampal neurons from mice exposed to CUMS and alleviated CUMS-induced synaptic deficits by restoring BDNF, PSD95, and SYN levels in vivo and in vitro. Importantly, polydatin inhibited CUMS-induced hippocampal inflammation and oxidative stress and suppressed the activation of NFκB and Nrf2 pathways. Our study suggests that polydatin may be an effective drug for the treatment of affective disorders through inhibiting neuroinflammation and oxidative stress. Our current findings warrant further study to investigate the potential clinical application of polydatin.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Yujiao Men
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Zeyu Wang
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
9
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
10
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
11
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Chronic Trazodone and Citalopram Treatments Increase Trophic Factor and Circadian Rhythm Gene Expression in Rat Brain Regions Relevant for Antidepressant Efficacy. Int J Mol Sci 2022; 23:ijms232214041. [PMID: 36430520 PMCID: PMC9698904 DOI: 10.3390/ijms232214041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We studied long-term gene expression modulations induced by chronic trazodone to investigate the molecular underpinning of trazodone efficacy. Rats received acute or chronic treatment with trazodone or citalopram. mRNA expression of growth factor and circadian rhythm genes was evaluated by qPCR in the prefrontal cortex (PFCx), hippocampus, Nucleus Accumbens (NAc), amygdala, and hypothalamus. CREB levels and phosphorylation state were evaluated using Western blotting. BDNF levels were significantly increased in PFCx and hippocampus by trazodone and in the NAc and hypothalamus by citalopram. Likewise, TrkB receptor levels augmented in the PFCx after trazodone and in the amygdala after citalopram. FGF-2 and FGFR2 levels were higher after trazodone in the PFCx. The CREB phosphorylation state was increased by chronic trazodone in the PFCx, hippocampus, and hypothalamus. Bmal1 and Per1 were increased by both antidepressants after acute and chronic treatments, while Per2 levels were specifically augmented by chronic trazodone in the PFCx and NAc, and by citalopram in the PFCx, amygdala, and NAc. These findings show that trazodone affects the expression of neurotrophic factors involved in antidepressant responses and alters circadian rhythm genes implicated in the pathophysiology of depression, thus shedding light on trazodone's molecular mechanism of action.
Collapse
|
13
|
Poletti S, Paolini M, Ernst J, Bollettini I, Melloni E, Vai B, Harrington Y, Bravi B, Calesella F, Lorenzi C, Zanardi R, Benedetti F. Long-term effect of childhood trauma: Role of inflammation and white matter in mood disorders. Brain Behav Immun Health 2022; 26:100529. [PMID: 36237478 PMCID: PMC9550612 DOI: 10.1016/j.bbih.2022.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 10/27/2022] Open
Abstract
Bipolar disorder (BD) and major depressive disorder (MDD) are severe psychiatric illnesses that share among their environmental risk factors the exposure to adverse childhood experiences (ACE). Exposure to ACE has been associated with long-term changes in brain structure and the immune response. In the lasts decades, brain abnormalities including alterations of white matter (WM) microstructure and higher levels of peripheral immune/inflammatory markers have been reported in BD and MDD and an association between inflammation and WM microstructure has been shown. However, differences in these measures have been reported by comparing the two diagnostic groups. The aim of the present study was to investigate the interplay between ACE, inflammation, and WM in BD and MDD. We hypothesize that inflammation will mediate the association between ACE and WM and that this will be different in the two groups. A sample of 200 patients (100 BD, 100 MDD) underwent 3T MRI scan and ACE assessment through Childhood Trauma Questionnaire. A subgroup of 130 patients (75 MDD and 55 BD) underwent blood sampling for the assessment of immune/inflammatory markers. We observed that ACE associated with higher peripheral levels of IL-2, IL-17, bFGF, IFN-γ, TNF-α, CCL3, CCL4, CCL5, and PDGF-BB only in the BD group. Further, higher levels of CCL3 and IL-2 associated with lower FA in BD. ACE were found to differently affect WM microstructure in the two diagnostic groups and to be negatively associated with FA and AD in BD patients. Mediation analyses showed a significant indirect effect of ACE on WM microstructure mediated by IL-2. Our findings suggest that inflammation may mediate the detrimental effect of early experiences on brain structure and different mechanisms underlying brain alterations in BD and MDD.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy,Corresponding author. San Raffaele Turro, Via Stamira d’Ancona 20, 20127, Milano, Italy.
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Julia Ernst
- Vita-Salute San Raffaele University, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Yasmin Harrington
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute IRCCS Ospedale San Raffaele, Milano, Italy,Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
14
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
15
|
Li XL, Liu H, Liu SH, Cheng Y, Xie GJ. Intranasal Administration of Brain-Derived Neurotrophic Factor Rescues Depressive-Like Phenotypes in Chronic Unpredictable Mild Stress Mice. Neuropsychiatr Dis Treat 2022; 18:1885-1894. [PMID: 36062024 PMCID: PMC9438797 DOI: 10.2147/ndt.s369412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Major depression disorder is the most common diagnosed mental illnesses, and it bring a high social and economic burden. However, the current treatment for depression has limitations with side effects. Hence, there is an urgent need to search more effective treatment for major depressive disorder. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons. METHODS We administered BDNF into chronic unpredictable mild stress (CUMS)-induced depression mice and assessed the effects of intranasal delivery of BDNF in depression by the tail suspension test, forced swimming test, novelty suppressed feeding test, and open-field test. RESULTS We find that the intranasal administration of BDNF reversed the depressive-like behaviors in CUMS mice as measured Further analyses suggested that BDNF treatment reduced pro-inflammatory cytokine (IL-6, TNF-α, iNOS and IL-1β) expressions in the hippocampus of CUMS mice. In addition, our results showed that BDNF markedly reduced oxidative stress in the hippocampus and blood of CUMS mice. Moreover, our data suggested that BDNF treatment increased neurogenesis in the hippocampus of CUMS mice. DISCUSSION Taken together, our results for the first time demonstrated that intranasal delivery of BDNF protein exhibited anti-depressant-like effects in mice, and therefore may represent a new therapeutic strategy for major depressive disorder.
Collapse
Affiliation(s)
- Xiao-Ling Li
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| | - Hua Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Shu-Han Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Yong Cheng
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China.,Institute of National Security, Minzu University of China, Beijing, People's Republic of China
| | - Guo-Jun Xie
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
16
|
Bryant EM, Richardson R, Graham BM. The Association Between Salivary FGF2 and Physiological and Psychological Components of the Human Stress Response. CHRONIC STRESS 2022; 6:24705470221114787. [PMID: 35874911 PMCID: PMC9297468 DOI: 10.1177/24705470221114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Background Fibroblast Growth Factor 2 (FGF2) is a neurotrophic protein that has been implicated as a biomarker for anxiety and depressive disorders, which comprise a significant component of the global burden of disease. Research using rodents has indicated that FGF2 is part of the stress response, but whether this translates to humans has yet to be investigated. In this study, we aimed to explore the potential role of FGF2 in the human stress response by examining its association with physiological and psychological processes during and following the Trier Social Stress Test (TSST). Methods Participants in the active stress experiment (N = 87) underwent the TSST, provided saliva samples to obtain levels of cortisol and FGF2, and reported on post-event rumination related to the TSST task over the following week. Participants in the no-stress experiment (N = 25) provided saliva samples for measurement of FGF2 and cortisol across a corresponding time period. Results Salivary FGF2 levels changed after the TSST and were associated with the pattern of change in salivary cortisol. Cortisol responses in the active stress condition were blunted in females (relative to males), however, sex did not interact with any other effect. FGF2 reactivity (ie, the magnitude of change over time) was not correlated with cortisol reactivity. Lower FGF2 reactivity following the TSST, but not overall FGF2 levels, or cortisol, was associated with higher fear of negative evaluation, repetitive negative thinking and post-event processing, as well as repetitive negative thinking in the week following the TSST. Participants in the no-stress experiment showed a decrease in cortisol, yet no change in their FGF2 levels. Conclusion These findings suggest that FGF2 is involved in the human stress response and higher levels of FGF2 reactivity may be associated with protective cognitive processes following stress exposure.
Collapse
Affiliation(s)
- Emma M. Bryant
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| | - Rick Richardson
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| | - Bronwyn M. Graham
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Albrakati A, Alsharif KF, Al omairi NE, Alsanie WF, Almalki ASA, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE, Kassab RB. Neuroprotective Efficiency of Prodigiosins Conjugated with Selenium Nanoparticles in Rats Exposed to Chronic Unpredictable Mild Stress is Mediated Through Antioxidative, Anti-Inflammatory, Anti-Apoptotic, and Neuromodulatory Activities. Int J Nanomedicine 2021; 16:8447-8464. [PMID: 35002238 PMCID: PMC8722537 DOI: 10.2147/ijn.s323436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Depression is a mood disorder accompanied by intensive molecular and neurochemical alterations. Currently, available antidepressant therapies are not fully effective and are often accompanied by several adverse impacts. Accordingly, the ultimate goal of this investigation was to clarify the possible antidepressant effects of prodigiosins (PDGs) loaded with selenium nanoparticles (PDGs-SeNPs) in chronic unpredictable mild stress (CUMS)-induced depression-like behavior in rats. METHODS Sixty Sprague Dawley rats were randomly allocated into six groups: control, CUMS group (depression model), fluoxetine (Flu, 10 mg/kg)+CUMS, PDGs+CUMS (300 mg/kg), sodium selenite (Na2SeO3, 400 mg/kg)+CUMS, and PDGs-SeNPs+CUMS (200 mg/kg). All treatments were applied orally for 28 consecutive days. RESULTS PDGs-SeNPs administration prevented oxidative insults in hippocampal tissue, as demonstrated by decreased oxidant levels (nitric oxide and malondialdehyde) and elevated innate antioxidants (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase), in addition to the upregulated expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in rats exposed to CUMS. Additionally, PDGs-SeNPs administration suppressed neuroinflammation in hippocampal tissue, as determined by the decreased production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1β, and interleukin-6), increased anti-inflammatory cytokine interleukin-10, and decreased inflammatory mediators (prostaglandin E2, cyclooxygenase-2, and nuclear factor kappa B). Moreover, PDGs-SeNPs administration in stressed rats inhibited neuronal loss and the development of hippocampal apoptosis through enhanced levels of B cell lymphoma 2 and decreased levels of caspase 3 and Bcl-2-associated X protein. Interestingly, PDGs-SeNPs administration improved hormonal levels typically disrupted by CUMS exposure and significantly modulated hippocampal levels of monoamines, brain-derived neurotrophic factor, monoamine oxidase, and acetylcholinesterase activities, in addition to upregulating the immunoreactivity of glial fibrillary acidic protein in CUMS model rats. CONCLUSION PDGs-SeNPs may serve as a prospective antidepressant candidate due to their potent antioxidant, anti-inflammatory, and neuroprotective potential.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naif E Al omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, USA
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRassAl-Qassim, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Al Makhwah Branch, Al Baha, Saudi Arabia
| |
Collapse
|
18
|
Xia J, Xue X, Liu W, Qi Z, Liu W. The Role of Fgf9 in the Antidepressant Effects of Exercise and Fluoxetine in Chronic Unpredictable Mild Stress Mice. Psychosom Med 2021; 83:795-804. [PMID: 33938506 DOI: 10.1097/psy.0000000000000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The neurotrophic hypothesis of depression posits that stress and depression decrease neurotrophic factor expression in brain, whereas antidepressants and exercise can contribute to the blockade of stress effects and produce antidepressant effects. Fibroblast growth factor 9 (FGF9), a member of the fibroblast growth factor (FGF) family, has been reported to be dysregulated in depression. The present study aimed to determine whether and how Fgf9 mediates the antidepressant effects of fluoxetine and exercise in chronic unpredictable mild stress (CUMS) mice. METHODS Male C57BL/6 mice were exposed to CUMS for 7 weeks. From the fourth week, CUMS-exposed mice were subjected to fluoxetine treatment or swimming exercise for 4 weeks. Forced swim test, tail suspension test, and hole-board test were used to assess behaviors of mice. Real-time polymerase chain reaction was used to examine hippocampal messenger RNA levels of Fgf9, Fgf2, FgfR1, FgfR2, and FgfR3. Western blotting was used to examine the protein levels of Fgf9, protein kinase B (Akt), and phosphorylation of Akt at Ser473 in mouse hippocampus. RESULTS Our results demonstrated that CUMS induced depression-like behaviors, which were reversed by fluoxetine treatment and swimming exercise. Moreover, we found that CUMS resulted in a dysregulation of Fgf9, Fgf2, and FgfR2 expression, whereas fluoxetine and swimming restored the FGF expression in CUMS-exposed mice. An analysis of the proteins suggests that the antidepressant effects of fluoxetine and exercise in CUMS-exposed mice were associated with ameliorated Fgf9/Akt signaling. CONCLUSIONS Our findings have demonstrated that swimming exercise mimics the antidepressant effects of fluoxetine by regulating Fgf9 in CUMS-exposed mice, which may offer new mechanism-based therapeutic targets for depression.
Collapse
Affiliation(s)
- Jie Xia
- From the Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education (Xia, Xue, Wenbin Liu, Qi, Weina Liu), College of Physical Education and Health (Xia, Wenbin Liu, Qi, Weina Liu), East China Normal University; and Key Laboratory of Exercise and Health Sciences of Ministry of Education (Xue), Shanghai University of Sport, Shanghai, China
| | | | | | | | | |
Collapse
|
19
|
Cheng J, Chen M, Wan HQ, Chen XQ, Li CF, Zhu JX, Liu Q, Xu GH, Yi LT. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114046. [PMID: 33753146 DOI: 10.1016/j.jep.2021.114046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Paeonia lactiflora is a famous Traditional Chinese medicine widely used for immunological regulation. Paeoniflorin, the main component of Paeonia lactiflora, exerts neuroprotective and antidepressant-like effects in rodents. AIM OF THE STUDY Fibroblast growth factor 2 (FGF-2) is essentially required in the central nervous system as it acts as both a neurotrophic factor and an anti-inflammatory factor participating in the regulation of proliferation, differentiation and apoptosis of neurons in the brain. However, it is unclear whether paeoniflorin could exert antidepressant effects via regulating FGF-2. MATERIALS AND METHODS In the present study, the effects of paeoniflorin were evaluated in depressive mice induced by the endotoxin lipopolysaccharide (LPS) injection. RESULTS The results showed that paeoniflorin markedly increased sucrose preference and reduced immobility time in LPS mice, indicating antidepressant effects. Consistent with the results from molecular docking showing paeoniflorin antagonizes TLR4, NF-κB and NLRP3, the biochemical analysis also indicated paeoniflorin inhibited TLR4/NF-κB/NLRP3 signaling, decreased proinflammatory cytokine levels and microglial activation in the hippocampus of LPS induced mice. In addition, the levels of neuronal FGF-2 and the density of dendritic spine were improved by paeoniflorin. More importantly, the FGFR1 inhibitor SU5402 prevented the antidepressant effects of paeoniflorin and blocked the neuroinflammatory and neurogenic regulatory effects of paeoniflorin, indicating that FGF-2/FGFR1 activation was required for the effects of paeoniflorin. CONCLUSION Taken together, the results demonstrate that paeoniflorin exhibits neuroprotective and antidepressant effects in mice, which may be mediated by activating neuronal FGF-2/FGFR1 signaling via the inhibition of microglial activation in the hippocampus.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Hui-Qi Wan
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Xue-Qin Chen
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, PR China.
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| |
Collapse
|
20
|
Yao Z, Zhang Z, Zhang J, Cai X, Zhong Z, Huang Y, Qu S. Electroacupuncture alleviated the depression-like behavior by regulating FGF2 and astrocytes in the hippocampus of rats with chronic unpredictable mild stress. Brain Res Bull 2021; 169:43-50. [PMID: 33434624 DOI: 10.1016/j.brainresbull.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Studies have shown that basic fibroblast growth factor (FGF2) is a neurotrophic factor associated with depression. Electroacupuncture (EA) has been shown to be an effective treatment for depression. In the current study, we observed the effects of EA on hippocampal FGF2 and astrocytes, and further investigated the mechanism underlying antidepressant effect of EA. The chronic unpredictable mild stress (CUMS) method were selected to induce depressive-like behaviors of rats. Paroxetine is a commonly used antidepressant and was used as a positive control drug in this experiment. The male adult Sprague Dawley (SD) rats were randomized to four experimental groups (normal control group, CUMS group, EA group and paroxetine group, n = 10/group). EA intervention was administered once daily for 14 days at acupuncture points Baihui (GV20) and Yintang (GV29). Rats in the paroxetine group received daily paroxetine administered intragastrical. Behavioral test, immunohistochemistry (IHC), western blot (WB) and quantitative real-time PCR (qPCR) were conducted to evaluate the intervene effect and the changes of FGF2 and astrocyte marker (glial fibrillary acidic protein, GFAP). The results showed that EA and paroxetine could improve depression-like behavior in CUMS rats, and up-regulated the expression level of FGF2 in the hippocampus, increased GFAP protein expression and the mean optical density of GFAP-immunoreactive astrocyte (GFAP-ir astrocyte). Our findings have identified that EA could ameliorate depressive-like behaviors possibly by regulating the expression of FGF2 in the hippocampus, and the mechanism might be related to the effect of FGF2 on astrocytes.
Collapse
Affiliation(s)
- Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zheng Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
21
|
Lowry CA, Golod ME, Andrew RD, Bennett BM. Expression of Neuronal Na +/K +-ATPase α Subunit Isoforms in the Mouse Brain Following Genetically Programmed or Behaviourally-induced Oxidative Stress. Neuroscience 2020; 442:202-215. [PMID: 32653541 DOI: 10.1016/j.neuroscience.2020.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The Na+/K+-ATPase is a transmembrane ion pump that has a critical homeostatic role within every mammalian cell; however, it is vulnerable to the effects of increased oxidative stress. Understanding how expression of this transporter is influenced by oxidative stress may yield insight into its role in the pathophysiology of neurological and neuropsychiatric diseases. In this study we investigated whether increased oxidative stress could influence Na+/K+-ATPase expression in various brain regions of mice. We utilized two different models of oxidative stress: a behavioural chronic unpredictable stress protocol and the Aldh2-/- mouse model of oxidative stress-based and age-related cognitive impairment. We identified distinct regional baseline mRNA and protein expression patterns of the Na+/K+-ATPase α1 and α3 isoforms within the neocortex, hippocampus, and brainstem of wildtype mice. Consistent with previous studies, there was a higher proportion of α3 expression relative to α1 in the brainstem versus neocortex, but a higher proportion of α1 expression relative to α3 in the neocortex versus the brainstem. The hippocampus had similar expression levels of both α1 and α3. Despite increased staining for oxidative stress in higher brain, no differences in α1 or α3 expression were noted in Aldh2-/- mice versus wildtype, or in mice exposed to a 28-day chronic unpredictable stress protocol. In both models of oxidative stress, gene and protein expression of Na+/K+-ATPase α1 and α3 isoforms within the higher and lower brain was remarkably stable. Thus, Na+/K+-ATPase function previously reported as altered by oxidative stress is not through induced changes in the expression of pump isoforms.
Collapse
Affiliation(s)
- Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada.
| | - Michael E Golod
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada.
| | - R David Andrew
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada.
| | - Brian M Bennett
- Centre for Neuroscience Studies, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
22
|
Chen M, Zhang QP, Zhu JX, Cheng J, Liu Q, Xu GH, Li CF, Yi LT. Involvement of FGF-2 modulation in the antidepressant-like effects of liquiritin in mice. Eur J Pharmacol 2020; 881:173297. [DOI: 10.1016/j.ejphar.2020.173297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
|
23
|
The Changes of Expression and Methylation of Genes Involved in Oxidative Stress in Course of Chronic Mild Stress and Antidepressant Therapy with Agomelatine. Genes (Basel) 2020; 11:genes11060644. [PMID: 32545212 PMCID: PMC7349414 DOI: 10.3390/genes11060644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies conducted so far suggest that oxidative stress processes may be associated with the mechanism of depression development. This study shows the effects of chronic administration of agomelatine on expression and the methylation status of Sod1, Sod2, Gpx1, Gpx4, Cat, Nos1, and Nos2 in the brain stricture and blood in the chronic mild stress (CMS) animal model of depression. The animals were exposed to the CMS procedure and treatment with agomelatine (10 mg/kg/day, IP) for five weeks and then were sacrificed. TaqMan Gene Expression Assay, Western blot, and methylation-sensitive high-resolution melting techniques were used to evaluate mRNA and protein expression of the genes, and the methylation status of their promoters. Gpx1, Gpx4, and Sod2 expression in the PBMCs and Sod1 and Sod2 expression in the brain were reduced in the stressed group after agomelatine administration. CMS caused an increase in the methylation of the third Gpx4 promoter in peripheral blood mononuclear cells and Gpx1 promoter in the cerebral cortex. Additionally, stressed rats treated with agomelatine displayed a significantly lower Gpx4 level in the hypothalamus. The results confirm the hypothesis that the CMS procedure and agomelatine administration change the expression level and methylation status of the promoter region of genes involved in oxidative and nitrosative stress.
Collapse
|
24
|
Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, Wang H, Cheng Y. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology 2020; 45:1050-1058. [PMID: 31986519 PMCID: PMC7162931 DOI: 10.1038/s41386-020-0622-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Exosomal microRNAs (miRNAs) have been suggested to participate in the pathogenesis of neuropsychiatric diseases, but their role in major depressive disorder (MDD) is unknown. We performed a genome-wide miRNA expression profiling of blood-derived exosomes from MDD patients and control subjects and revealed the top differentially expressed exosomal miRNA, i.e. hsa-miR-139-5p (upregulation), had good performance to differentiate between MDD patients and controls. Tail vein injection of blood exosomes isolated from MDD patients into normal mice caused their depressive-like behaviors as determined by the forced swimming, tail suspension, and novelty suppressed feeding tests, and injection of blood exosomes isolated from healthy volunteers into unpredictable mild stress (CUMS)-treated mice alleviated their depressive-like behaviors. CUMS mice also showed significantly increased blood and brain levels of exosomal miR-139-5p. Furthermore, the depressive-like behaviors in CUMS-treated mice were rescued by intranasal injection of miR-139-5p antagomir, suggesting that increased exosomal miR-139-5p levels may mediate stress-induced depression-like behavior in mice. Both exosome treatment and miR-139-5p antagomir treatment increased hippocampal neurogenesis in the CUMS-treated mice, and treatment of exosome from MDD patients decreased hippocampal neurogenesis in the normal mice. The role of miR-139-5p in neurogenesis was validated by in vitro experiments, demonstrating that miR-139-5p is a negative regulator for neural stem cell proliferation and neuronal differentiation. Our findings together suggest that exosomes from patients with major depression caused depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Therefore, exosomal miRNAs are promising targets for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Ze-Xu Wei
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Guo-Jun Xie
- The Third People’s Hospital of Foshan, Foshan, Guangdong China
| | - Xiao Mao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
| | - Xin-Peng Zou
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ya-Jin Liao
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- 0000 0004 0369 0529grid.411077.4Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China. .,NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China.
| |
Collapse
|
25
|
Chen X, Li Z, Cheng Y, Kardami E, Loh YP. Low and High Molecular Weight FGF-2 Have Differential Effects on Astrocyte Proliferation, but Are Both Protective Against Aβ-Induced Cytotoxicity. Front Mol Neurosci 2020; 12:328. [PMID: 32038161 PMCID: PMC6992557 DOI: 10.3389/fnmol.2019.00328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are the most abundant type of glial cells in the brain, and they play a key role in Alzheimer’s disease (AD). Fibroblast Growth Factor-2 (FGF-2) has been implicated as a potential therapeutic agent for treating AD. In the present study, we investigated the protective effects of low molecular weight (LMW; 17 KDa) and high molecular weight (HMW; 23 KDa) forms of FGF-2 on Aβ1–42-induced toxicity, and proliferation in astrocytes. We show that both isoforms of FGF-2 have similar protective effects against Aβ1–42-induced cytotoxicity in primary cultured cortical astrocytes as measured by Lactate Dehydrogenase (LDH) release assay. Additionally, 17 KDa FGF-2 significantly promoted astrocyte proliferation as measured by Trypan Blue, DRAQ5 and 5-ethynyl-2’-deoxyuridine (EdU) staining, but not 23 kDa FGF-2. Furthermore, our results demonstrated that AKT signaling pathway was required for the protective and proliferative effects of FGF-2. Downstream effector studies indicated that 17 kDa FGF-2 promoted astrocyte proliferation by enhanced expression of c-Myc, Cyclin D1, Cyclin E. Furthermore, our data suggested that Cyclin D1 was required for the proliferative effect of LMW FGF2 in astrocytes. Taken together, our findings provide important information for the similarities and differences between 23 kDa and17 kDa isoforms of FGF-2 on astrocyte survival and proliferation.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zhaojin Li
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB. Brain Res Bull 2020; 157:69-76. [PMID: 31926302 DOI: 10.1016/j.brainresbull.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Saikosaponin d (SSd) is a traditional Chinese medicine that has been widely used in depression treatment. Given the lack of studies demonstrating the underlying mechanism of action of SSd in depression, the presented study was conducted with aims of investigating the effect of SSd on rats with depression-like behaviors induced by unpredicted chronic mild stress (UCMS) and its underlying molecular mechanism. To investigate the effect of SSd on depression, rat models with depression-like behaviors were established through 3-week exposure to UCMS, followed by administration of 10 mg/kg fluoxetine, 0.75 mg/kg SSd, 1.50 mg/kg SSd, or 10 mg/kg caffeic acid phenethyl ester (CAPE). The depression-like behaviors of rats were evaluated by sucrose preference test, open field test, forced swimming test, and tail suspension test. Afterwards, the regulatory relationship among nuclear factor-κB (NF-κB), microRNA (miR)-155 and fibroblast growth factor 2 (FGF2) were detected by dual-luciferase reporter gene assay and ChIP. RT-qPCR and Western blot analysis was conducted to determine the expression of genes and proteins. Finally, hippocampal neurons were extracted from modeled rats and transfected with miR-155 mimic, miR-155 inhibitor, NF-κB overexpression plasmid, or siRNA against NF-κB. The results showed that the depression-like behaviors induced by UCMS in rats was successfully attenuated by SSd. In hippocampal neurons of rats treated with SSd, NF-κB was significantly downregulated while FGF2 was significantly upregulated. NF-κB targets miR-155 and negatively regulates the expression of FGF2. NF-κB knockdown resulted in reduced depression-like behaviors of rats. These findings provide evidence that SSd could ameliorate depression-like behaviors in the rats treated with UCMS by downregulating NF-κB and miR-155, and upregulating FGF2.
Collapse
|
27
|
Zhong SJ, Wang L, Gu RZ, Zhang WH, Lan R, Qin XY. Ginsenoside Rg1 ameliorates the cognitive deficits in D-galactose and AlCl 3-induced aging mice by restoring FGF2-Akt and BDNF-TrkB signaling axis to inhibit apoptosis. Int J Med Sci 2020; 17:1048-1055. [PMID: 32410834 PMCID: PMC7211162 DOI: 10.7150/ijms.43979] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenoside Rg1 is the main active ingredient of Panax ginseng with the activity of neuroprotective, antioxidant and strengthening the immune system. Therefore, we hypothesized that Rg1 may afford anti-aging effects although the mechanism remains to be elucidated. In this study, chemically induced aging mice were established by consecutive administration of D-galactose and AlCl3. We found that Rg1 effectively ameliorates spatial learning and memory deficits in aging mice demonstrated by their improved performance in step down avoidance tests and Morris water maze experiments. Rg1 restored aging-induced decline of FGF2 and BDNF, reactivated TrkB/Akt signaling pathways in the hippocampus and prefrontal cortex to inhibit apoptosis, for the expression of anti-apoptotic protein Bcl-2 and apoptosis promoting enzyme cleaved-Caspase3 were antagonistically restored. Therefore, these results established the anti-aging effects of Rg1, and FGF2, BDNF and associated signaling pathways might be promising targets. Our data may provide a new avenue to the pharmacological research and diet therapeutic role of ethnic products such as Rg1 in anti-aging and aging associated diseases.
Collapse
Affiliation(s)
- Si-Jia Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.,College of Economics and management, North China Electric Power University, Beijing 102206, China
| | - Lin Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Run-Ze Gu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Hao Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
28
|
Cheng J, Chen M, Zhu JX, Li CF, Zhang QP, Geng D, Liu Q, Yi LT. FGF-2 signaling activation in the hippocampus contributes to the behavioral and cellular responses to puerarin. Biochem Pharmacol 2019; 168:91-99. [PMID: 31251937 DOI: 10.1016/j.bcp.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Puerarin, a well-studied isoflavone isolated from Pueraria lobata, produces an antidepressant-like effect. Fibroblast growth factor-2 (FGF-2) is essentially required in the central nervous system as it acts as both a neurotrophic or anti-inflammatory regulator for the proliferation, differentiation and apoptosis of neurons. There is evidence that FGF-2 holds great promise for therapeutic intervention for depression. However, nothing was known about the involvement of FGF-2 in the antidepressant-like effect of puerarin. In the present study, the underlying mechanism of puerarin was evaluated in chronic stress induced depressive-like mice. The results indicated that puerarin treatment was effective to attenuate anhedonia and despair behaviors caused by chronic stress, as the sucrose preference and the immobility time were improved by puerarin. In addition, the results demonstrated that puerarin increased the expression of FGF-2 in the hippocampus. On the contrary, SU5402, an FGFR1 inhibitor, infusion into the brain could not only block the antidepressant-like effect of puerarin, but also abolish the effect of puerarin on hippocampal neurogenesis enhancement and neuroinflammation inhibition. Taken together, these findings provide new insights into the mechanism that the antidepressant-like actions of puerarin require FGF-2/FGFR signaling for the regulation of neurogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
29
|
Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast Growth Factors in Depression. Front Pharmacol 2019; 10:60. [PMID: 30804785 PMCID: PMC6370647 DOI: 10.3389/fphar.2019.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most serious diseases and now becomes a major public health problem in the world. The pathogenesis of depression remains poorly understood. Fibroblast growth factors (FGFs) belong to a large family of growth factors that are involved in brain development during early periods as well as maintenance and repair throughout adulthood. In recent years, studies have found a correlation between the members of the FGF system and depression. These signaling molecules may be expected to be biomarkers for the diagnosis and prognosis of MDD, and may provide new drug targets for the treatment of depression. Here, we reviewed the correlation between some members of the FGF system and depression.
Collapse
Affiliation(s)
- Zheng Deng
- Hospital Evaluation Office, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Mu-Rong Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mi-Mi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| |
Collapse
|