1
|
Prakash V, Gabrani R. Epigenetic dysregulation in glioblastoma: potential pathways to precision medicine. Neurogenetics 2024; 26:5. [PMID: 39585441 DOI: 10.1007/s10048-024-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
The emerging field of epigenetics has been driving glioblastoma multiforme (GBM) development and progression. Various epigenetic alterations involving tumor suppressor genes, oncogenes, and signaling pathways have been identified in GBM. These alterations contribute to the aggressive behavior, therapeutic resistance, and tumor heterogeneity observed in GBM. Furthermore, the identification of specific genetic mutations associated with epigenetic dysregulation in GBM has provided new insights into the molecular subtypes and potential therapeutic targets within GBM. Understanding the complex interplay between genetic and epigenetic alterations in GBM is crucial for the development of effective and personalized therapies for this devastating disease. This review paper provides an overview of the epigenetic changes occurring in GBM and the potential of targeted epigenetic therapies as a promising avenue for GBM treatment, highlighting the challenges and future directions in this field has been deliberated.
Collapse
Affiliation(s)
- Vijeta Prakash
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India.
| |
Collapse
|
2
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Velu U, Singh A, Nittala R, Yang J, Vijayakumar S, Cherukuri C, Vance GR, Salvemini JD, Hathaway BF, Grady C, Roux JA, Lewis S. Precision Population Cancer Medicine in Brain Tumors: A Potential Roadmap to Improve Outcomes and Strategize the Steps to Bring Interdisciplinary Interventions. Cureus 2024; 16:e71305. [PMID: 39529768 PMCID: PMC11552465 DOI: 10.7759/cureus.71305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Brain tumors, a significant health burden, rank as the second leading cause of cancer among adolescents and young adults and the eighth most common cancer in older adults. Despite treatment advances, outcomes for many brain tumor types, especially glioblastoma multiforme (GBM), remain poor. Precision population cancer medicine (PPCM) offers promising avenues for improving outcomes in brain tumor management. This comprehensive review delves into the current landscape of brain tumor diagnosis and treatment, with a primary focus on the potential of PPCM to enhance care. The review explores several key areas where PPCM approaches show promise. In genetics and molecular biology, the genetic heterogeneity of brain tumors poses challenges and opportunities for targeted therapies. Understanding genetic patterns can guide treatment strategies and improve prognostication. Epigenetic modifications are crucial in brain tumor development and progression. Deoxyribonucleic acid (DNA) methylation patterns, particularly of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter, serve as essential biomarkers for treatment response and prognosis in GBM. Targeting epigenetic mechanisms could lead to novel therapeutic approaches. Non-invasive liquid biopsy techniques show potential for diagnosis, monitoring, and prognostication in brain tumors. Analysis of circulating tumor DNA and microRNAs may provide valuable information about tumor characteristics and treatment response. Advanced imaging techniques, including radiomics and radiogenomics, combined with artificial intelligence (AI) algorithms, are enhancing tumor detection, characterization, and treatment planning. These technologies can contribute to more personalized treatment approaches. In addition, emerging nanotherapeutic platforms, which involve the use of nanoparticles to deliver drugs directly to tumors, and theranostic approaches, which combine therapy and diagnostics in a single platform, offer new possibilities for targeted drug delivery and real-time treatment monitoring in brain tumors. The review also addresses socioeconomic and demographic factors influencing brain tumor incidence and outcomes. It highlights the stark disparities in care access and survival rates among different racial and ethnic groups, emphasizing the urgent need for PPCM strategies to address these inequities. Challenges in implementing PPCM for brain tumors include the blood-brain barrier, which limits drug delivery, and the need for more extensive clinical trials to validate new approaches. The authors stress the importance of interdisciplinary collaboration and data sharing to advance the field, making the audience feel united and part of a larger team. While PPCM holds great promise, the review emphasizes that it should complement, not replace, population-level interventions and standard-of-care treatments. The authors advocate for a balanced approach that leverages cutting-edge personalized strategies while ensuring broad access to effective treatments. In conclusion, PPCM represents a powerful tool in the fight against brain tumors, offering the potential for more targeted, effective, and less toxic treatments. However, realizing its full potential will require ongoing research, clinical validation, and policy interactions to address disparities in care access.
Collapse
Affiliation(s)
- Umesh Velu
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| | - Anshul Singh
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| | - Roselin Nittala
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Johnny Yang
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Srinivasan Vijayakumar
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
- Cancer Care, Cancer Care Advisors and Consultants LLC, Ridgeland, USA
| | - Chanukya Cherukuri
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Gregory R Vance
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - John D Salvemini
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Bradley F Hathaway
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Camille Grady
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Jeffrey A Roux
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, IND
| |
Collapse
|
5
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
7
|
Johns DA, Williams RJ, Smith CM, Nadaminti PP, Samarasinghe RM. Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma. Clin Transl Med 2024; 14:e1560. [PMID: 38299304 PMCID: PMC10831580 DOI: 10.1002/ctm2.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Paediatric and adult astrocytomas are notably different, where clinical treatments used for adults are not as effective on children with the same form of cancer and these treatments lead to adverse long-term health concerns. Integrative omics-based studies have shown the pathology and fundamental molecular characteristics differ significantly and cannot be extrapolated from the more widely studied adult disease. Recent clinical advances in our understanding of paediatric astrocytomas, with the aid of next-generation sequencing and epigenome-wide profiling, have led to the identification of key canonical mutations that vary based on the tumour location and age of onset. These driver mutations, in particular the identification of the recurrent histone H3 mutations in high-grade tumours, have confirmed the important role epigenetic dysregulations play in cancer progression. This review summarises the current updates of the classification, epidemiology, pathogenesis and clinical management of paediatric astrocytoma based on their grades and the ongoing clinical trials. It also provides novel insights on genetic and epigenetic alterations as diagnostic biomarkers, highlighting the potential of targeting these pathways as therapeutics for this devastating childhood cancer.
Collapse
Affiliation(s)
- Dona A. Johns
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Richard J. Williams
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- The Graeme Clark Institute, The University of MelbourneMelbourneVICAustralia
| | - Craig M. Smith
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Pavani P. Nadaminti
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
8
|
Feng S, Zhang Y, Zhu H, Jian Z, Zeng Z, Ye Y, Li Y, Smerin D, Zhang X, Zou N, Gu L, Xiong X. Cuproptosis facilitates immune activation but promotes immune escape, and a machine learning-based cuproptosis-related signature is identified for predicting prognosis and immunotherapy response of gliomas. CNS Neurosci Ther 2024; 30:e14380. [PMID: 37515314 PMCID: PMC10848101 DOI: 10.1111/cns.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Daniel Smerin
- Department of NeurosurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xu Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Gu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Kang W, Mo Z, Li W, Ma H, Zhang Q. Heterogeneity and individualized treatment of microenvironment in glioblastoma (Review). Oncol Rep 2023; 50:217. [PMID: 37888767 PMCID: PMC10636722 DOI: 10.3892/or.2023.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of glioblastoma can suppress immune cell function and lead to immune evasion, which presents a challenge in developing effective molecular therapies for tumor cells. However, the study of tumor immune heterogeneity holds great potential for clinical immunotherapy. Liquid biopsy is a useful tool for accurately monitoring dynamic changes in tumor immune heterogeneity and the tumor microenvironment. This paper explores the heterogeneity of glioblastoma and the immune microenvironment, providing a therapeutic basis for individualized treatment. Using liquid biopsy technology as a new diagnostic method, innovative treatment strategies may be implemented for patients with glioblastoma to improve their outcomes.
Collapse
Affiliation(s)
- Wei Kang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Zhixiao Mo
- Department of Neurosurgery, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai 810099, P.R. China
| | - Wenshan Li
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
- Key Laboratory of Neurology of Gansu Province, Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Haifeng Ma
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
10
|
Isachesku E, Braicu C, Pirlog R, Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP, Berindan-Neagoe I. The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development. Int J Mol Sci 2023; 24:16320. [PMID: 38003512 PMCID: PMC10671451 DOI: 10.3390/ijms242216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.
Collapse
Affiliation(s)
- Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Lavinia-Lorena Pruteanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Deo Prakash Pandey
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| |
Collapse
|
11
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
12
|
Ge X, Xu M, Cheng T, Hu N, Sun P, Lu B, Wang Z, Li J. TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol 2022; 13:974346. [PMID: 36275718 PMCID: PMC9585303 DOI: 10.3389/fimmu.2022.974346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Xinqi Ge
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Nan Hu
- Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| |
Collapse
|
13
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
14
|
Ascorbate content of clinical glioma tissues is related to tumour grade and to global levels of 5-hydroxymethyl cytosine. Sci Rep 2022; 12:14845. [PMID: 36050369 PMCID: PMC9436949 DOI: 10.1038/s41598-022-19032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten–eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy.
Collapse
|
15
|
Wang K, Wang Z, Wang Z, Xie X, Zang L, Wang L, Che F. Stellera chamaejasme L. extracts in the treatment of glioblastoma cell lines: Biological verification based on a network pharmacology approach. Front Oncol 2022; 12:962970. [PMID: 36059675 PMCID: PMC9428724 DOI: 10.3389/fonc.2022.962970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Stellera chamaejasme L (RXLD) has been demonstrated with good clinical effects and medicinal value in the treatment of cancer in vivo and in vitro. Specifically, RXLD can eliminate aggregation accumulation, which is depicted as a vital characteristic feature of intracranial tumors. The potential pharmacological mechanisms of anti-glioblastoma (GBM) have not been adequately identified. Methods The 3D structures of the chemical ingredients in RXLD were imported into the PharmMapper database to construct the pharmacophore models. The gene targets of GBM were obtained from databases. The pharmacophore-targets network and the protein-protein interactions (PPI) were constructed using the String database and were visualized by using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were conducted using Bioconductor software. Cytoscape visualized the relationship of pathways and candidate genes to screen for key target genes. Software packages PyMOL, AutoDock, and Vina acquired the molecular docking results. In vitro experiments were undertaken to characterize RXLD extracts’ effects on A172 cell line proliferation, viability, apoptosis, cell cycle, cell wound healing, cell migration, reactive oxygen species generation, and mitochondrial membrane potential. The expression of core genes in the related pathways was detected by Western blotting. Results We identified 216 potential targets associated with GBM. The core components in RXLD were neochamaejasmin A, wikstrol A, isochamaejasmin, chamaejasmine, and subtoxin A. The undertaken GO enrichment analysis revealed that oxidative stress, cell proliferation, cell cycle, cell invasion, and cell migration were involved in the biological processes. The KEGG enrichment analysis revealed that the crucial pathway was MAPK pathway, while HRAS, PRKCB, MAPK9, CCND1, and TP53 were distributed in core locations. A total of seven RXLD pharmacophores demonstrated strong spontaneous docking activities with MAPK9. In vitro assays indicated that RXLD can induce apoptosis, block the cell cycle in the G2/M and S phases, inhibit cell migration via the Wnt/β-catenin pathway, and inhibited p62/Nrf2 pathway. Conclusions We speculate that the RAS/MAPK pathway might be an upstream pathway through which the RXLD exerts its anti-GBM effects and might be able to regulate further the Wnt/β-catenin, the oxidative stress, and the ferroptosis pathways.
Collapse
Affiliation(s)
- Kaiyue Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Zengyong Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Lanlan Zang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- Clinical Pharmacological Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- Department of Hematology, Linyi People’s Hospital, Shandong University, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| | - Fengyuan Che
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Shandong University, Linyi, China
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| |
Collapse
|
16
|
Thermodynamic stability of cisplatin-loaded polymeric micelles and the phenotypic switching of the tumor-associated macrophages induced by combination of cisplatin-loaded micelles and Anti-PD-L1 antibody. Int J Pharm 2022; 622:121860. [PMID: 35654378 DOI: 10.1016/j.ijpharm.2022.121860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022]
Abstract
Chemotherapy is an effective anti-tumor treatment. Some anticancer chemotherapeutic drugs can not only induce cell death, but can also elicit antitumor immune responses. Here, the stability of cisplatin-loaded polymeric micelles (CDDP-PMs), pharmacokinetic drug-drug interactions of CDDP and anti-PD-L1 antibody (aPD-L1) in vivo and the alteration of the tumor microenvironment by combination of CDDP-PMs and aPD-L1 were evaluated. CDDP-PMs were fabricated by coordinated complexation and self-assembly method for tumor targeting. CDDP-PMs with higher mass ratio of copolymer have higher thermodynamic stability. The pharmacokinetic study showed that the CDDP and aPD-L1 were metabolized and cleared by two different pathways, suggesting that there is almost no risk of potential drug interactions between CDDP and aPD-L1 and the combination of aPD-L1 and CDDP- PMs may not alter the tissue distribution of CDDP. In vivo antitumor test showed that the tumor growth inhibition rates of CDDP-PMs combined with medium-dose aPD-L1 and CDDP-PMs combined with high-dose PD-L1 were 89.41% and 93.16%, respectively and therapeutic efficacy can be further increased by increasing the dose of aPD-L1 in co-administration group. This therapeutic system by combining chemotherapy and immunotherapy further increases the link between them and holds great potential to offer better safety and antitumor efficacy profiles.
Collapse
|
17
|
Proto MC, Fiore D, Piscopo C, Laezza C, Bifulco M, Gazzerro P. Modified Adenosines Sensitize Glioblastoma Cells to Temozolomide by Affecting DNA Methyltransferases. Front Pharmacol 2022; 13:815646. [PMID: 35559231 PMCID: PMC9086827 DOI: 10.3389/fphar.2022.815646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance. Luciferase assay revealed that IPA-mediated upregulation of FBXW7 translates in transcriptional inactivation of its oncogenic substrates (Myc, NFkB, or HIF-1α). Moreover, downregulating MGMT expression, IPA strongly enhances the killing effect of temozolomide (TMZ), producing a favorable sensitizing effect starting from a concentration range much lower than TMZ EC50. Through DNA methyltransferase (DNMT) activity assay, analysis of the global DNA methylation, and the histone modification profiles, we demonstrated that the modified adenosines behave similar to 5-AZA-dC, known DNMT inhibitor. Overall, our results provide new perspectives for the first time, suggesting the modified adenosines as epigenetic tools able to improve chemo- and radiotherapy efficacy in glioblastoma and potentially other cancers.
Collapse
Affiliation(s)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
18
|
Ferreira WAS, Vitiello GAF, da Silva Medina T, de Oliveira EHC. Comprehensive analysis of epigenetics regulation, prognostic and the correlation with immune infiltrates of GPX7 in adult gliomas. Sci Rep 2022; 12:6442. [PMID: 35440701 PMCID: PMC9018725 DOI: 10.1038/s41598-022-10114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most commonly occurring malignant brain tumor characterized by an immunosuppressive microenvironment accompanied by profound epigenetic changes, thus influencing the prognosis. Glutathione peroxidase 7 (GPX7) is essential for regulating reactive oxygen species homeostasis under oxidative stress. However, little is known about the function of GPX7 in gliomas. In this study, we hypothesized that GPX7 methylation status could influence biological functions and local immune responses that ultimately impact prognosis in adult gliomas. We conducted an integrated bioinformatics analysis mining GPX7 DNA methylation status, transcriptional and survival data of glioma patients. We discovered that GPX7 was remarkably increased in glioma tissues and cell lines, and was associated with poor prognosis. This upregulation was significantly linked to clinicopathological and molecular features, besides being expressed in a cell cycle-dependent manner. Our results consistently demonstrated that upregulation of GPX7 is tightly modulated by epigenetic processes, which also impacted the overall survival of patients with low-grade gliomas (LGG). Based on the analysis of biological functions, we found that GPX7 might be involved in immune mechanisms involving both innate and adaptive immunity, type I interferon production and regulation of synaptic transmission in LGG, whereas in GBM, it is mainly related to metabolic regulation of mitochondrial dynamics. We also found that GPX7 strongly correlates with immune cell infiltration and diverse immune cell markers, suggesting its role in tumor-specific immune response and in regulating the migration of immune cell types to the tumor microenvironment. Combining these multiple data, we provided the first evidence regarding the epigenetic-mediated regulatory mechanisms underlying GPX7 activation in gliomas. Furthermore, our study brings key insights into the significant effect of GPX7 in modulating both immune molecules and in immune cell infiltration in the microenvironment of gliomas, which might impact the patient outcome, opening up future opportunities to regulate the local immune response.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil.
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Institute of Exact and Natural Sciences, Faculty of Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
19
|
Courant F, Maravat M, Chen W, Gosset D, Blot L, Hervouet-Coste N, Sarou-Kanian V, Morisset-Lopez S, Decoville M. Expression of the Human Serotonin 5-HT 7 Receptor Rescues Phenotype Profile and Restores Dysregulated Biomarkers in a Drosophila melanogaster Glioma Model. Cells 2022; 11:1281. [PMID: 35455961 PMCID: PMC9028361 DOI: 10.3390/cells11081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.
Collapse
Affiliation(s)
- Florestan Courant
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Marion Maravat
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Wanyin Chen
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - David Gosset
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Lauren Blot
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Nadège Hervouet-Coste
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation—CEMHTI-CNRS UPR 3079, CEDEX 02, F-45071 Orléans, France; (M.M.); (V.S.-K.)
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
| | - Martine Decoville
- Centre de Biophysique Moléculaire—CBM, UPR 4301, CNRS, Rue Charles Sadron, CEDEX 02, F-45071 Orléans, France; (F.C.); (W.C.); (D.G.); (L.B.); (N.H.-C.); (M.D.)
- UFR Sciences et Techniques, Université d’Orléans, 6 Avenue du Parc Floral, F-45100 Orléans, France
| |
Collapse
|
20
|
Maimaiti A, Aili Y, Turhon M, Kadeer K, Aikelamu P, Wang Z, Niu W, Aisha M, Kasimu M, Wang Y, Wang Z. Modification Patterns of DNA Methylation-Related lncRNAs Regulating Genomic Instability for Improving the Clinical Outcomes and Tumour Microenvironment Characterisation of Lower-Grade Gliomas. Front Mol Biosci 2022; 9:844973. [PMID: 35359593 PMCID: PMC8960387 DOI: 10.3389/fmolb.2022.844973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Background: DNA methylation is an important epigenetic modification that affects genomic instability and regulates gene expression. Long non-coding RNAs (lncRNAs) modulate gene expression by interacting with chromosomal modifications or remodelling factors. It is urgently needed to evaluate the effects of DNA methylation-related lncRNAs (DMlncRNAs) on genome instability and further investigate the mechanism of action of DMlncRNAs in mediating the progression of lower-grade gliomas (LGGs) and their impact on the immune microenvironment.Methods: LGG transcriptome data, somatic mutation profiles and clinical features analysed in the present study were obtained from the CGGA, GEO and TCGA databases. Univariate, multivariate Cox and Lasso regression analyses were performed to establish a DMlncRNA signature. The KEGG and GO analyses were performed to screen for pathways and biological functions associated with key genes. The ESTIMATE and CIBERSORT algorithms were used to determine the level of immune cells in LGGs and the immune microenvironment fraction. In addition, DMlncRNAs were assessed using survival analysis, ROC curves, correlation analysis, external validation, independent prognostic analysis, clinical stratification analysis and qRT-PCR.Results: We identified five DMlncRNAs with prognostic value for LGGs and established a prognostic signature using them. The Kaplan–Meier analysis revealed 10-years survival rate of 10.10% [95% confidence interval (CI): 3.27–31.40%] in high-risk patients and 57.28% (95% CI: 43.17–76.00%) in low-risk patients. The hazard ratio (HR) and 95% CI of risk scores were 1.013 and 1.009–1.017 (p < 0.001), respectively, based on the univariate Cox regression analysis and 1.009 and 1.004–1.013 (p < 0.001), respectively, based on the multivariate Cox regression analysis. Therefore, the five-lncRNAs were identified as independent prognostic markers for patients with LGGs. Furthermore, GO and KEGG analyses revealed that these lncRNAs are involved in the prognosis and tumorigenesis of LGGs by regulating cancer pathways and DNA methylation.Conclusion: The findings of the study provide key information regarding the functions of lncRNAs in DNA methylation and reveal that DNA methylation can regulate tumour progression through modulation of the immune microenvironment and genomic instability. The identified prognostic lncRNAs have high potential for clinical grouping of patients with LGGs to ensure effective treatment and management.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaheerman Kadeer
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paziliya Aikelamu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhitao Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Weiwei Niu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitili Aisha
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitijiang Kasimu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Yongxin Wang, ; Zengliang Wang,
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Yongxin Wang, ; Zengliang Wang,
| |
Collapse
|
21
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
22
|
Mehndiratta S, Qian B, Chuang JY, Liou JP, Shih JC. N-Methylpropargylamine-Conjugated Hydroxamic Acids as Dual Inhibitors of Monoamine Oxidase A and Histone Deacetylase for Glioma Treatment. J Med Chem 2022; 65:2208-2224. [PMID: 35005974 DOI: 10.1021/acs.jmedchem.1c01726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioma treatment remains a challenge with a low survival rate due to the lack of effective therapeutics. Monoamine oxidase A (MAO A) plays a role in glioma development, and MAO A inhibitors reduce glioma growth. Histone deacetylase (HDAC) inhibition has emerged as a promising therapy for various malignancies including gliomas. We have synthesized and evaluated N-methylpropargylamine-conjugated hydroxamic acids as dual inhibitors of MAO A and HDAC. Compounds display potent MAO A inhibition with IC50 from 0.03 to <0.0001 μM and inhibit HDAC isoforms and cell growth in the micromolar to nanomolar IC50 range. These selective MAO A inhibitors increase histone H3 and α-tubulin acetylation and induce cell death via nonapoptotic mechanisms. Treatment with 15 reduced tumor size, reduced MAO A activity in brain and tumor tissues, and prolonged the survival. This first report on dual inhibitors of MAO A and HDAC establishes the basis of translational research for an improved treatment of glioma.
Collapse
Affiliation(s)
- Samir Mehndiratta
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States.,USC-Taiwan Center for Translational Research, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
23
|
Ji J, You Q, Zhang J, Wang Y, Cheng J, Huang X, Zhang Y. Downregulation of TET1 Promotes Glioma Cell Proliferation and Invasion by Targeting Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2021; 2021:8980711. [PMID: 34926132 PMCID: PMC8677395 DOI: 10.1155/2021/8980711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common malignant tumor in adult brain characteristic with poor prognosis and low survival rate. Despite the application of advanced surgery, chemotherapy, and radiotherapy, the patients with glioma suffer poor treatment effects due to the complex molecular mechanisms of pathological process. In this paper, we conducted the experiments to prove the critical roles TET1 played in glioma and explored the downstream targets of TET1 in order to provide a novel theoretical basis for clinical glioma therapy. RT-qPCR was adopted to detect the RNA level of TET1 and β-catenin; Western blot was taken to determine the expression of proteins. CCK8 assay was used to detect the proliferation of glioma cells. Flow cytometry was used to test cell apoptosis and distribution of cell cycle. To detect the migration and invasion of glioma cells, wound healing assay and Transwell were performed. It was found that downregulation of TET1 could promote the proliferation migration and invasion of glioma cells and the concomitant upregulation of β-catenin, and its downstream targets like cyclinD1 and c-myc were observed. The further rescue experiments were performed, wherein downregulation of β-catenin markedly decreases glioma cell proliferation in vitro and in vivo. This study confirmed the tumor suppressive function of TET1 and illustrated the underlying molecular mechanisms regulated by TET1 in glioma.
Collapse
Affiliation(s)
- Jianwen Ji
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Qiuxiang You
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jidong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yutao Wang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jing Cheng
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Xiangyun Huang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yundong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
24
|
Jiang H, Ge R, Chen S, Huang L, Mao J, Sheng L. miRNA-204-5p acts as tumor suppressor to influence the invasion and migration of astrocytoma by targeting ezrin and is downregulated by DNA methylation. Bioengineered 2021; 12:9301-9312. [PMID: 34723710 PMCID: PMC8809991 DOI: 10.1080/21655979.2021.2000244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRNAs), through their regulation of the expression and activity of numerous proteins, are involved in almost all cellular processes. As a consequence, dysregulation of miRNA expression is closely associated with the development and progression of cancers. Recently, DNA methylation has been shown to play a key role in miRNA expression dysregulation in tumors. miRNA-204-5p commonly acts in the suppression of oncogenes in tumors. In this study, the levels of miRNA-204-5p were found to be down-regulated in the astrocytoma samples. miRNA-204-5p expression was also down-regulated in two astrocytoma cell lines (U87MG and LN382). Examination of online databases showed that the miRNA-204-5p promoter regions exist in CpG islands, which might be subjected to differential methylation. Subsequently, we showed that the miRNA-204-5p promoter region was hypermethylated in the astrocytoma tissue samples and cell lines. Then we found that ezrin expression was down-regulated with an increase in miRNA-204-5p expression in LN382 and U87MG cells after 5-aza-2'-deoxycytidine (5'AZA) treatment compared with control DMSO treatment. In addition, LN382 and U87MG cells treated with 5'AZA exhibited significantly inhibited cell invasion and migration . In a recovery experiment, cell invasion and migration returned to normal levels as miRNA-204-5p and ezrin levels were restored. Overall, our study suggests that miRNA-204-5p acts as a tumor suppressor to influence astrocytoma invasion and migration by targeting ezrin and that miRNA-204-5p expression is downregulated by DNA methylation. This study provides a new potential strategy for astrocytoma treatment.
Collapse
Affiliation(s)
- Haibo Jiang
- Department of Emergency Intensive Care Unit, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Ruixiang Ge
- Department of Neurosurgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Siwen Chen
- Department of Reproductive Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Laiquan Huang
- Department of Hematology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen City, China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| |
Collapse
|
25
|
Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021; 22:ijms221810005. [PMID: 34576168 PMCID: PMC8470251 DOI: 10.3390/ijms221810005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence:
| | - József Virga
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|
26
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Zhang Z, Huang Y, Chen H, Wu P, Deng Z, Deng G, Zheng Y, Li G, Yuan L, Xu Y. The correlation between polymorphisms in the XPC gene and glioma susceptibility in a Chinese pediatric population. Transl Pediatr 2021; 10:1896-1904. [PMID: 34430438 PMCID: PMC8349950 DOI: 10.21037/tp-21-301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND A previous study revealed that single nucleotide polymorphisms (SNPs) in coding genes play a key role in tumorigenesis, genetic disorders, and drug resistance. Xeroderma pigmentosum group C (XPC) protein is a key DNA damage recognition factor that is required for maintaining the genomic stability. However, the correlation between XPC polymorphisms and glioma susceptibility is still unclear. Hence, this study aimed to investigate the correlation between XPC polymorphisms and pediatric glioma susceptibility. METHODS A total of 399 participants (171 glioma patients and 228 controls) were enrolled to evaluate the correlation between XPC polymorphism and pediatric glioma susceptibility. The count data of two groups was analyzed by chi-squared (χ2) test. Moreover, logistic regression was used to assess the strength of XPC polymorphisms associated with glioma susceptibility. RESULTS We identified that XPC rs1870134 G>C reduced pediatric glioma susceptibility. Compared to participants with rs1870134 GG/GC genotypes, those with rs1870134 CC genotype had a significantly lower risk for glioma [adjusted odds ratio (AOR) =0.10, 95% confidence interval (CI): 0.01 to 0.78, P=0.028]. Patients with 4-5 genotypes have higher risk of glioma than those with 0-3 genotypes (AOR =1.59, 95% CI: 1.04 to 2.43, P=0.031). The stratified analysis showed that the risky effects of rs2228000 CT/TT genotypes and rs2229090 GC/CC genotypes were more predominant among children aged ≥60 months, astrocytic tumors, and clinical stage I. CONCLUSIONS We found for the first time that XPC polymorphisms had a statistically significant correlation with pediatric glioma susceptibility in a Chinese population. The XPC rs2228000 CT/TT and rs2229090 GC/CC genotypes could both increase the risk of pediatric glioma in subgroups with females, astrocytic tumors, and clinical stage I. The XPC polymorphism has potential to be a useful adjunct method to screen pediatric glioma.
Collapse
Affiliation(s)
- Zhuorong Zhang
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yihuan Huang
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Honghao Chen
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Wu
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhijian Deng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Gaoyan Deng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongqin Zheng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoyuan Li
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Abedalthagafi M, Mobark N, Al-Rashed M, AlHarbi M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. NPJ Precis Oncol 2021; 5:34. [PMID: 33931704 PMCID: PMC8087701 DOI: 10.1038/s41698-021-00173-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brain tumors are the leading cause of childhood cancer-related deaths. Similar to adult brain tumors, pediatric brain tumors are classified based on histopathological evaluations. However, pediatric brain tumors are often histologically inconsistent with adult brain tumors. Recent research findings from molecular genetic analyses have revealed molecular and genetic changes in pediatric tumors that are necessary for appropriate classification to avoid misdiagnosis, the development of treatment modalities, and the clinical management of tumors. As many of the molecular-based therapies developed from clinical trials on adults are not always effective against pediatric brain tumors, recent advances have improved our understanding of the molecular profiles of pediatric brain tumors and have led to novel epigenetic and immunotherapeutic treatment approaches currently being evaluated in clinical trials. In this review, we focus on primary malignant brain tumors in children and genetic, epigenetic, and molecular characteristics that differentiate them from brain tumors in adults. The comparison of pediatric and adult brain tumors highlights the need for treatments designed specifically for pediatric brain tumors. We also discuss the advancements in novel molecularly targeted drugs and how they are being integrated with standard therapy to improve the classification and outcomes of pediatric brain tumors in the future.
Collapse
Affiliation(s)
- Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia.
| | - Nahla Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musa AlHarbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Wei X, Xiao B, Wang L, Zang L, Che F. Potential new targets and drugs related to histone modifications in glioma treatment. Bioorg Chem 2021; 112:104942. [PMID: 33965781 DOI: 10.1016/j.bioorg.2021.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Glioma accounts for 40-50% of craniocerebral tumors, whose outcome rarely improves after standard treatment. The development of new therapeutic targets for glioma treatment has important clinical significance. With the deepening of research on gliomas, recent researchers have found that the occurrence and development of gliomas is closely associated with histone modifications, including methylation, acetylation, phosphorylation, and ubiquitination. Additionally, evidence has confirmed the close relationship between histone modifications and temozolomide (TMZ) resistance. Therefore, histone modification-related proteins have been widely recognized as new therapeutic targets for glioma treatment. In this review, we summarize the potential histone modification-associated targets and related drugs for glioma treatment. We have further clarified how histone modifications regulate the pathogenesis of gliomas and the mechanism of drug action, providing novel insights for the current clinical glioma treatment. Herein, we have also highlighted the limitations of current clinical therapies and have suggested future research directions and expected advances in potential areas of disease prognosis. Due to the complicated glioma pathogenesis, in the present review, we have acknowledged the limitations of histone modification applications in the related clinical treatment.
Collapse
Affiliation(s)
- Xiuhong Wei
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China
| | - Bolian Xiao
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China
| | - Liying Wang
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Department of Neurology, the Clinical Medical College of Weifang Medical College, Weifang, Shandong, China
| | - Lanlan Zang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Fengyuan Che
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, China; Key Laboratory of Neurophysiology, Key Laboratory of Tumor Biology, Linyi, Shandong, China.
| |
Collapse
|
31
|
The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors have a poor prognosis and progress must be made for developing efficacious treatments, but for this to occur their biology and interaction with the host must be elucidated beyond current knowledge. What has been learned from other tumors may be applied to study brain tumors, for example, the role of Hsp60, miRNAs, and extracellular vesicles (EVs) in the mechanisms of cell proliferation and dissemination, and resistance to immune attack and anticancer drugs. It has been established that Hsp60 increases in cancer cells, in which it occurs not only in the mitochondria but also in the cytosol and plasma-cell membrane and it is released in EVs into the extracellular space and in circulation. There is evidence suggesting that these EVs interact with cells near and far from their original cell and that this interaction has an impact on the functions of the target cell. It is assumed that this crosstalk between cancer and host cells favors carcinogenesis in various ways. We, therefore, propose to study the triad Hsp60-related miRNAs-EVs in brain tumors and have standardized methods for the purpose. These revealed that EVs with Hsp60 and related miRNAs increase in patients’ blood in a manner that reflects disease status. The means are now available to monitor brain tumor patients by measuring the triad and to dissect its effects on target cells in vitro, and in experimental models in vivo.
Collapse
|
32
|
Yang H, Wei L, Xun Y, Yang A, You H. BRD4: An emerging prospective therapeutic target in glioma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:1-14. [PMID: 33851008 PMCID: PMC8010576 DOI: 10.1016/j.omto.2021.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite advances in treatment, the prognosis for glioma patients remains poor. Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) protein family, plays an important role in controlling oncogene expression and genome stability. In recent years, numerous BRD4 inhibitors have entered clinical trials and achieved exciting results in tumor treatment. Recent clinical studies have shown that BRD4 expression in glioma is significantly higher than in the adjacent normal brain tissue. BRD4 inhibitors effectively penetrate the blood-brain barrier and target glioma tumor tissues but have little effect on normal brain tissues. Thus, BRD4 is a target for the treatment of glioma. In this study, we discuss the progress in the use of BRD4 inhibitors for glioma treatment, their mechanism of action, and their broad potential clinical application.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| |
Collapse
|
33
|
Pratap UP, Sareddy GR, Liu Z, Venkata PP, Liu J, Tang W, Altwegg KA, Ebrahimi B, Li X, Tekmal RR, Viswanadhapalli S, McHardy S, Brenner AJ, Vadlamudi RK. Histone deacetylase inhibitors enhance estrogen receptor beta expression and augment agonist-mediated tumor suppression in glioblastoma. Neurooncol Adv 2021; 3:vdab099. [PMID: 34485908 PMCID: PMC8412056 DOI: 10.1093/noajnl/vdab099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal primary brain tumors. Estrogen receptor β (ESR2/ERβ) function as a tumor suppressor in GBM, however, ERβ expression is commonly suppressed during glioma progression. In this study, we examined whether drugs that reverse epigenetic modifications will enhance ERβ expression and augment ERβ agonist-mediated tumor suppression. METHODS We tested the utility of epigenetic drugs which act as an inhibitor of histone deacetylases (HDACs), histone methylases, and BET enzymes. Mechanistic studies utilized RT-qPCR, chromatin immunoprecipitation (ChIP), and western blotting. Cell viability, apoptosis, colony formation, and invasion were measured using in vitro assays. An orthotopic GBM model was used to test the efficacy of in vivo. RESULTS Of all inhibitors tested, HDACi (panobinostat and romidepsin) showed the potential to increase the expression of ERβ in GBM cells. Treatment with HDACi uniquely upregulated ERβ isoform 1 expression that functions as a tumor suppressor but not ERβ isoform 5 that drives oncogenic functions. Further, combination therapy of HDACi with the ERβ agonist, LY500307, potently reduced cell viability, invasion, colony formation, and enhanced apoptosis. Mechanistic studies showed that HDACi induced ERβ is functional, as it enhanced ERβ reporter activities and ERβ target genes expression. ChIP analysis confirmed alterations in the histone acetylation at the ERβ and its target gene promoters. In orthotopic GBM model, combination therapy of panobinostat and LY500307 enhanced survival of tumor-bearing mice. CONCLUSIONS Our results suggest that the combination therapy of HDACi and LY500307 provides therapeutic utility in overcoming the suppression of ERβ expression that commonly occurs in GBM progression.
Collapse
Affiliation(s)
- Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Stanton McHardy
- Department of Chemistry, University of Texas San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
34
|
Okechukwu C. Targeting epigenetic alterations in the treatment of glioma. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
36
|
Zhang K, Zhao H, Zhang K, Hua C, Qin X, Xu S. Chromatin-regulating genes are associated with postoperative prognosis and isocitrate dehydrogenase mutation in astrocytoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1594. [PMID: 33437793 PMCID: PMC7791220 DOI: 10.21037/atm-20-7229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Abnormality in chromatin regulation is a major determinant in the progression of multiple neoplasms. Astrocytoma is a malignant histologic morphology of glioma that is commonly accompanied by chromatin dysregulation. However, the systemic interpretation of the expression characteristics of chromatin-regulating genes in astrocytoma is unclear. Methods In this study, we investigated the expression profile of chromatin regulation genes in 194 astrocytoma patients sourced from The Cancer Genome Atlas (TCGA) database. The relevance of gene expression and postoperative survival outcomes was assessed. Results Based on the expression patterns of chromatin regulation genes, two primary clusters and three subclusters with significantly different survival outcomes were identified. The patients in cluster_1 (or subcluster_1) had a poorer prognosis than the other groups, and this particular cohort were older, with a more advanced grade of tumor and isocitrate dehydrogenase-wildtype distribution. Detection of the differentially expressed genes revealed that the group with poor prognosis was characterized by downregulation of H2AFY2, WAC, HDAC5, ZMYND11, TET1, SATB1, and MYST4, and overexpression of EYA4. Moreover, all eight genes were significantly correlated with overall survival (OS) in astrocytoma. Age-associated genes were investigated and the expression levels of EYA4, TET1, SATB1, WAC, ZMYND11, and H2AFY2 were found to be closely correlated with advanced age. Regression analysis suggested that the expression levels of H2AFY2, HILS1, EYA1, EYA4, and KDM5B were independently associated with IDH mutation status. The differential expressions of 34 common genes were significantly associated with age, grade, and IDH mutant. Conclusions The study revealed that the expression pattern of chromatin regulation genes was significantly associated with postoperative prognosis in astrocytoma. Moreover, the differential expression of particular genes was strongly associated with clinical characteristics such as age, grade, and IDH subtype. These results suggest that the genes involved in chromatin regulation play important roles in the biological process of astrocytoma progression, and these molecules could potentially serve as therapeutic targets in astrocytoma.
Collapse
Affiliation(s)
- Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kewei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Qin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Songbai Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Park CW, Lee SM, Yoon KJ. Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Rep 2020. [PMID: 33148378 PMCID: PMC7704224 DOI: 10.5483/bmbrep.2020.53.11.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper development of the nervous system is critical for its function, and deficits in neural development have been impli-cated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.
Collapse
Affiliation(s)
- Chan-Woo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
38
|
Qiu G, Tong W, Jiang C, Xie Q, Zou J, Luo C, Zhao J, Zhang L, Zhao J. Long Noncoding RNA WT1-AS Inhibit Cell Malignancy via miR-494-3p in Glioma. Technol Cancer Res Treat 2020; 19:1533033820919759. [PMID: 32419643 PMCID: PMC7235650 DOI: 10.1177/1533033820919759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary brain tumors are a rare occurrence in comparison to other malignancies, the most predominant form being glioma. Commonly, exposure to ionizing radiations and inheritance of associated conditions such a neurofibromatosis and tuberous sclerosis are the most common causes of development of glioma. However, understanding of the molecular mechanisms that drive glioma development is limited. We explore the role of aberration of microRNA namely miR-494-3p through long noncoding RNA WT1-AS in the development of gliomas. In this study, we found that, levels of WT1-AS were significantly reduced in glioma tissues and cell lines. The miR-494-3p levels were negatively correlated with WT1-AS levels. The cellular proliferation and invasiveness decreased in WT1-AS transfected cell lines. Further the half maximal inhibitory concentration (IC50) of chemotherapeutic agent temozolomide was significantly reduced in the presence of WT1-AS. The cotransfection of WT1-AS and miR-494-3p reduced activation of phospho-AKT (p-AKT). Expression of miR-494-3p is modulated by binding to long noncoding RNA WT1-AS. Deregulation of WT1-AS leads to aberrant expression of miR-494-3p leading to hyperactivation of AKT. This malformation may result in altering protective immune responses in malignancies. Targeting of WT1-AS, miR-494-3p, and AKT may be novel therapeutic options in treatment of glioma.
Collapse
Affiliation(s)
- Guangting Qiu
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wenjie Tong
- Department of Neurosurgery, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiao Tong University, Shanghai, China
| | - Chenghao Jiang
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qingsong Xie
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingfang Zou
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Cong Luo
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jianwei Zhao
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jiang Zhao
- Department of Neurosurgery, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins? Int J Mol Sci 2020; 21:ijms21176201. [PMID: 32867331 PMCID: PMC7504354 DOI: 10.3390/ijms21176201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial pathogens can exert a pro-tumoral activity by producing enzymatically-active protein toxins that either directly induce host cell DNA damage or interfere with essential host cell signaling pathways involved in cell proliferation, apoptosis, and inflammation. This review is focused on those toxins that, by mimicking carcinogens and cancer promoters, could represent a paradigm for bacterially induced carcinogenesis.
Collapse
|
40
|
Abstract
Purpose of review This review focuses on the development and progression of glioblastoma through the brain and glioma microenvironment. Specifically we highlight how the tumor microenvironment contributes to the hallmarks of cancer in hopes of offering novel therapeutic options and tools to target this microenvironment. Recent findings The hallmarks of cancer, which represent elements of cancers that contribute to the disease's malignancy, yet elements within the brain tumor microenvironment, such as other cellular types as well as biochemical and biophysical cues that can each uniquely affect tumor cells, have not been well-described in this context and serve as potential targets for modulation. Summary Here, we highlight how the brain tumor microenvironment contributes to the progression and therapeutic response of tumor cells. Specifically, we examine these contributions through the lens of Hanahan & Weinberg's Hallmarks of Cancer in order to identify potential novel targets within the brain that may offer a means to treat brain cancers, including the deadliest brain cancer, glioblastoma.
Collapse
|
41
|
Liu L, Wang G, Wang L, Yu C, Li M, Song S, Hao L, Ma L, Zhang Z. Computational identification and characterization of glioma candidate biomarkers through multi-omics integrative profiling. Biol Direct 2020; 15:10. [PMID: 32539851 PMCID: PMC7294636 DOI: 10.1186/s13062-020-00264-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glioma is one of the most common malignant brain tumors and exhibits low resection rate and high recurrence risk. Although a large number of glioma studies powered by high-throughput sequencing technologies have led to massive multi-omics datasets, there lacks of comprehensive integration of glioma datasets for uncovering candidate biomarker genes. RESULTS In this study, we collected a large-scale assemble of multi-omics multi-cohort datasets from worldwide public resources, involving a total of 16,939 samples across 19 independent studies. Through comprehensive molecular profiling across different datasets, we revealed that PRKCG (Protein Kinase C Gamma), a brain-specific gene detectable in cerebrospinal fluid, is closely associated with glioma. Specifically, it presents lower expression and higher methylation in glioma samples compared with normal samples. PRKCG expression/methylation change from high to low is indicative of glioma progression from low-grade to high-grade and high RNA expression is suggestive of good survival. Importantly, PRKCG in combination with MGMT is effective to predict survival outcomes in a more precise manner. CONCLUSIONS PRKCG bears the great potential for glioma diagnosis, prognosis and therapy, and PRKCG-like genes may represent a set of important genes associated with different molecular mechanisms in glioma tumorigenesis. Our study indicates the importance of computational integrative multi-omics data analysis and represents a data-driven scheme toward precision tumor subtyping and accurate personalized healthcare.
Collapse
Affiliation(s)
- Lin Liu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyu Wang
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Present Address: The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Chunlei Yu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengwei Li
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhui Song
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Zhang S, Guo S, Liang C, Lian M. Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life 2020; 72:1747-1756. [PMID: 32449315 DOI: 10.1002/iub.2301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
Increasing findings are suggesting the vital roles of long noncoding RNAs (lncRNAs) in the glioblastoma tumorigenesis. However, whether the novel lncRNA LINC00021 modulates temozolomide (TMZ) resistance of glioblastoma is still unclear. Clinically, lncRNA LINC00021 was significantly up-regulated in glioblastoma, especially the TMZ-resistant tissue and cells, and the LINC00021 overexpression was closely correlated to TMZ resistance and unfavorable prognosis. Functionally, LINC00021 positively promoted the TMZ resistance and reduced apoptosis. Mechanistically, transcription factor E2F1 activated the expression of LINC00021. Moreover, LINC00021 regulated the glioblastoma TMZ resistance through Notch pathway and epigenetically silenced p21 expression via recruiting EZH2. Collectively, present research indicates the critical roles of lncRNA LINC00021 in glioblastoma genesis, providing a novel insight for TMZ resistance in glioblastoma.
Collapse
Affiliation(s)
- Shitao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
SOX15 exerts antitumor function in glioma by inhibiting cell proliferation and invasion via downregulation of Wnt/β-catenin signaling. Life Sci 2020; 255:117792. [PMID: 32416168 DOI: 10.1016/j.lfs.2020.117792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
AIMS Sex-determining region of Y chromosome-related high-mobility-group box 15 (SOX15) has recently emerged as a candidate tumor-inhibitor in multiple types of human tumors. To date, the involvement of SOX15 in glioma is undetermined. The purpose of this study was to investigate the expression, function and potential molecular mechanism of SOX15 in glioma. MAIN METHODS Relative mRNA expression was analyzed by real-time quantitative PCR. Protein expression was determined by Western blot. Cell proliferation was assessed by cell counting kit-8 and colony formation assay. Cell invasion was evaluated by Matrigel invasion assay. Wnt/β-catenin activation was monitored by luciferase reporter assay. KEY FINDINGS SOX15 expression was decreased in glioma tissues and cell lines compared with normal controls. Kaplan-Meier analysis revealed that patients with low expression of SOX15 had shorter survival than those who had high expression of SOX15. The upregulation of SOX15 markedly repressed the proliferation and invasion of glioma cells, whereas its depletion enhanced glioma cell proliferation and invasion. Research into the mechanism revealed that SOX15 exerted an inhibitory effect on Wnt/β-catenin signaling in glioma cells. Notably, overexpression of β-catenin partially reversed the SOX15 overexpression-mediated tumor-suppressive effect. In addition, SOX15 overexpression significantly impeded tumor formation by glioma cells in vivo in a mouse xenograft model associated with downregulation of active β-catenin expression. SIGNIFICANCE These data demonstrate that SOX15 functions as a potential tumor-suppressor in glioma by inhibiting cell proliferation and invasion via the downregulation of Wnt/β-catenin signaling.
Collapse
|
44
|
Zhang Y, Liu Y, Liu H, Zhao Z, Wu F, Zeng F. Clinical and Biological Significances of a Methyltransferase-Related Signature in Diffuse Glioma. Front Oncol 2020; 10:508. [PMID: 32373523 PMCID: PMC7185060 DOI: 10.3389/fonc.2020.00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA, RNA or protein is a reversible modification. The proteins and genes that regulate this modification can be a candidate target for tumor therapy. However, the characteristics of methyltransferase related genes in glioma remain obscure. In this study, we systematically analyzed the relationship between methyltransferase-related genes expression profiles and outcomes in glioma patients based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA sequencing datasets. Consensus clustering identified two robust groups with significantly different pathological features and prognosis. Then a methyltransferase-related risk signature was built by a Cox proportional hazards model with elastic net penalty. Moreover, the risk score is associated with patients' clinical and molecular features and can be used as an independent prognostic indicator for patients with glioma. Furthermore, genes associated with the high-risk group were involved in various aspects of the malignant progression of glioma via Gene Ontology analysis and Gene Set Enrichment Analysis. In summary, our study identified a methyltransferase-related risk signature for predicting the prognosis of gliomas.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hanjie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
45
|
Hu P, Wang K, Zhou D, Wang L, Zhao M, Wang W, Zhang Y, Liu Y, Yu R, Zhou X. GOLPH3 Regulates Exosome miRNA Secretion in Glioma Cells. J Mol Neurosci 2020; 70:1257-1266. [PMID: 32227282 DOI: 10.1007/s12031-020-01535-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
We aimed to examine whether golgi protein GOLPH3 could affect the secretion of glioma cell-derived exosomes. The exosomes were extracted by ultra-centrifugation from the supernatant of U251 and U87 cell cultures and identified by transmission electron microscopy (TEM), Malvern analyzer, and western blot. The quantity of exosomes was examined by measuring the total protein levels and the number of multiple vesicle bodies (MVBs), the source of exosomes. The exosome miRNAs were analyzed by high-throughput sequencing followed by GO and KEGG analysis, and validated by qRT-PCR. GOLPH3 could not affect the total protein levels of exosomes and the number of MVBs. However, we found 149 differentially expressed miRNAs in exosomes between vector and GOLPH3 over-expression group, and 14 miRNAs were only examined in GOLPH3 over-expression cells. The predicted target genes of these miRNAs had functions in binding and catalytic activity, which were enriched in the pathways of endocytosis, RNA transportation, thyroid hormone signaling and miRNAs in cancer. GOLPH3 could not affect the quantity of exosomes, but rather contribute to miRNA expression in exosomes, which may play some functions in the promotion effect of GOLPH3 on glioma development.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weibing Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yushuai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
46
|
Dong Z, Cui H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel) 2020; 12:E736. [PMID: 32244981 PMCID: PMC7140112 DOI: 10.3390/cancers12030736] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a grade IV glioma that is the most malignant brain tumor type. Currently, there are no effective and sufficient therapeutic strategies for its treatment because its pathological mechanism is not fully characterized. With the fast development of the Next Generation Sequencing (NGS) technology, more than 170 kinds of covalent ribonucleic acid (RNA) modifications are found to be extensively present in almost all living organisms and all kinds of RNAs, including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs). RNA modifications are also emerging as important modulators in the regulation of biological processes and pathological progression, and study of the epi-transcriptome has been a new area for researchers to explore their connections with the initiation and progression of cancers. Recently, RNA modifications, especially m6A, and their RNA-modifying proteins (RMPs) such as methyltransferase like 3 (METTL3) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), have also emerged as important epigenetic mechanisms for the aggressiveness and malignancy of GBM, especially the pluripotency of glioma stem-like cells (GSCs). Although the current study is just the tip of an iceberg, these new evidences will provide new insights for possible GBM treatments. In this review, we summarize the recent studies about RNA modifications, such as N6-methyladenosine (m6A), N6,2'O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), N1-methyladenosine (m1A), inosine (I) and pseudouridine (ψ) as well as the corresponding RMPs including the writers, erasers and readers that participate in the tumorigenesis and development of GBM, so as to provide some clues for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
47
|
Shi T, Guo D, Xu H, Su G, Chen J, Zhao Z, Shi J, Wedemeyer M, Attenello F, Zhang L, Lu W. HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Mol Biol Rep 2020; 47:2723-2733. [PMID: 32180085 DOI: 10.1007/s11033-020-05371-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 01/31/2023]
Abstract
The long noncoding RNA HOTAIRM1 reportedly plays important roles in acute myeloid leukemia, gastric cancer and colorectal cancer. Here, we analyzed potential function of HOTAIRM1 in glioma and asked whether it participates in long-range chromatin interactions. We monitored expression of HOTAIRM1 in glioma tissues and correlated levels with patient survival using the TCGA dataset. HOTAIRM1 was highly expressed in glioma tissue, with high levels associated with shortened patient survival time. We then suppressed HOTAIRM1 activity in the human glioblastoma U251 line using CRISPR-cas9 to knock in a truncating polyA fragment. Reporter analysis of these and control cells confirmed that the HOTAIRM1 locus serves as an active enhancer. We then performed Capture-C analysis to identify target genes of that locus and applied RNA antisense purification to assess chromatin interactions between the HOTAIRM1 locus and HOXA cluster genes. HOTAIRM1 knockdown in glioma cells decreased proliferation and reduced expression of HOXA cluster genes. HOTAIRM1 regulates long-range interactions between the HOTAIRM1 locus and HOXA genes. Our work suggests a new mechanism by which HOTAIRM1 regulates glioma progression by regulating high-order chromatin structure and could suggest novel therapeutic targets to treat an intractable cancer.
Collapse
Affiliation(s)
- Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Heming Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frank Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
48
|
Chidamide Inhibits Glioma Cells by Increasing Oxidative Stress via the miRNA-338-5p Regulation of Hedgehog Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7126976. [PMID: 32256960 PMCID: PMC7086450 DOI: 10.1155/2020/7126976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Objective Chidamide has a broad spectrum of antitumor activity but its function on glioma remains unknown. The increase of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may control glioma risk by promoting its apoptosis and necrosis. Hedgehog pathway is crucial to glioma cell proliferation and controls ROS production. We aimed to explore the effects of chidamide on the levels of miR-338-5p (glioma cell inhibitor), which may regulate Hedgehog signaling, resulting in the changes of RNS. Materials and Methods. Migration and invasion activities of glioma cells were measured by using the Transwell chamber assay. The expression levels of Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), Desert Hedgehog (Dhh), miR-338-5p, and related molecules were detected by using real-time PCR (RT-PCR) and or Western Blot in U87 and HS683 glioma cells. The effects of chidamide on these molecules were measured by using the miR-338-5p inhibitor or mimics in U87 and HS683 glioma cell lines. ROS and RNS were measured by DCF DA and DAF-FM DA fluorescence. Biomarkers of oxidative stress were measured by using a corresponding kit. Apoptosis and necrosis rates were measured by using flow cytometry. Results Chidamide inhibited the growth rate, migration, and invasion of human malignant glioma cells and increased the level of miR-338-5p. miR-338-5p inhibitor or mimics increased or inhibited the growth rate of U87 and HS683 glioma cells. Chidamide inhibited the levels of Shh, Ihh, migration protein E-cadherin, and invading protein MMP-2. The increase in the level of Shh and Ihh led to the reduction in the ROS and RNS levels. miR-338-5p inhibitor or mimics also showed a promoting or inhibitory function for the levels of Shh and Ihh. Furthermore, miR-338-5p mimics and inhibitor inhibited or promoted the migration and invasion of the glioma cells (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress ( Conclusion Chidamide inhibits glioma cells by increasing oxidative stress via the miRNA-338-5p regulation of Hedgehog signaling. Chidamide may be a potential drug in the prevention of glioma development.
Collapse
|
49
|
Danielsson A, Barreau K, Kling T, Tisell M, Carén H. Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clin Epigenetics 2020; 12:26. [PMID: 32046773 PMCID: PMC7014676 DOI: 10.1186/s13148-020-0817-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. METHODS We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. RESULTS Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. CONCLUSIONS DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.
Collapse
Affiliation(s)
- Anna Danielsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristell Barreau
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
50
|
RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol 2020; 22:1506-1516. [PMID: 31953610 DOI: 10.1007/s12094-020-02286-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma is the most common malignant brain tumor in central nervous system. Due to absence of the mechanism underlying glioblastoma, the clinical outcome is poor. RNF213 is a ring finger protein and mutation in RNF213 gene is detected in cancers. But the role of RNF213 in glioblastoma is unknown. METHODS RNF213 expression was detected by qPCR, western blotting, IHC technology. RNF213 was overexpressed in plasmid pcDNA3.1. Assays including CCK-8, plate colony formation, wound healing, transwell and FITC/PI dye were used to detect cell behaviors. RESULTS RNF213 was shown to express much lower in tumor tissues and in tumor cell lines compared to control. The patients with higher RNF213 expression displayed longer survival time. When RNF213 was overexpressed in U87MG cells, cell proliferation and colony formation were inhibited significantly. The ability of cell migration and invasion was also suppressed. FAC analysis demonstrated that cell apoptosis was increased after RNF213 overexpression. But cell cycle distribution was not affected by RNF213. Then the expression level of MEKK1, JNK, c-Jun, and cdc42 was decreased after RNF213 overexpression, but increased reversely when RNF213 was knocked down by RNAi technology. CONCLUSIONS RNF213 suppresses carcinogenesis and affects MAPK/JNK signaling pathway in glioblastoma. This study suggests that RNF213 might be a promising target for therapy of glioblastoma.
Collapse
|