1
|
Samaran J, Peyré G, Cantini L. scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features. Nat Commun 2024; 15:7762. [PMID: 39237488 PMCID: PMC11377776 DOI: 10.1038/s41467-024-51382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The abundance of unpaired multimodal single-cell data has motivated a growing body of research into the development of diagonal integration methods. However, the state-of-the-art suffers from the loss of biological information due to feature conversion and struggles with modality-specific populations. To overcome these crucial limitations, we here introduce scConfluence, a method for single-cell diagonal integration. scConfluence combines uncoupled autoencoders on the complete set of features with regularized Inverse Optimal Transport on weakly connected features. We extensively benchmark scConfluence in several single-cell integration scenarios proving that it outperforms the state-of-the-art. We then demonstrate the biological relevance of scConfluence in three applications. We predict spatial patterns for Scgn, Synpr and Olah in scRNA-smFISH integration. We improve the classification of B cells and Monocytes in highly heterogeneous scRNA-scATAC-CyTOF integration. Finally, we reveal the joint contribution of Fezf2 and apical dendrite morphology in Intra Telencephalic neurons, based on morphological images and scRNA.
Collapse
Affiliation(s)
- Jules Samaran
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France
| | - Gabriel Peyré
- CNRS and DMA de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, Université PSL, Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France.
| |
Collapse
|
2
|
Stanley ER, Biundo F, Gökhan Ş, Chitu V. Differential regulation of microglial states by colony stimulating factors. Front Cell Neurosci 2023; 17:1275935. [PMID: 37964794 PMCID: PMC10642290 DOI: 10.3389/fncel.2023.1275935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Recent studies have emphasized the role of microglia in the progression of many neurodegenerative diseases. The colony stimulating factors, CSF-1 (M-CSF), granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) regulate microglia through different cognate receptors. While the receptors for GM-CSF (GM-CSFR) and G-CSF (G-CSFR) are specific for their ligands, CSF-1 shares its receptor, the CSF-1 receptor-tyrosine kinase (CSF-1R), with interleukin-34 (IL-34). All four cytokines are expressed locally in the CNS. Activation of the CSF-1R in macrophages is anti-inflammatory. In contrast, the actions of GM-CSF and G-CSF elicit different activated states. We here review the roles of each of these cytokines in the CNS and how they contribute to the development of disease in a mouse model of CSF-1R-related leukodystrophy. Understanding their roles in this model may illuminate their contribution to the development or exacerbation of other neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Şölen Gökhan
- Department of Neurology, Albert Einstein College of Medicine, Institute for Brain Disorders and Neural Regeneration, Bronx, NY, United States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
4
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
5
|
Engmann AK, Hatch JJ, Nanda P, Veeraraghavan P, Ozkan A, Poulopoulos A, Murphy AJ, Macklis JD. Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes. Nat Protoc 2022; 17:222-251. [PMID: 35022617 PMCID: PMC9751848 DOI: 10.1038/s41596-021-00638-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
During neuronal development, growth cones (GCs) of projection neurons navigate complex extracellular environments to reach distant targets, thereby generating extraordinarily complex circuitry. These dynamic structures located at the tips of axonal projections respond to substrate-bound as well as diffusible guidance cues in a neuronal subtype- and stage-specific manner to construct highly specific and functional circuitry. In vitro studies of the past decade indicate that subcellular localization of specific molecular machinery in GCs underlies the precise navigational control that occurs during circuit 'wiring'. Our laboratory has recently developed integrated experimental and analytical approaches enabling high-depth, quantitative proteomic and transcriptomic investigation of subtype- and stage-specific GC molecular machinery directly from the rodent central nervous system (CNS) in vivo. By using these approaches, a pure population of GCs and paired somata can be isolated from any neuronal subtype of the CNS that can be fluorescently labeled. GCs are dissociated from parent axons using fluid shear forces, and a bulk GC fraction is isolated by buoyancy ultracentrifugation. Subtype-specific GCs and somata are purified by recently developed fluorescent small particle sorting and established FACS of neurons and are suitable for downstream analyses of proteins and RNAs, including small RNAs. The isolation of subtype-specific GCs and parent somata takes ~3 h, plus sorting time, and ~1-2 h for subsequent extraction of molecular contents. RNA library preparation and sequencing can take several days to weeks, depending on the turnaround time of the core facility involved.
Collapse
Affiliation(s)
- Anne K Engmann
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J Hatch
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Prakruti Nanda
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Abdulkadir Ozkan
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander J Murphy
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Biundo F, Chitu V, Shlager GGL, Park ES, Gulinello ME, Saha K, Ketchum HC, Fernandes C, Gökhan Ş, Mehler MF, Stanley ER. Microglial reduction of colony stimulating factor-1 receptor expression is sufficient to confer adult onset leukodystrophy. Glia 2020; 69:779-791. [PMID: 33079443 DOI: 10.1002/glia.23929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a dementia resulting from dominantly inherited CSF1R inactivating mutations. The Csf1r+/- mouse mimics ALSP symptoms and pathology. Csf1r is mainly expressed in microglia, but also in cortical layer V neurons that are gradually lost in Csf1r+/- mice with age. We therefore examined whether microglial or neuronal Csf1r loss caused neurodegeneration in Csf1r+/- mice. The behavioral deficits, pathologies and elevation of Csf2 expression contributing to disease, previously described in the Csf1r+/- ALSP mouse, were reproduced by microglial deletion (MCsf1rhet mice), but not by neural deletion. Furthermore, increased Csf2 expression by callosal astrocytes, oligodendrocytes, and microglia was observed in Csf1r+/- mice and, in MCsf1rhet mice, the densities of these three cell types were increased in supraventricular patches displaying activated microglia, an early site of disease pathology. These data confirm that ALSP is a primary microgliopathy and inform future therapeutic and experimental approaches.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher Fernandes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover. J Neurosci 2020; 40:7714-7723. [PMID: 32913109 PMCID: PMC7531555 DOI: 10.1523/jneurosci.1056-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah Dembling
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, Maryland 20892
| | - John T R Isaac
- Janssen Neuroscience, J&J Innovations, London W1G 0BG, United Kingdom
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|