1
|
Strazielle N, Blondel S, Confais J, El Khoury R, Contamin H, Ghersi-Egea JF. Molecular determinants of neuroprotection in blood-brain interfaces of the cynomolgus monkey. Front Pharmacol 2025; 16:1523819. [PMID: 40144668 PMCID: PMC11936797 DOI: 10.3389/fphar.2025.1523819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) formed by the cerebral microvessel endothelium and the blood-CSF barrier (BCSFB) formed by the choroid plexus epithelium impact the cerebral bioavailability of drugs and endogenous molecules that contribute to neuroinflammatory and neurodegenerative diseases. Species specificities in tight junction proteins and efflux transporters governing the barrier functions of these interfaces hamper the direct translation of pharmacokinetic and pathophysiological data from rodents to human. We defined the molecular composition of tight junctions and identified the efflux transporters present at the BBB and BCSFB of cynomolgus monkey to assess whether this species is a relevant alternative to rodents. Choroid plexuses, cerebral microvessels, cortex and cerebellum were isolated from adult cynomolgus monkeys, and analysed by RT-qPCR and immunohistochemistry. Results were compared with data available in the literature for rat and human. In monkeys as in rat and human, claudin-5 in the BBB and claudin-1, -2, -3 in the BCSFB were landmark tight junction proteins. ABCB1 was strictly associated with the BBB, and ABCC1 was predominant at the BCSFB compared to the BBB. The monkey, like human, differed from rat by the localization of ABCG2 protein in choroidal vessels, a low expression of ABCC4 and SLC22A8 in the BBB, and the presence of SLC47A1 at the BCSFB. While the main characteristics of brain barriers are common to all three species, cynomolgus monkey and human share specificities in the expression and localization of selected claudins and efflux transporters that are not met in rat.
Collapse
Affiliation(s)
- Nathalie Strazielle
- BIP Facility, Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, UMR CNRS, University Lyon 1, Bron, France
- Brain-i, Lyon, France
| | - Sandrine Blondel
- BIP Facility, Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, UMR CNRS, University Lyon 1, Bron, France
| | | | - Rita El Khoury
- BIP Facility, Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, UMR CNRS, University Lyon 1, Bron, France
| | | | - Jean-François Ghersi-Egea
- BIP Facility, Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, UMR CNRS, University Lyon 1, Bron, France
| |
Collapse
|
2
|
Liu Z, Shou Q, Jann K, Zhao C, Wang DJ, Shao X. A Test-Retest Study of Single- and Multi-Delay pCASL for Choroid Plexus Perfusion Imaging in Healthy Subjects Aged 19 to 87 Years. Neuroimage 2025; 308:121048. [PMID: 39889812 DOI: 10.1016/j.neuroimage.2025.121048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
There is a growing interest in the choroid plexus (ChP) due to its critical role in cerebrospinal fluid (CSF) production and its involvement in neurodegenerative and cerebrovascular diseases. However, comprehensive studies comparing the accuracy and reliability of single- and multi-PLD (post-labeling delay) arterial spin labeling (ASL) techniques, specifically in relation to the ChP, remain limited. This study systematically evaluated the test-retest reliability and quantification accuracy of cerebral blood flow (CBF) measurements, focusing on the ChP, using single-delay and multi-delay 3D gradient-and-spin echo (GRASE) pseudo-continuous ASL (pCASL) on 28 subjects (aged 19 to 87 years, 14 males/14 females) at 3.0 tesla. Both single-delay (2 s) and 5-PLD (0.5 - 2.5 s) pCASL scans were repeated approximately one week apart with a spatial resolution of 2.5 × 2.5 × 3 mm³. Voxel-wise and regional CBF and arterial transit time (ATT) measurements were compared to assess test-retest reliability, with a particular focus on ChP perfusion changes with age. In this study, 12.15 % of ChP voxels exhibited ATTs longer than 2 s, potentially leading to a significant underestimation of CBF using single-delay ASL. Multi-delay ASL showed improved accuracy in estimating CBF values for the ChP compared to single-delay ASL when ATT > PLD. Additionally, ChP volume (mean ± std = 1.72± 0.85 ml) increased (p < 0.01) and ChP perfusion (43.07±14.18 mL/100 g/min) decreased (p = 0.04) with age. These findings underscore the robustness of multi-delay ASL with model-fitting quantification in assessing ChP perfusion, making it the preferred method for accurate CBF and ATT estimation, particularly in regions with prolonged transit time such as ChP.
Collapse
Affiliation(s)
- Zixuan Liu
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Danny Jj Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Hagiwara A, Kamio S, Kikuta J, Nakaya M, Uchida W, Fujita S, Nikola S, Akasahi T, Wada A, Kamagata K, Aoki S. Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques. Invest Radiol 2025; 60:162-174. [PMID: 39724579 PMCID: PMC11801466 DOI: 10.1097/rli.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 12/28/2024]
Abstract
ABSTRACT The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases. Age-related brain volume changes encompass a decrease in gray matter and an increase in ventricular volume, associated with cognitive decline. White matter hyperintensities, detected by FLAIR, are common and linked to cognitive impairments and increased risk of stroke and dementia. Tissue relaxometry reveals age-related changes in relaxivity, aiding the distinction between normal aging and pathological conditions. Myelin content, measurable by MRI, changes with age and is associated with cognitive and motor function alterations. Iron accumulation, detected by susceptibility-sensitive MRI, increases in certain brain regions with age, potentially contributing to neurodegenerative processes. Diffusion MRI provides detailed insights into microstructural changes such as neurite density and orientation. Neurofluid imaging, using techniques like gadolinium-based contrast agents and diffusion MRI, reveals age-related changes in cerebrospinal and interstitial fluid dynamics, crucial for brain health and waste clearance. This review offers a comprehensive overview of age-related brain changes revealed by various MRI techniques. Understanding these changes helps differentiate between normal aging and pathological conditions, aiding the development of interventions to mitigate age-related cognitive decline and other symptoms. Recent advances in machine learning and artificial intelligence have enabled novel methods for estimating brain age, offering also potential biomarkers for neurological and psychiatric disorders.
Collapse
|
4
|
Zhen Z, Zhang R, Gui L, Chen J, Xu S, Deng L, Yu Y, Liu H, Chen K, Han Q, Hsu Y, Cheng Y, Liu Y, Huang P, Liu C, Chen W. Choroid plexus cysts on 7T MRI: Relationship to aging and neurodegenerative diseases. Alzheimers Dement 2025; 21:e14484. [PMID: 39732521 PMCID: PMC11848175 DOI: 10.1002/alz.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION The choroid plexus (CP) may play a crucial role in brain degeneration. We aim to assess whether CP cysts (CPCs), defined using ultra-high field magnetic resonance imaging (MRI), relate to aging and neurodegeneration. METHODS We used multi-sequence 7T MRI to observe CPCs, characterizing their presence and characteristics in healthy younger controls, healthy older controls (OCs), patients with Alzheimer's disease (AD), patients with Parkinson's disease (PD), and patients with uremic encephalopathy. CP volume (CPV) and CPC characteristics were compared across groups, and associations between CPV and CPC features were analyzed across all subjects. RESULTS The AD group showed a significantly higher presence and number of CPCs compared to other groups and also had a significantly larger CPV than healthy OCs. The number and size of CPCs were associated with CPV. DISCUSSION 7T MRI offers a distinct advantage in observing CPCs, and the high prevalence of CPCs in patients with AD warrants further investigation. HIGHLIGHTS 7T MRI enables visualization of the fine structures of the choroid plexus. Patients with Alzheimer's disease (AD) exhibit a higher number of choroid plexus cysts (CPCs) compared to healthy older adults and other patient groups. CPCs may serve as an auxiliary marker for AD.
Collapse
Affiliation(s)
- Zhiming Zhen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ruiting Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Li Gui
- Department of NeurologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiafei Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Siyao Xu
- Department of RadiologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lihua Deng
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yaling Yu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - He Liu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Kang Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qi Han
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yi‐Cheng Hsu
- MR Research Collaboration TeamSiemens Healthineers Ltd.ShanghaiChina
| | - Yue Cheng
- Department of GastroenterologyInstitute of Digestive Diseases of PLACholestatic Liver Diseases Center and Center for Metabolic Dysfunction‐Associated Fatty Liver DiseaseSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peiyu Huang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chen Liu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wei Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
5
|
Hu WX, Zhan X, Lu D, Li ZQ. Is choroid plexus growth altered in isolated ventriculomegaly on fetal neuro-ultrasound? Eur Radiol 2025; 35:463-473. [PMID: 39014090 PMCID: PMC11632053 DOI: 10.1007/s00330-024-10966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Reveal developmental alterations in choroid plexus volume (CPV) among fetuses with isolated ventriculomegaly (VM) through neuro-ultrasound. METHODS This prospective study aimed to assess the development of fetal CPV in normal fetuses and those with isolated VM through neuro-ultrasound. The fetuses of isolated VM were categorized into mild, moderate, and severe groups, and subsequently, the lateral ventricle evolution was monitored. The developmental alterations in CPV among fetuses with isolated VM were determined by comparing the CPV z-scores with those of normal fetuses. Receiver operating characteristics curve analysis was used to assess the predictive value of altered CPV in lateral ventricle evolution. RESULTS A total of 218 normal fetuses and 114 isolated VM fetuses from 22 weeks to 35 weeks of gestation were included. The CPV decreased as the isolated VM was getting worse. Both fetuses with isolated moderate ventriculomegaly and those with isolated severe ventriculomegaly exhibited reduced CPV compared to normal fetuses. The CPV in fetuses with isolated mild ventriculomegaly (IMVM) varied, with some showing a larger CPV compared to normal fetuses, while others exhibited a smaller CPV. The larger CPV in cases of IMVM may serve as a predictive factor for either regression or stability of the lateral ventricle, while reduced CPV in cases of isolated VM may indicate worsening of the lateral ventricle. CONCLUSION The growth volume of fetal CP exhibited alterations in fetuses with isolated VM, and these changes were found to be correlated with the evolution of the lateral ventricle. CLINICAL RELEVANCE STATEMENT Neuro-ultrasound revealed varying degrees of alterations in the volume development of the choroid plexus within the fetus with isolated VM. The findings can help predict lateral ventricle prognosis, greatly contributing to prenatal diagnosis strategies for fetuses with isolated VM. KEY POINTS The volume of choroid plexus growth is altered in fetuses with isolated VM. The altered CPV in isolated VM was associated with lateral ventricle evolution. The findings are useful for prenatal counseling and managing fetuses with isolated VM.
Collapse
Affiliation(s)
- Wei-Xi Hu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhan
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Lu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Sun Z, Li C, Muccio M, Jiang L, Masurkar A, Buch S, Chen Y, Zhang J, Haacke EM, Wisniewski T, Ge Y. Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study. J Magn Reson Imaging 2024; 60:2564-2575. [PMID: 38587279 PMCID: PMC11458823 DOI: 10.1002/jmri.29381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE Prospective. SUBJECTS Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun Masurkar
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Departments of Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Visani V, Veronese M, Pizzini FB, Colombi A, Natale V, Marjin C, Tamanti A, Schubert JJ, Althubaity N, Bedmar-Gómez I, Harrison NA, Bullmore ET, Turkheimer FE, Calabrese M, Castellaro M. ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus. Comput Biol Med 2024; 182:109164. [PMID: 39326265 DOI: 10.1016/j.compbiomed.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The Choroid Plexus (ChP) plays a vital role in brain homeostasis, serving as part of the Blood-Cerebrospinal Fluid Barrier, contributing to brain clearance pathways and being the main source of cerebrospinal fluid. Since the involvement of ChP in neurological and psychiatric disorders is not entirely established and currently under investigation, accurate and reproducible segmentation of this brain structure on large cohorts remains challenging. This paper presents ASCHOPLEX, a deep-learning tool for the automated segmentation of human ChP from structural MRI data that integrates existing software architectures like 3D UNet, UNETR, and DynUNet to deliver accurate ChP volume estimates. METHODS Here we trained ASCHOPLEX on 128 T1-w MRI images comprising both controls and patients with Multiple Sclerosis. ASCHOPLEX's performances were evaluated using traditional segmentation metrics; manual segmentation by experts served as ground truth. To overcome the generalizability problem that affects data-driven approaches, an additional fine-tuning procedure (ASCHOPLEXtune) was implemented on 77 T1-w PET/MRI images of both controls and depressed patients. RESULTS ASCHOPLEX showed superior performance compared to commonly used methods like FreeSurfer and Gaussian Mixture Model both in terms of Dice Coefficient (ASCHOPLEX 0.80, ASCHOPLEXtune 0.78) and estimated ChP volume error (ASCHOPLEX 9.22%, ASCHOPLEXtune 9.23%). CONCLUSION These results highlight the high accuracy, reliability, and reproducibility of ASCHOPLEX ChP segmentations.
Collapse
Affiliation(s)
- Valentina Visani
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Francesca B Pizzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | | | - Valerio Natale
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy.
| | - Corina Marjin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Radiological Sciences, College of Applied Medical Science, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| | - Inés Bedmar-Gómez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Immuno-Psychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK.
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Bouhrara M, Walker KA, Alisch JSR, Gong Z, Mazucanti CH, Lewis A, Moghekar AR, Turek L, Collingham V, Shehadeh N, Fantoni G, Kaileh M, Bergeron CM, Bergeron J, Resnick SM, Egan JM. Association of Plasma Markers of Alzheimer's Disease, Neurodegeneration, and Neuroinflammation with the Choroid Plexus Integrity in Aging. Aging Dis 2024; 15:2230-2240. [PMID: 38300640 PMCID: PMC11346414 DOI: 10.14336/ad.2023.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joseph S. R. Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Caio H. Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexandria Lewis
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Abhay R. Moghekar
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Lisa Turek
- Clinical Research Core, Baltimore, MD 21224, USA.
| | | | | | | | - Mary Kaileh
- Clinical Research Core, Baltimore, MD 21224, USA.
| | - Christopher M. Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Akade E, Aslani F, Verdi K, Bahadoram M, Kaydani GA. Diagnosis of choroid plexus papilloma: Current perspectives and future directions. CANCER PATHOGENESIS AND THERAPY 2024; 2:173-179. [PMID: 39027146 PMCID: PMC11252511 DOI: 10.1016/j.cpt.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 07/20/2024]
Abstract
Choroid plexus papilloma (CPP) is a rare, slow-growing, and typically benign brain tumor that predominantly affects children. CPP is characterized by well-defined circular or lobulated masses in the ventricles, leading to symptoms related to increased intracranial pressure and hydrocephalus. CPP diagnosis relies on a combination of clinical presentation, imaging findings, and histological examination. The World Health Organization (WHO) classification categorizes choroid plexus tumors into CPP (Grade І), atypical CPP (aCPP, Grade II), and choroid plexus carcinoma (CPC, Grade III). This article reviewed current diagnostics modalities and explored the emergence of new diagnostic methods for CPP. Research on molecular markers and genetic alterations associated with CPP is ongoing, and some potential markers have been identified. These results offered insights into potential therapeutic targets and personalized treatment approaches for CPP. Advancements in radiomics and liquid biopsy hold promise for improving diagnostic accuracy and monitoring treatment outcomes for choroid plexus tumors. Radiomics can provide quantitative data from imaging studies, whereas liquid biopsy can analyze tumor-derived genetic material and molecular markers from body fluids, such as cerebrospinal fluid (CSF) and blood. The rapidly evolving fields of molecular and genetic research and novel diagnostic methods require continuous updates and advancements before their application in clinical practice. We hope that these advancements will lead to earlier and more precise diagnoses, better treatment options, and improved outcomes in patients with CPP and other brain tumors.
Collapse
Affiliation(s)
- Esma'il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Fereshteh Aslani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Kimia Verdi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Mohammad Bahadoram
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| |
Collapse
|
10
|
Parekh P, Badachhape AA, Tanifum EA, Annapragada AV, Ghaghada KB. Advances in nanoprobes for molecular MRI of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1946. [PMID: 38426638 PMCID: PMC10983770 DOI: 10.1002/wnan.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is the most common cause of dementia and a leading cause of mortality in the elderly population. Diagnosis of Alzheimer's disease has traditionally relied on evaluation of clinical symptoms for cognitive impairment with a definitive diagnosis requiring post-mortem demonstration of neuropathology. However, advances in disease pathogenesis have revealed that patients exhibit Alzheimer's disease pathology several decades before the manifestation of clinical symptoms. Magnetic resonance imaging (MRI) plays an important role in the management of patients with Alzheimer's disease. The clinical availability of molecular MRI (mMRI) contrast agents can revolutionize the diagnosis of Alzheimer's disease. In this article, we review advances in nanoparticle contrast agents, also referred to as nanoprobes, for mMRI of Alzheimer's disease. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Andrew A. Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
11
|
Visani V, Pizzini FB, Natale V, Tamanti A, Anglani M, Bertoldo A, Calabrese M, Castellaro M. Choroid plexus volume in multiple sclerosis can be estimated on structural MRI avoiding contrast injection. Eur Radiol Exp 2024; 8:33. [PMID: 38409562 PMCID: PMC10897123 DOI: 10.1186/s41747-024-00421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 02/28/2024] Open
Abstract
We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.
Collapse
Affiliation(s)
- Valentina Visani
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Francesca B Pizzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Valerio Natale
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
12
|
Wang LLW, Gao Y, Chandran Suja V, Boucher ML, Shaha S, Kapate N, Liao R, Sun T, Kumbhojkar N, Prakash S, Clegg JR, Warren K, Janes M, Park KS, Dunne M, Ilelaboye B, Lu A, Darko S, Jaimes C, Mannix R, Mitragotri S. Preclinical characterization of macrophage-adhering gadolinium micropatches for MRI contrast after traumatic brain injury in pigs. Sci Transl Med 2024; 16:eadk5413. [PMID: 38170792 DOI: 10.1126/scitranslmed.adk5413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.
Collapse
Affiliation(s)
- Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Kaitlyn Warren
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Janes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Bolu Ilelaboye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Solomina Darko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| |
Collapse
|
13
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
14
|
Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, Zetterberg H, Blennow K, Gasparotti R, Padovani A, Tadayon E, Romanella S, Sprugnoli G, Pascual-Leone A, Di Lorenzo F, Koch G, Borroni B, Santarnecchi E. Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum. Neurology 2023; 101:e1218-e1230. [PMID: 37500561 PMCID: PMC10516270 DOI: 10.1212/wnl.0000000000207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
Collapse
Affiliation(s)
- Martina Assogna
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Enrico Premi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Stefano Gazzina
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alberto Benussi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Nicholas J Ashton
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Henrik Zetterberg
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Kaj Blennow
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Roberto Gasparotti
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alessandro Padovani
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Ehsan Tadayon
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Sara Romanella
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giulia Sprugnoli
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alvaro Pascual-Leone
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Francesco Di Lorenzo
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giacomo Koch
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Barbara Borroni
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Emiliano Santarnecchi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy.
| |
Collapse
|
15
|
Ricigliano VAG, Stankoff B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr Opin Neurol 2023; 36:214-221. [PMID: 37078651 DOI: 10.1097/wco.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, Pitié-Salpêtrière Hospital
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, St Antoine Hospital, APHP-Sorbonne, Paris, France
| |
Collapse
|
16
|
Senay O, Seethaler M, Makris N, Yeterian E, Rushmore J, Cho KIK, Rizzoni E, Heller C, Pasternak O, Szczepankiewicz F, Westin C, Losak J, Ustohal L, Tomandl J, Vojtisek L, Kudlicka P, Kikinis Z, Holt D, Lewandowski KE, Lizano P, Keshavan MS, Öngür D, Kasparek T, Breier A, Shenton ME, Seitz‐Holland J, Kubicki M. A preliminary choroid plexus volumetric study in individuals with psychosis. Hum Brain Mapp 2023; 44:2465-2478. [PMID: 36744628 PMCID: PMC10028672 DOI: 10.1002/hbm.26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Olcay Senay
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Magdalena Seethaler
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Psychotherapy, Campus Charité MittePsychiatric University Hospital Charité at St. Hedwig Hospital, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Edward Yeterian
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kang Ik K. Cho
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Elizabeth Rizzoni
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carina Heller
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| | - Ofer Pasternak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filip Szczepankiewicz
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carl‐Frederik Westin
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jan Losak
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Libor Ustohal
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Josef Tomandl
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Lubomir Vojtisek
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Peter Kudlicka
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Zora Kikinis
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daphne Holt
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Dost Öngür
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of MedicineMasaryk University and University Hospital BrnoBrnoCzech Republic
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martha E. Shenton
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Johanna Seitz‐Holland
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marek Kubicki
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
17
|
Ierusalimsky NV, Karimova ED, Samotaeva IS, Luzin RV, Zinchuk MS, Rider FK, Guekht AB. [Structural brain changes in patients with temporal lobe epilepsy and comorbid depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:83-89. [PMID: 37796072 DOI: 10.17116/jnevro202312309183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To assess the morphological features of the brain structures in patients with temporal lobe epilepsy and comorbid depression. MATERIAL AND METHODS From 1 January 2017 to 31 December 2020, we studied 80 patients with temporal lobe epilepsy (aged 18-60 years, 38 of whom had comorbid depression) and 48 healthy subjects of comparable age. Magnetic resonance imaging (MRI) of the brain was performed using the epilepsy protocol in a scanner with a magnetic field strength of 1.5 T. Focal temporal lobe epilepsy was diagnosed by neurologists (epileptologists) specialising in epilepsy according to the International League Against Epilepsy (ILAE) classification of epilepsy. Psychiatrists assessed the presence and severity of depressive disorders by clinical interview and by participants' scores on the Beck Depression Inventory (BDI-II). MRI data were processed using FreeSurfer 6.0 software to determine volumes of subcortical structures and thicknesses of cortical structures. At the group level, analysis of covariance with Holm-Bonferroni correction was used as the statistical method. RESULTS Morphometric analysis revealed a significant decrease in the volume of the thalamus bilaterally and the brain stem and an increase in the volume of the choroid plexus in the left hemisphere, as well as a significant decrease in the thickness of the entorhinal cortex, temporal pole and isthmus of the cingulate gyrus in the left hemisphere and middle temporal gyrus and inferior temporal gyrus in the right hemisphere in patients with epilepsy compared to healthy controls. No association was found between the presence of depression and significant structural changes on MRI. CONCLUSION The data obtained suggest an effect of temporal lobe epilepsy, but not comorbid depression, on the morphology of brain structures.
Collapse
Affiliation(s)
- N V Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - E D Karimova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - I S Samotaeva
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - R V Luzin
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - M S Zinchuk
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - F K Rider
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - A B Guekht
- Scientific and Practical Psychoneurological Center, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Greiner T, Manzhula K, Baumann L, Kaddatz H, Runge J, Keiler J, Kipp M, Joost S. Morphology of the murine choroid plexus: Attachment regions and spatial relation to the subarachnoid space. Front Neuroanat 2022; 16:1046017. [DOI: 10.3389/fnana.2022.1046017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus has recently been identified as a possible migration route for peripheral immune cells into the central nervous system. For future investigation of this route, profound knowledge of the morphology of the murine choroid plexus is a prerequisite. We here present a detailed morphological description of the murine choroid plexus, its attachment regions as well as its spatial relation to the subarachnoid space. We used micro-computed tomography of immersion-contrasted fixated brains to generate three-dimensional models of the ventricle system and the choroid plexus and aligned micro-computed tomography-based sections with histological paraffin-embedded sections after immunohistochemical labeling of the basal lamina and choroid plexus epithelium marker proteins (laminin and aquaporin 1). The murine choroid plexus is located in all four ventricles and is attached to the brain parenchyma in narrow attachment regions with a specific morphology in each ventricle. While in the lateral and fourth ventricle, the attachment site is formed by thin tissue bridges, the choroid plexus attachment in the third ventricle has a more complex V-like shape. In all ventricles, the choroid plexus is in close spatial relationship with the subarachnoid space that extends from the brain surface along physiologic openings toward the choroid plexus. In summary, we here provide a description of the morphology of the murine ventricle system and choroid plexus, the attachment regions of the choroid plexus and its connection to the subarachnoid space, as well as a three-dimensional model of the ventricles, the choroid plexus, and the subarachnoid space to facilitate a spatial understanding of these complex structures.
Collapse
|
19
|
Perera C, Tolomeo D, Baker RR, Ohene Y, Korsak A, Lythgoe MF, Thomas DL, Wells JA. Investigating changes in blood-cerebrospinal fluid barrier function in a rat model of chronic hypertension using non-invasive magnetic resonance imaging. Front Mol Neurosci 2022; 15:964632. [PMID: 36117909 PMCID: PMC9478509 DOI: 10.3389/fnmol.2022.964632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB's role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.
Collapse
Affiliation(s)
- Charith Perera
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Daniele Tolomeo
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Rebecca R. Baker
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Yolanda Ohene
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Mark F. Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - David L. Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jack A. Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| |
Collapse
|
20
|
Bitanihirwe BKY, Lizano P, Woo TUW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry 2022; 27:3573-3582. [PMID: 35618887 PMCID: PMC9133821 DOI: 10.1038/s41380-022-01623-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, UK.
| | - Paulo Lizano
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Translational Neuroscience Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tsung-Ung W Woo
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Program in Molecular Neuropathology, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
21
|
Parekh P, Mu Q, Badachhape A, Bhavane R, Srivastava M, Devkota L, Sun X, Bhandari P, Eriksen JL, Tanifum E, Ghaghada K, Annapragada A. A surrogate marker for very early-stage tau pathology is detectable by molecular magnetic resonance imaging. Theranostics 2022; 12:5504-5521. [PMID: 35910789 PMCID: PMC9330526 DOI: 10.7150/thno.72258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/02/2022] [Indexed: 01/30/2023] Open
Abstract
The abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state. Methods: Cell SELEX was used to identify novel thioaptamers specifically binding hyperphosphorylative cells. Cell surface vimentin was identified as a potential binding target of the aptamer. Novel molecular magnetic resonance imaging (M-MRI) probes using these aptamers and a small molecule ligand to vimentin were used for in vivo detection of this pre-pathological state. Results: In a mouse model of pathological tau, we demonstrated in vivo visualization of the hyperphosphorylative state by M-MRI, enabling the identification at a pre-pathological stage of mice that develop frank tau pathology several months later. In vivo visualization of the hyperphosphorylative state by M-MRI was further validated in a second mouse model (APP/PS1) of Alzheimer's disease again identifying the mutants at a pre-pathological stage. Conclusions: M-MRI of the hyperphosphorylative state identifies future tau pathology and could enable extremely early-stage diagnosis of Alzheimer's disease, at a pre-patholgical stage.
Collapse
Affiliation(s)
| | - Qingshan Mu
- Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Xianwei Sun
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Eric Tanifum
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ketan Ghaghada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ananth Annapragada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA,✉ Corresponding author:
| |
Collapse
|
22
|
Wu W, Zhou J, Wu C, Zhou Q, Li X, Zhang Y, Zuo C, Yin J, Hou L, Wang S, Gao H, Luo T, Jin L, Zhong E, Wang Y, Luo X. PEGylated Recombinant Human Growth Hormone Jintrolong ® Exhibits Good Long-Term Safety in Cynomolgus Monkeys and Human Pediatric Growth Hormone Deficiency Patients. Front Endocrinol (Lausanne) 2022; 13:821588. [PMID: 35909512 PMCID: PMC9336684 DOI: 10.3389/fendo.2022.821588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Jintrolong® is a long-acting PEGylated recombinant human growth hormone (PEG-rhGH) developed for weekly injection in patients with pediatric growth hormone deficiency (PGHD). Although PEG modification of therapeutic proteins is generally considered safe, concerns persist about the potential for adverse vacuolation in tissues with long-term exposure to PEG-included therapies, particularly in children. We assessed the safety of Jintrolong® in cynomolgus monkeys with an examination of vacuolation in the brain choroid plexus (CP) and reported long-term clinical safety data obtained from children with PGHD. The toxicity of Jintrolong® was assessed following the 52-week administration with doses at 0.3, 1, or 3 mg/kg/week. The levels of vacuolation of CP in animals were dose-dependent and at least partially reversible after a 104- or 157-week recovery period. Vacuolation in the CP epithelium did not lead to obvious subcellular structural or cell functional abnormalities. Compared with the clinical dose of 0.2 mg/kg/week Jintrolong® in PGHD patients, exposure in monkeys under NOAEL 3 mg/kg/week exhibited safety margins greater than 120.5, the predicted minimum dose to induce vacuolation in monkeys is equivalent to 1.29 mg/kg/week in humans, which is 6.45-fold higher than the clinical dose. The safety data acquired in clinical trials for Jintrolong® were also analyzed, which included phase III (360 patients), phase IV (3,000 patients) of 26-week treatment, and a follow-up study with treatment lasting for 3 years. There was no statistically significant difference in the incidence of adverse reactions between the Jintrolong® group and the daily rhGH control group (no PEG), and no new adverse effects (AE) were observed in the Jintrolong® group at the clinical therapeutic dose of 0.2 mg/kg/week.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhou
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Chuandong Wu
- Department of Toxicology, JOINN Laboratories (Suzhou) Co., Ltd., Suzhou, China
| | - Qian Zhou
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Xiaoyu Li
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Yanlin Zhang
- Department of Toxicology, JOINN Laboratories (Suzhou) Co., Ltd., Suzhou, China
| | - Conglin Zuo
- Department of Toxicology, JOINN Laboratories (Suzhou) Co., Ltd., Suzhou, China
| | - Jun Yin
- Department of Toxicology, JOINN Laboratories (Suzhou) Co., Ltd., Suzhou, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyang Gao
- Electron Microscope Core Laboratory, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianhong Luo
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Lei Jin
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Enhong Zhong
- Center for Nonclinical Research and Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, China
| | - Yingwu Wang
- School of Life Science, Jilin University, Changchun, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Christensen J, Li C, Mychasiuk R. Choroid plexus function in neurological homeostasis and disorders: The awakening of the circadian clocks and orexins. J Cereb Blood Flow Metab 2022; 42:1163-1175. [PMID: 35296175 PMCID: PMC9207490 DOI: 10.1177/0271678x221082786] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
As research regarding the role of circadian rhythms, sleep, and the orexinergic system in neurodegenerative diseases is growing, it is surprising that the choroid plexus (CP) remains underappreciated in this realm. Despite its extensive role in the regulation of circadian rhythms and orexinergic signalling, as well as acting as the primary conduit between cerebrospinal fluid (CSF) and the circulatory system, providing a mechanism by which toxic waste molecules can be removed from the brain, the CP has been largely unexplored in neurodegeneration. In this review, we explore the role of the CP in maintaining brain homeostasis and circadian rhythms, regulating CSF dynamics, and how these functions change across the lifespan, from development to senescence. In addition, we examine the relationship between the CP, orexinergic signalling, and the glymphatic system, highlighting gaps in the literature and areas that require immediate exploration. Finally, we assess current knowledge, including possible therapeutic strategies, regarding the role of the CP in neurological disorders, such as traumatic brain injury, migraine, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Gu H, Xu Y, Du N, Yu Y, Zheng W, Du Y. Pb Induces MCP-1 in the Choroid Plexus. BIOLOGY 2022; 11:308. [PMID: 35205174 PMCID: PMC8869661 DOI: 10.3390/biology11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Lead (Pb) is an environmental element that has been implicated in the development of dementia and Alzheimer's disease (AD). Additionally, innate immune activation contributes to AD pathophysiology. However, the mechanisms involved remain poorly understood. The choroid plexus (CP) is not only the site of cerebrospinal fluid (CSF) production, but also an important location for communication between the circulation and the CSF. In this study, we investigated the involvement of the CP during Pb exposure by evaluating the expression of the monocyte chemoattractant protein-1 (MCP-1). MCP-1 is highly expressed in the CP compared to other CNS tissues. MCP-1 regulates macrophage infiltration and is upregulated in AD brains. Our study revealed that Pb exposure stimulated MCP-1 expression, along with a significantly increased macrophage infiltration into the CP. By using cultured Z310 rat CP cells, Pb exposure stimulated MCP-1 expression in a dose-related fashion and markedly activated both NF-κB and p38 MAP kinase. Interestingly, both SB 203580, a p38 inhibitor, and BAY 11-7082, an NF-κB p65 inhibitor, significantly blocked Pb-induced MCP-1 expression. However, SB203580 did not directly inhibit NF-κB p65 phosphorylation. In conclusion, Pb exposure stimulates MCP-1 expression via the p38 and NF-κB p65 pathways along with macrophage infiltration into the CP.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| | - Yundan Xu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nicole Du
- Department of Pediatrics, Children’s National Hospital, Washington, DC 20010, USA;
| | - Yongqi Yu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.X.); (Y.Y.)
| |
Collapse
|
25
|
Alisch JSR, Egan JM, Bouhrara M. Differences in the choroid plexus volume and microstructure are associated with body adiposity. Front Endocrinol (Lausanne) 2022; 13:984929. [PMID: 36313760 PMCID: PMC9606414 DOI: 10.3389/fendo.2022.984929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus (CP) is a cerebral structure located in the ventricles that functions in producing most of the brain's cerebrospinal fluid (CSF) and transporting proteins and immune cells. Alterations in CP structure and function has been implicated in several pathologies including aging, multiple sclerosis, Alzheimer's disease, and stroke. However, identification of changes in the CP remains poorly characterized in obesity, one of the main risk factors of neurodegeneration, including in the absence of frank central nervous system alterations. Our goal here was to characterize the association between obesity, measured by the body mass index (BMI) or waist circumference (WC) metrics, and CP microstructure and volume, assessed using advanced magnetic resonance imaging (MRI) methodology. This cross-sectional study was performed in the clinical unit of the National Institute on Aging and included a participant population of 123 cognitively unimpaired individuals spanning the age range of 22 - 94 years. Automated segmentation methods from FreeSurfer were used to identify the CP structure. Our analysis included volumetric measurements, quantitative relaxometry measures (T 1 and T 2), and the diffusion tensor imaging (DTI) measure of mean diffusivity (MD). Strong positive associations were observed between WC and all MRI metrics, as well as CP volume. When comparing groups based on the established cutoff point by the National Institutes of Health for WC, a modest difference in MD and a significant difference in T 1 values were observed between obese and lean individuals. We also found differences in T1 and MD between obese and overweight individuals as defined using the BMI cutoff. We conjecture that these observations in CP volume and microstructure are due to obesity-induced inflammation, diet, or, very likely, dysregulations in leptin binding and transport. These findings demonstrate that obesity is strongly associated with a decline in CP microstructural integrity. We expect that this work will lay the foundation for further investigations on obesity-induced alterations in CP structure and function.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
26
|
Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy-6-month MRI follow-up after experimental traumatic brain injury. Brain Struct Funct 2021; 227:145-158. [PMID: 34757444 PMCID: PMC8741668 DOI: 10.1007/s00429-021-02395-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/15/2022]
Abstract
Ventricular enlargement is one long-term consequence of a traumatic brain injury, and a risk factor for memory disorders and epilepsy. One underlying mechanisms of the chronic ventricular enlargement is disturbed cerebrospinal-fluid secretion or absorption by choroid plexus. We set out to characterize the different aspects of ventricular enlargement in lateral fluid percussion injury (FPI) rat model by magnetic resonance imaging (MRI) and discovered choroid plexus injury in rats that later developed hydrocephalus. We followed the brain pathology progression for 6 months and studied how the ventricular growth was associated with the choroid plexus injury, cortical lesion expansion, hemorrhagic load or blood perfusion deficits. We correlated MRI findings with the seizure susceptibility in pentylenetetrazol challenge and memory function in Morris water-maze. Choroid plexus injury was validated by ferric iron (Prussian blue) and cytoarchitecture (Nissl) stainings. We discovered choroid plexus injury that accumulates iron in 90% of FPI rats by MRI. The amount of the choroid plexus iron remained unaltered 1-, 3- and 6-month post-injury. During this time, the ventricles kept on growing bilaterally. Ventricular growth did not depend on the cortical lesion severity or the cortical hemorrhagic load suggesting a separate pathology. Instead, the results indicate choroidal injury as one driver of the post-traumatic hydrocephalus, since the higher the choroid plexus iron load the larger were the ventricles at 6 months. The ventricle size or the choroid plexus iron load did not associate with seizure susceptibility. Cortical hypoperfusion and memory deficits were worse in rats with greater ventricular growth.
Collapse
|
27
|
Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong Z, Khattar N, Egan JM, Bouhrara M. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. [PMID: 34603011 PMCID: PMC8485051 DOI: 10.3389/fnagi.2021.734992] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited. In this cross-sectional study, we investigated age and sex differences in the CP structure and function using advanced quantitative magnetic resonance imaging methodology in a large cohort (n = 155) of cognitively unimpaired individuals over a wide age range between 21 and 94 years. Our analysis included volumetric measurements, relaxometry measures (T 1 and T 2), diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) and mean diffusivity (MD), as well as measures of cerebral blood flow (CBF). Our results revealed that CP volume was increasing with advancing age. We conjecture that this novel observation is likely attributed to alterations in the CP microstructure or function as well as to ventriculomegaly. Indeed, we also found that CBF was lower with advanced age, while, consistent with previous studies, T 1, T 2 and MD were higher, and FA was lower with advanced age. We attribute these functional and microstructural differences to a deteriorated CP structural integrity with aging. Furthermore, our relaxometry and DTI measures were found to be associated with differences in blood perfusion revealing lower microstructural integrity with lower CBF. Finally, in agreement with literature, sex-related differences in MD and CBF were statistically significant. This work lays the foundation for ongoing investigation of the involvement of CP in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
28
|
Perera C, Harrison IF, Lythgoe MF, Thomas DL, Wells JA. Pharmacological MRI with Simultaneous Measurement of Cerebral Perfusion and Blood-Cerebrospinal Fluid Barrier Function using Interleaved Echo-Time Arterial Spin Labelling. Neuroimage 2021; 238:118270. [PMID: 34144160 PMCID: PMC8543042 DOI: 10.1016/j.neuroimage.2021.118270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Pharmacological MRI (phMRI) studies seek to capture changes in brain haemodynamics in response to a drug. This provides a methodological platform for the evaluation of novel therapeutics, and when applied to disease states, may provide diagnostic or mechanistic information pertaining to common brain disorders such as dementia. Changes to brain perfusion and blood-cerebrospinal fluid barrier (BCSFB) function can be probed, non-invasively, by arterial spin labelling (ASL) and blood-cerebrospinal fluid barrier arterial spin labelling (BCSFB-ASL) MRI respectively. Here, we introduce a method for simultaneous recording of pharmacological perturbation of brain perfusion and BCSFB function using interleaved echo-time ASL, applied to the anesthetized mouse brain. Using this approach, we capture an exclusive decrease in BCSFB-mediated delivery of arterial blood water to ventricular CSF, following anti-diuretic hormone, vasopressin, administration. The commonly used vasodilatory agent, CO2, induced similar increases (~21%) in both cortical perfusion and the BCSFB-ASL signal. Furthermore, we present evidence that caffeine administration triggers a marked decrease in BCSFB-mediated labelled water delivery (41%), with no significant changes in cortical perfusion. Finally, we demonstrate a marked decrease in the functional response of the BCSFB to, vasopressin, in the aged vs adult brain. Together these data, the first of such kind, highlight the value of this translational approach to capture simultaneous and differential pharmacological modulation of vessel tone at the blood brain barrier and BCSFB and how this relationship may be modified in the ageing brain.
Collapse
Affiliation(s)
- Charith Perera
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom; Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom.
| |
Collapse
|
29
|
Perin P, Rossetti R, Ricci C, Cossellu D, Lazzarini S, Bethge P, Voigt FF, Helmchen F, Batti L, Gantar I, Pizzala R. 3D Reconstruction of the Clarified Rat Hindbrain Choroid Plexus. Front Cell Dev Biol 2021; 9:692617. [PMID: 34395426 PMCID: PMC8359725 DOI: 10.3389/fcell.2021.692617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
The choroid plexus (CP) acts as a regulated gate between blood and cerebrospinal fluid (CSF). Despite its simple histology (a monostratified cuboidal epithelium overlying a vascularized stroma), this organ has remarkably complex functions several of which involve local interaction with cells located around ventricle walls. Our knowledge of CP structural organization is mainly derived from resin casts, which capture the overall features but only allow reconstruction of the vascular pattern surface, unrelated to the overlying epithelium and only loosely related to ventricular location. Recently, CP single cell atlases are starting to emerge, providing insight on local heterogeneities and interactions. So far, however, few studies have described CP spatial organization at the mesoscale level, because of its fragile nature and deep location within the brain. Here, using an iDISCO-based clearing approach and light-sheet microscopy, we have reconstructed the normal rat hindbrain CP (hCP) macro- and microstructure, using markers for epithelium, arteries, microvasculature, and macrophages, and noted its association with 4th ventricle-related neurovascular structures. The hCP is organized in domains associated to a main vessel (fronds) which carry a variable number of villi; the latter are enclosed by epithelium and may be flat (leaf-like) or rolled up to variable extent. Arteries feeding the hCP emerge from the cerebellar surface, and branch into straight arterioles terminating as small capillary anastomotic networks, which run within a single villus and terminate attaching multiple times to a large tortuous capillary (LTC) which ends into a vein. Venous outflow mostly follows arterial pathways, except for the lateral horizontal segment (LHS) and the caudal sagittal segment. The structure of fronds and villi is related to the microvascular pattern at the hCP surface: when LTCs predominate, leaflike villi are more evident and bulge from the surface; different, corkscrew-like villi are observed in association to arterioles reaching close to the CP surface with spiraling capillaries surrounding them. Both leaf-like and corkscrew-like villi may reach the 4th ventricle floor, making contact points at their tip, where no gap is seen between CP epithelium and ependyma. Contacts usually involve several adjacent villi and may harbor epiplexus macrophages. At the junction between medial (MHS) and lateral (LHS) horizontal segment, arterial supply is connected to the temporal bone subarcuate fossa, and venous outflow drains to a ventral vein which exits through the cochlear nuclei at the Luschka foramen. These vascular connections stabilize the hCP overall structure within the 4th ventricle but make MHS-LHS joint particularly fragile and very easily damaged when removing the brain from the skull. Even in damaged samples, however, CP fronds (or isolated villi) often remain strongly attached to the dorsal cochlear nucleus (DCN) surface; in these fronds, contacts are still present and connecting “bridges” may be seen, suggesting the presence of real molecular contacts rather than mere appositions.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Carolina Ricci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniele Cossellu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Simone Lazzarini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Laura Batti
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Ivana Gantar
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Zheng W, Ghersi-Egea JF. Brain Barrier Systems Play No Small Roles in Toxicant-induced Brain Disorders. Toxicol Sci 2021; 175:147-148. [PMID: 32298456 DOI: 10.1093/toxsci/kfaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
31
|
Di Cataldo V, Debatisse J, Piraquive J, Géloën A, Grandin C, Verset M, Taborik F, Labaronne E, Loizon E, Millon A, Mury P, Pialoux V, Serusclat A, Lamberton F, Ibarrola D, Lavenne F, Le Bars D, Troalen T, Confais J, Crola Da Silva C, Mechtouff L, Contamin H, Fayad ZA, Canet-Soulas E. Cortical inflammation and brain signs of high-risk atherosclerosis in a non-human primate model. Brain Commun 2021; 3:fcab064. [PMID: 33937770 PMCID: PMC8063585 DOI: 10.1093/braincomms/fcab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood−brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood−brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Debatisse
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | | | - Alain Géloën
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuel Labaronne
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Loizon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Mury
- LIBM Laboratory, Univ Lyon, Université Lyon 1, Lyon, France
| | | | - André Serusclat
- Radiology Department, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | - Claire Crola Da Silva
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
32
|
Choroid Plexus as the Best Reference Region for Standardized Uptake Value Analysis on C11-Acetate PET/CT for Grading and Predicting Prognosis in Patients with Cerebral Gliomas. Nucl Med Mol Imaging 2020; 54:274-280. [PMID: 33281998 DOI: 10.1007/s13139-020-00672-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022] Open
Abstract
Purpose We aimed to compare different reference regions and select one with the most clinical relevance on C11-acetate (ACE) positron emission tomography/computed tomography (PET/CT) in patients with cerebral glioma. Methods We retrospectively reviewed 51 patients with cerebral glioma who underwent baseline ACE PET/CT at diagnosis. Other than the standardized uptake value (SUV) of the primary tumor, SUVs of the reference regions including the normal gray matter, white matter, choroid plexus, and cerebellum were measured. Then, the SUV ratio (SUVR = tumor SUVmax/reference region SUVmean) was calculated. The effect of patient age on the SUVmean of each reference was examined and the SUVRs of each reference region were compared between grades. age, sex, tumor size, histological grades, SUVR, and the presence of isocitrate dehydrogenase (IDH) mutation were included for survival analyses. Results Except for the cerebellum showing a mild negative correlation, we found no correlations between age and SUVmean using the gray matter, white matter, and choroid plexus (r = - 0.280, P = 0.047). Only the SUVR-choroid plexus was able to differentiate between the WHO grades (Grade II vs. III, P = 0.035; grade III vs. IV, P < 0.001; grade II vs. IV, P < 0.001). Multivariate Cox proportional hazards models found that the SUVR-choroid plexus and IDH mutation were statistically significant for predicting OS. Conclusion Of the different reference regions used for grading cerebral gliomas, the choroid plexus was found to be the most optimal. In addition, the SUV ratio is useful to predict the overall survival in the model with the choroid plexus as a reference region.
Collapse
|
33
|
Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, Costes N, Mérida I, Léon C, Dia M, Paillard M, Confais J, Rossetti F, Langlois JB, Troalen T, Iecker T, Le Bars D, Lancelot S, Bouchier B, Lukasziewicz AC, Oudotte A, Nighoghossian N, Ovize M, Contamin H, Lux F, Tillement O, Canet-Soulas E. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun 2020; 2:fcaa193. [PMID: 33305265 PMCID: PMC7716090 DOI: 10.1093/braincomms/fcaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In an acute ischaemic stroke, understanding the dynamics of blood-brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood-brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood-brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood-brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K trans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10-3 min-1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10-3 min-1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K trans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10-3 min-1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, K trans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, K trans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K trans quantification with AGuIX® nanoparticles can monitor early blood-brain barrier damage and treatment effect in ischaemic stroke after reperfusion.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne 69621, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Marlène Wiart
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Ramonet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Lebanese University-Beirut, Lebanon
| | - Mélanie Paillard
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | - Fabien Rossetti
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | | | - Didier Le Bars
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | | | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - François Lux
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| |
Collapse
|
34
|
Kim H, Lim YM, Kim G, Lee EJ, Lee JH, Kim HW, Kim KK. Choroid plexus changes on magnetic resonance imaging in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neurol Sci 2020; 415:116904. [DOI: 10.1016/j.jns.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
|
35
|
Non-Invasive MRI of Blood-Cerebrospinal Fluid Barrier Function. Nat Commun 2020; 11:2081. [PMID: 32350278 PMCID: PMC7190825 DOI: 10.1038/s41467-020-16002-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
The blood–cerebrospinal fluid barrier (BCSFB) is a highly dynamic transport interface that serves brain homeostasis. To date, however, understanding of its role in brain development and pathology has been hindered by the absence of a non-invasive technique for functional assessment. Here we describe a method for non-invasive measurement of BSCFB function by using tracer-free MRI to quantify rates of water delivery from arterial blood to ventricular cerebrospinal fluid. Using this method, we record a 36% decrease in BCSFB function in aged mice, compared to a 13% decrease in parenchymal blood flow, itself a leading candidate biomarker of early neurodegenerative processes. We then apply the method to explore the relationship between BCSFB function and ventricular morphology. Finally, we provide proof of application to the human brain. Our findings position the BCSFB as a promising new diagnostic and therapeutic target, the function of which can now be safely quantified using non-invasive MRI. The blood–cerebrospinal fluid barrier (BCSFB) is an important interface for brain homeostasis. Here the authors describe a non-invasive MRI technique for the quantitative assessment of BCSFB function.
Collapse
|
36
|
The role of nanoparticles for biomedical application. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2019-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Talhada D, Costa-Brito AR, Duarte AC, Costa AR, Quintela T, Tomás J, Gonçalves I, Santos CRA. The choroid plexus: Simple structure, complex functions. J Neurosci Res 2019; 98:751-753. [PMID: 31825126 DOI: 10.1002/jnr.24571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Talhada
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Sweden
| | - Ana Raquel Costa-Brito
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Raquel Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
38
|
Ferreira A, Neves P, Gozzelino R. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals (Basel) 2019; 12:ph12030126. [PMID: 31470556 PMCID: PMC6789770 DOI: 10.3390/ph12030126] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is a critical element for most organisms, which plays a fundamental role in the great majority of physiological processes. So much so, that disruption of iron homeostasis has severe multi-organ impacts with the brain being particularly sensitive to such modifications. More specifically, disruption of iron homeostasis in the brain can affect neurophysiological mechanisms, cognition, and social behavior, which eventually contributes to the development of a diverse set of neuro-pathologies. This article starts by exploring the mechanisms of iron action in the brain and follows with a discussion on cognitive and behavioral implications of iron deficiency and overload and how these are framed by the social context. Subsequently, we scrutinize the implications of the disruption of iron homeostasis for the onset and progression of psychosocial disorders. Lastly, we discuss the links between biological, psychological, and social dimensions and outline potential avenues of research. The study of these interactions could ultimately contribute to a broader understanding of how individuals think and act under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ana Ferreira
- Centro Interdisciplinar de Ciências Sociais (CICS.NOVA), Faculdade de Ciências Sociais e Humanas da Universidade NOVA de Lisboa (NOVA FCSH), 1069-061 Lisbon, Portugal
| | - Pedro Neves
- School of Business and Economics, NOVA University of Lisbon, 2775-405 Lisbon, Portugal
| | - Raffaella Gozzelino
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, 1180-052, 1150-082 Lisbon, Portugal.
| |
Collapse
|
39
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|