1
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
2
|
Xu J, Zhang J, Liu Q, Wang B. Bone marrow mesenchymal stem cells-derived exosomes promote spinal cord injury repair through the miR-497-5p/TXNIP/NLRP3 axis. J Mol Histol 2024; 56:16. [PMID: 39611985 DOI: 10.1007/s10735-024-10289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) indicate a repairing prospect to treat spinal cord injury, a major traumatic disease. This study investigated the repair effect of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) on spinal cord injury. BMSCs were collected to extract BMSC-Exos which were identified by different means. The SCI model of rats was established, the motor behavior was scored by BBB field test, and the spinal cord tissues were separated and stained by HE, Nissl, and Tunel, respectively, as well as analyzed to measure inflammatory and oxidative stress responses. PC12 cells were co-cultured with Exos and analyzed by CCK-8 and flow cytometry to measure cell proliferation and apoptosis. BMSC-Exos improved SCI in rats with the recovery of motor function, alleviation of pathological conditions, and reduction of apoptosis, inflammatory responses, and oxidative stress. BMSC-Exos increased miR-497-5p expression, and miR-497-5p overexpression strengthened the protective effect of BMSC-Exos on SCI. miR-497-5p targeted inactivation of TXNIP/NLRP3 pathway. TXNIP saved the repair effect of miR-497-5p-carrying BMSC-Exos on SCI rats. miR-497-5p-carrying BMSC-Exos alleviated apoptosis and induced proliferation of H2O2-treated PC12 cells. BMSC-Exos promote SCI repair via the miR-497-5p/TXNIP/NLRP3 axis, which may be a target for alleviating SCI-associated nerve damage.
Collapse
Affiliation(s)
- JiXu Xu
- Department of Rehabilitation Medicine, Wuxi No.8 People's Hospital, Jiangsu Province, Wuxi City, 214000, China
| | - Jun Zhang
- Department of Rehabilitation Medicine, Ezhou Central Hospital, Hubei Province, Ezhou City, 436000, China
| | - QiaoYun Liu
- Department of Rehabilitation Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong UniversityChongchuan DistrictJiangsu Province, No. 60 Qingnian Middle Road, Nantong City, 226000, China
| | - Bin Wang
- Department of Rehabilitation Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong UniversityChongchuan DistrictJiangsu Province, No. 60 Qingnian Middle Road, Nantong City, 226000, China.
| |
Collapse
|
3
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Lim YJ, Park WT, Lee GW. Extracellular vesicles for neural regeneration after spinal cord injury. Neural Regen Res 2024; 19:491-492. [PMID: 37721268 PMCID: PMC10581585 DOI: 10.4103/1673-5374.380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
5
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
6
|
Fu SP, Wu XC, Yang RL, Zhao DZ, Cheng J, Qian H, Ao J, Zhang Q, Zhang T. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury. Biomed Pharmacother 2023; 168:115632. [PMID: 37806094 DOI: 10.1016/j.biopha.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Cheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
Lu D, Wu JP, Yang QW, Wang HY, Yang JJ, Zhang GG, Wang C, Yang YL, Zhu L, Sun XZ. Recent advances in lipid nanovesicles for targeted treatment of spinal cord injury. Front Bioeng Biotechnol 2023; 11:1261288. [PMID: 37691909 PMCID: PMC10486273 DOI: 10.3389/fbioe.2023.1261288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
The effective regeneration and functional restoration of damaged spinal cord tissue have been a long-standing concern in regenerative medicine. Treatment of spinal cord injury (SCI) is challenging due to the obstruction of the blood-spinal cord barrier (BSCB), the lack of targeting of drugs, and the complex pathophysiology of injury sites. Lipid nanovesicles, including cell-derived nanovesicles and synthetic lipid nanovesicles, are highly biocompatible and can penetrate BSCB, and are therefore effective delivery systems for targeted treatment of SCI. We summarize the progress of lipid nanovesicles for the targeted treatment of SCI, discuss their advantages and challenges, and provide a perspective on the application of lipid nanovesicles for SCI treatment. Although most of the lipid nanovesicle-based therapy of SCI is still in preclinical studies, this low immunogenicity, low toxicity, and highly engineerable nanovesicles will hold great promise for future spinal cord injury treatments.
Collapse
Affiliation(s)
- Di Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
| | - Jiu-Ping Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi-Wei Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
| | - Hua-Yi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang-Gang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Yan-Lian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Zhi Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zhang X, Jiang W, Lu Y, Mao T, Gu Y, Ju D, Dong C. Exosomes combined with biomaterials in the treatment of spinal cord injury. Front Bioeng Biotechnol 2023; 11:1077825. [PMID: 36994357 PMCID: PMC10040754 DOI: 10.3389/fbioe.2023.1077825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling disease with a high mortality rate. It often leads to complete or partial sensory and motor dysfunction and is accompanied by a series of secondary outcomes, such as pressure sores, pulmonary infections, deep vein thrombosis in the lower extremities, urinary tract infections, and autonomic dysfunction. Currently, the main treatments for SCI include surgical decompression, drug therapy, and postoperative rehabilitation. Studies have shown that cell therapy plays a beneficial role in the treatment of SCI. Nonetheless, there is controversy regarding the therapeutic effect of cell transplantation in SCI models. Meanwhile exosomes, as a new therapeutic medium for regenerative medicine, possess the advantages of small size, low immunogenicity, and the ability to cross the blood-spinal cord barrier. Certain studies have shown that stem cell-derived exosomes have anti-inflammatory effects and can play an irreplaceable role in the treatment of SCI. In this case, it is difficult for a single treatment method to play an effective role in the repair of neural tissue after SCI. The combination of biomaterial scaffolds and exosomes can better transfer and fix exosomes to the injury site and improve their survival rate. This paper first reviews the current research status of stem cell-derived exosomes and biomaterial scaffolds in the treatment of SCI respectively, and then describes the application of exosomes combined with biomaterial scaffolds in the treatment of SCI, as well as the challenges and prospects.
Collapse
|
9
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
10
|
Dong B, Liu X, Li J, Wang B, Yin J, Zhang H, Liu W. Berberine encapsulated in exosomes derived from platelet-rich plasma promotes chondrogenic differentiation of the Bone Marrow Mesenchymal Stem Cells via the Wnt/β-catenin pathway. Biol Pharm Bull 2022; 45:1444-1451. [PMID: 35858798 DOI: 10.1248/bpb.b22-00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cartilage regenerative medicine, wherein the stem cells from adults exert a crucial role, has high potential in the treatment of defective articular cartilage. Recently, Bone marrow mesenchymal stem cells (BMSCs) are being increasingly recognized as an alternative source of adult stem cells, which are capable of differentiating into several cell types (e.g., adipocytes, chondrocytes, and osteoblasts). However, their proliferative properties and tendency to dedifferentiate restrict their use in clinical settings. Recently, a possible bioactive material PRP-exos (exosomes derived from platelet-rich plasma), has emerged, which can effectively facilitate the differentiation and proliferation of cells. Recent studies have reported that berberine (Ber), known to have anti-inflammatory properties, plays a role in osteogenesis. Since biological molecules are used in combinations, we attempted to assess the effect of Exos-Ber (PRP-exos in combination with Ber) on the chondrogenic differentiation of BMSCs in vitro. In this study, Exos-Ber was observed to promote the proliferation of BMSCs and cause their chondrogenic differentiation in vitro. Additionally, Exos-Ber could promote the migration of BMSCs and increase the protein expression of the chondrogenic genes (Collagen II, SOX9, Aggrecan). After treatment with Exos-Ber, significant induction of β-catenin expression was observed, which could be repressed successfully by adding β-catenin inhibitor XAV-939. Interestingly, the repression of the Wnt/β-catenin axis also resulted in reduced gene expression levels of Collagen II, SOX9, and Aggrecan. These observations indicated that Exos-Ber facilitated the differentiation of chondrogenic BMSCs by modulating the Wnt/β-catenin axis, which offers innovative insights into the reconstruction of cartilage.
Collapse
Affiliation(s)
- Bingjiang Dong
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Xinhui Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jiwei Li
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Bin Wang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jian Yin
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Hailong Zhang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Wei Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| |
Collapse
|
11
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
12
|
Wang Y, Xu H, Wang J, Yi H, Song Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr Stem Cell Res Ther 2022; 17:317-327. [PMID: 35352667 DOI: 10.2174/1574888x17666220330005937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hualiang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, YanJiang Road, Haizhu District, Guangzhou, China
| | - Yancheng Song
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
14
|
Nie H, Jiang Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered 2021; 12:8157-8172. [PMID: 34663169 PMCID: PMC8806461 DOI: 10.1080/21655979.2021.1977562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bone mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are known for recovery of injured tissues. We investigated the possible mechanism of BMSC-EVs in spinal cord injury (SCI). EVs were isolated from BMSCs and injected into SCI rats to evaluate the recovery of hindlimb motor function. The spinal cord tissue was stained after modeling to analyze spinal cord structure and inflammatory cell infiltration and detect microRNA (miR)-23b expression. The activity of lipopolysaccharide (LPS)-induced BV2 inflammatory cells was detected. The protein contents of interleukin (IL)-6, IL-1β, IL-10 and tumor necrosis factor-α (TNF-α) in spinal cord and BV2 cells were measured. Western blot analysis was used to detect the level of toll-like receptor (TLR)4, p65, p-p65, iNOS, and Arg1 in spinal cord tissue and cells. TLR4 was overexpressed in rats and cells to evaluate the content of inflammatory cytokines. After EV treatment, the motor function of SCI rats was improved, SCI was relieved, and miR-23b expression was increased. After treatment with EV-miR-23b, iNOS, IL-6, IL-1β, and TNF-α contents were decreased, while Arg1 and IL-10 were increased. The levels of TLR4 and p-p65 in spinal cord and BV2 cells were decreased. The rescue experiments verified that after overexpression of TLR4, the activity of BV2 cells was decreased, the contents of IL-6, IL-1β, TNF-α, and p-p65 were increased, IL-10 was decreased, and SCI was aggravated. To conclude, The miR-23b delivered by BMSC-EVs targets TLR4 and inhibits the activation of NF-κB pathway, relieves the inflammatory response, so as to improve SCI in rats.
Collapse
Affiliation(s)
- Hongfei Nie
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu Sichuan, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong, China
| |
Collapse
|
15
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
16
|
Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep 2021; 16:323-334. [PMID: 31808037 DOI: 10.1007/s12015-019-09927-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
17
|
Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168:142-154. [PMID: 33823244 DOI: 10.1016/j.freeradbiomed.2021.03.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that characterized by oxidative stress and inflammatory response. Kaempferol is reported to be an anti-neuroinflammation in neurologic disorders. Nevertheless, the role and mechanism of kaempferol in SCI remains unclear. The present study aims to investigate effects of kaempferol on SCI and its possible underlying mechanisms in in vivo and in vitro models. A C5 hemi-contusion injury was induced in Sprague-Dawley rats to investigate the neuroprotective effects of kaempferol after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without kaempferol. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. The in vivo studies showed that kaempferol could improve the recovery of hindlimb motor function and ameliorate tissue damage in the spinal cord after SCI. Moreover, administration of kaempferol reduced microglia activation and oxidative stress level in the spinal cord. The in vitro studies showed that kaempferol suppressed the microglia activation resulting from the administration of LPS with ATP to BV-2 cells. Pretreated BV2 cells with kaempferol reduced the generation of reactive oxygen species (ROS) by inhibiting NADPH oxidase 4, and then, suppressed the phosphorylation of p38 MAPK and JNK, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. We also observed that kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1 p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1β. In conclusion, kaempferol was able to reduce oxidative stress and inflammatory response through down-regulation of ROS dependent MAPKs- NF-κB and pyroptosis signaling pathway, which suggested that kaempferol might be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baihui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wangsheng Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
18
|
Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, Zhang GZ, Ma ZJ, Kang XW. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med 2021; 16:465-476. [PMID: 33955796 DOI: 10.2217/rme-2020-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a severe CNS injury that results in abnormalities in, or loss of, motor, sensory and autonomic nervous function. miRNAs belong to a new class of noncoding RNA that regulates the production of proteins and biological function of cells by silencing translation or interfering with the expression of target mRNAs. Following SCI, miRNAs related to oxidative stress, inflammation, autophagy, apoptosis and many other secondary injuries are differentially expressed, and these miRNAs play an important role in the progression of secondary injuries after SCI. The purpose of this review is to elucidate the differential expression and functional roles of miRNAs after SCI, thus providing references for further research on miRNAs in SCI.
Collapse
Affiliation(s)
- Xu-Dong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Feng-Guang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Ming-Qiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Yi-Dian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Da-Xue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| |
Collapse
|
19
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
20
|
Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021; 12:102. [PMID: 33536064 PMCID: PMC7860030 DOI: 10.1186/s13287-021-02153-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) often leads to serious motor and sensory dysfunction of the limbs below the injured segment. SCI not only results in physical and psychological harm to patients but can also cause a huge economic burden on their families and society. As there is no effective treatment method, the prevention, treatment, and rehabilitation of patients with SCI have become urgent problems to be solved. In recent years, mesenchymal stem cells (MSCs) have attracted more attention in the treatment of SCI. Although MSC therapy can reduce injured volume and promote axonal regeneration, its application is limited by tumorigenicity, a low survival rate, and immune rejection. Accumulating literature shows that exosomes have great potential in the treatment of SCI. In this review, we summarize the existing MSC-derived exosome studies on SCI and discuss the advantages and challenges of treating SCI based on exosomes derived from MSCs.
Collapse
Affiliation(s)
- Wen-Zhao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Jie-Ru Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China.
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
21
|
Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020; 21:E6765. [PMID: 32942668 PMCID: PMC7554956 DOI: 10.3390/ijms21186765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.E.O.); (S.C.); (S.W.); (S.T.); (A.F.); (J.H.); (M.S.); (A.G.); (G.P.)
| |
Collapse
|
22
|
Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, Zhou Z, Rong Y, Wang J, Ji C, Chen J, Zhao W, Fan J, Liu W, Cai W. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnology 2020; 18:105. [PMID: 32711535 PMCID: PMC7382861 DOI: 10.1186/s12951-020-00665-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injury (SCI) is a catastrophic injury that can cause irreversible motor dysfunction with high disability. Exosomes participate in the transport of miRNAs and play an essential role in intercellular communication via transfer of genetic material. However, the miRNAs in exosomes which derived from neurons, and the underlying mechanisms by which they contribute to SCI remain unknown. Methods A contusive in vivo SCI model and a series of in vitro experiments were carried out to explore the therapeutic effects of exosomes. Then, a miRNA microarray analysis and rescue experiments were performed to confirm the role of neuron-derived exosomal miRNA in SCI. Western blot, luciferase activity assay, and RNA-ChIP were used to investigate the underlying mechanisms. Results The results indicated that neuron-derived exosomes promoted functional behavioral recovery by suppressing the activation of M1 microglia and A1 astrocytes in vivo and in vitro. A miRNA array showed miR-124-3p to be the most enriched in neuron-derived exosomes. MYH9 was identified as the target downstream gene of miR-124-3p. A series of experiments were used to confirm the miR-124-3p/MYH9 axis. Finally, it was found that PI3K/AKT/NF-κB signaling cascades may be involved in the modulation of microglia by exosomal miR-124-3p. Conclusion A combination of miRNAs and neuron-derived exosomes may be a promising, minimally invasive approach for the treatment of SCI.
Collapse
Affiliation(s)
- Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Chenyu Huang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Shuang Feng
- Department of Encephalopathy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wene Zhao
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing, 211666, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
23
|
Ma K, Xu H, Zhang J, Zhao F, Liang H, Sun H, Li P, Zhang S, Wang R, Chen X. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism. Aging (Albany NY) 2019; 11:12278-12294. [PMID: 31848325 PMCID: PMC6949049 DOI: 10.18632/aging.102568] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) remains the most common cause of paralysis, and there are no effective therapies for SCI patients. Neural stem cell (NSC)-derived exosomes can attenuate apoptosis and neuroinflammation after traumatic spinal cord injury, but the mechanisms underlying these effects remain unclear. Here, we examined the efficacy of miRNAs isolated from exosomes as treatments for SCI and characterized their mechanisms of action. Furthermore, we evaluated the effects of exosomes formed in the presence of insulin growth factor-1 (IFG-1, IGF-Exo), which promotes neural proliferation and regeneration, as well as normal exosomes (Nor-Exo) and compared control and H2O2-treated groups both in vitro and in vivo. Using microRNA sequencing and qRT-PCR, we identified miR-219a-2-3p, levels of which were higher in the IGF-Exo than Nor-Exo group and played crucial anti-inflammatory and anti-apoptosis roles. Additional experiments revealed that IGF-Exo inhibits YY1 expression through up-regulation of miR-219a-2-3p. This in turn inhibits the NF-κB pathway, partly inhibiting neuroinflammation and promoting the neuroprotective effects after SCI.
Collapse
Affiliation(s)
- Ke Ma
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Huiyou Xu
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Jian Zhang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Fei Zhao
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Haiqian Liang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Hongtao Sun
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Ping Li
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Sai Zhang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Renjie Wang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| | - Xuyi Chen
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Institution of Brain Trauma and Neurology Disease of People's Armed Police Forces, Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China
| |
Collapse
|
24
|
Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. ACTA ACUST UNITED AC 2019; 52:e8735. [PMID: 31826179 PMCID: PMC6903804 DOI: 10.1590/1414-431x20198735] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Exosomes, a kind of extracellular vesicle, are promising therapeutic agents for spinal cord injury (SCI). This article aimed to investigate effects of exosomes secreted from miRNA-29b-modified bone marrow mesenchymal stem cells (BMSCs) on SCI. Exosomes were extracted from BMSCs transfected with miRNA-29b or negative control (miR NC). SCI rats were injected intravenously with exosomes (control exosomes, miRNA-29b exosomes) and BMSCs (miR NC, miRNA-29b) through the tail vein. The expression of miRNA-29b in spinal cord tissues of SCI rats was detected by qRT-PCR. The hind limb motor function was evaluated by Basso Beattie Bresnahan (BBB) score. The histopathological damage and neuronal regeneration in spinal cord tissues was observed by HE staining and immunohistochemistry, respectively. The injection of miRNA-29b exosomes and miRNA-29b BMSCs both significantly increased the expression of miRNA-29b in spinal cord tissues of SCI rats (P<0.05). Compared with SCI rats, rats in the miRNA-29b exosomes and the miRNA-29b groups exhibited improved SCI, including increased BBB score, NF200 and GAP-43 positive neurons, as well as decreased contractile nerve cell numbers and GFAP positive neurons (all P<0.05). The relieving degree of SCI was significantly higher in the miRNA-29b exosomes group than in the miRNA-29b BMSCs group (P<0.05). Exosomes secreted from miRNA-29b-modified BMSCs were effective in the repair of SCI in rats.
Collapse
Affiliation(s)
- Tao Yu
- Department of Spinal Surgery, Qilu Hospitial of ShanDong University, Jinan, Shandong, China.,Department of Orthopedics, Liaocheng People's Hospitial, Liaocheng, Shandong, China
| | - Cunju Zhao
- Department of Spinal Surgery, Qilu Hospitial of ShanDong University, Jinan, Shandong, China.,Department of Orthopedics, Liaocheng People's Hospitial, Liaocheng, Shandong, China
| | - Shouzhi Hou
- Department of Radiology, Liaocheng People's Hospitial, Liaocheng, Shandong, China
| | - Weijie Zhou
- Department of Orthopedics, Liaocheng People's Hospitial, Liaocheng, Shandong, China
| | - Baoxin Wang
- Department of Orthopedics, Liaocheng People's Hospitial, Liaocheng, Shandong, China
| | - Yunzhen Chen
- Department of Spinal Surgery, Qilu Hospitial of ShanDong University, Jinan, Shandong, China
| |
Collapse
|