1
|
Lei Y, Zhou J, Xu D, Chai S, Xiong N. Corilagin Attenuates Neuronal Apoptosis and Ferroptosis of Parkinson's Disease through Regulating the TLR4/Src/NOX2 Signaling Pathway. ACS Chem Neurosci 2025; 16:968-980. [PMID: 39950827 DOI: 10.1021/acschemneuro.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Corilagin has shown neuroprotective potential in various neurological disorders, but its effects in Parkinson's disease (PD) have not been fully explored. In this study, we investigated the therapeutic impact and underlying mechanism of corilagin on PD using MPTP-induced mice and MPP+-treated N2a cells. Behavioral tests and immunohistochemical analysis demonstrated that corilagin significantly reduced MPTP-induced loss of TH-positive neurons in the substantia nigra. In vitro, corilagin improved cell viability, decreased MPP+-induced apoptosis, and mitigated the associated oxidative stress by lowering intracellular ROS levels and preserving mitochondrial membrane potential. Moreover, corilagin reversed MPP+-induced iron accumulation and lipid peroxidation in N2a cells. Mechanistically, Western blotting revealed that the protective effects of corilagin are linked to the TLR4/Src/NOX2 signaling pathway. The TLR4 agonist RS 09 impaired the neuroprotective effects of corilagin, further supporting its role in modulating ferroptosis via this pathway. These findings suggest that corilagin could be a promising therapeutic agent for PD by targeting the TLR4/Src/NOX2 signaling axis to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yu Lei
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Jiabin Zhou
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Dongyuan Xu
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Songshan Chai
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| | - Nanxiang Xiong
- Brain Research Center, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Wu S, Jiang Q, Wang J, Wu D, Ren Y. Immune-related gene characterization and biological mechanisms in major depressive disorder revealed based on transcriptomics and network pharmacology. Front Psychiatry 2024; 15:1485957. [PMID: 39713769 PMCID: PMC11659238 DOI: 10.3389/fpsyt.2024.1485957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024] Open
Abstract
Background Major depressive disorder (MDD) is a severe psychiatric disorder characterized by complex etiology, with genetic determinants that are not fully understood. The objective of this study was to investigate the pathogenesis of MDD and to explore its association with the immune system by identifying hub biomarkers using bioinformatics analyses and examining immune infiltrates in human autopsy samples. Methods Gene microarray data were obtained from the Gene Expression Omnibus (GEO) datasets GSE32280, GSE76826, GSE98793, and GSE39653. Our approach included differential expression analysis, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) network analysis to identify hub genes associated with MDD. Subsequently, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cytoscape plugin CluGO, and Gene Set Enrichment Analysis (GSEA) were utilized to identify immune-related genes. The final selection of immune-related hub genes was determined through the least absolute shrinkage and selection operator (Lasso) regression analysis and PPI analysis. Immune cell infiltration in MDD patients was analyzed using CIBERSORT, and correlation analysis was performed between key immune cells and genes. The diagnostic accuracy of the identified hub genes was evaluated using receiver operating characteristic (ROC) curve analysis. Furthermore, we conducted a study involving 10 MDD patients and 10 healthy controls (HCs) meeting specific criteria to assess the expression levels of these hub genes in their peripheral blood mononuclear cells (PBMCs). The Herbal Ingredient Target Database (HIT) was employed to screen for herbal components that target these genes, potentially identifying novel therapeutic agents. Results A total of 159 down-regulated and 51 up-regulated genes were identified for further analysis. WGCNA revealed 12 co-expression modules, with modules "darked", "darkurquoise" and "light yellow" showing significant positive associations with MDD. Functional enrichment pathway analysis indicated that these differential genes were associated with immune functions. Integration of differential and immune-related gene analysis identified 21 common genes. The Lasso algorithm confirmed 4 hub genes as potential biomarkers for MDD. GSEA analysis suggested that these genes may be involved in biological processes such as protein export, RNA degradation, and fc gamma r mediated cytotoxis. Pathway enrichment analysis identified three highly enriched immune-related pathways associated with the 4 hub genes. ROC curve analysis indicated that these hub genes possess good diagnostic value. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) demonstrated significant expression differences of these hub genes in PBMCs between MDD patients and HCs. Immune infiltration analysis revealed significant correlations between immune cells, including Mast cells resting, T cells CD8, NK cells resting, and Neutrophils, which were significantly correlated with the hub genes expression. HIT identified one herb target related to IL7R and 14 targets related to TLR2. Conclusions The study identified four immune-related hub genes (TLR2, RETN, HP, and IL7R) in MDD that may impact the diagnosis and treatment of the disorder. By leveraging the GEO database, our findings contribute to the understanding of the relationship between MDD and immunity, presenting potential therapeutic targets.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Jiang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinhui Wang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Daming Wu
- Department of Psychiatry, Xiaoyi City Central Hospital, Xiaoyi, China
| | - Yan Ren
- Department of Psychiatry, The Fifth Hospital of Shanxi Medical University, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
3
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
4
|
Wang Y, Li Y, Chen Y, Mao J, Ji J, Zhang S, Liu P, Pronyuk K, Fisher D, Dang Y, Zhao L. Corilagin relieves atherosclerosis via the toll-like receptor 4 signaling pathway in vascular smooth muscle cells. Int J Immunopathol Pharmacol 2024; 38:3946320241254083. [PMID: 38869980 PMCID: PMC11179462 DOI: 10.1177/03946320241254083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Corilagin possesses a diverse range of pharmacologic bioactivities. However, the specific protective effects and mechanisms of action of corilagin in the context of atherosclerosis remain unclear. In this study, we investigated the impact of corilagin on the toll-like receptor (TLR)4 signaling pathway in a mouse vascular smooth muscle cell line (MOVAS) stimulated by oxidized low-density lipoprotein (ox-LDL). Additionally, we examined the effects of corilagin in Sprague-Dawley rats experiencing atherosclerosis. METHODS The cytotoxicity of corilagin was assessed using the CCK8 assay. MOVAS cells, pre-incubated with ox-LDL, underwent treatment with varying concentrations of corilagin. TLR4 expression was modulated by either downregulation through small interfering (si)RNA or upregulation via lentivirus transfection. Molecular expression within the TLR4 signaling pathway was analyzed using real-time polymerase chain reaction (PCR) and Western blotting. The proliferation capacity of MOVAS cells was determined through cell counting. In a rat model, atherosclerosis was induced in femoral arteries using an improved guidewire injury method, and TLR4 expression in plaque areas was assessed using immunofluorescence. Pathological changes were examined through hematoxylin and eosin staining, as well as Oil-Red-O staining. RESULTS Corilagin demonstrated inhibitory effects on the TLR4 signaling pathway in MOVAS cells pre-stimulated with ox-LDL, consequently impeding the proliferative impact of ox-LDL. The modulation of TLR4 expression, either through downregulation or upregulation, similarly influenced the expression of downstream molecules. In an in vivo context, corilagin exhibited the ability to suppress TLR4 and MyD88 expression in the plaque lesion areas of rat femoral arteries, thereby alleviating the formation of atherosclerotic plaques. CONCLUSION Corilagin can inhibit the TLR4 signaling pathway in VSMCs, possibly by downregulating TLR4 expression and, consequently, relieving atherosclerosis.
Collapse
MESH Headings
- Animals
- Toll-Like Receptor 4/metabolism
- Hydrolyzable Tannins/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Lipoproteins, LDL/metabolism
- Male
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Mice
- Cell Line
- Rats
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Myeloid Differentiation Factor 88/metabolism
Collapse
Affiliation(s)
- Yujie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinqian Mao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Zhang
- National & Local Joint Engineering Research Centre for High-Throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Pan Liu
- Department of Pediatrics, Wuchang Hospital, Wuhan, China
| | - Khrystyna Pronyuk
- Department of Infectious Diseases, Bogomolets National Medical University, Kyiv, Ukraine
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
- School of Health Professions, University of Missouri, Columbia, MO, USA
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Yu MH, Yang Q, Zhang YP, Wang JH, Zhang RJZ, Liu ZG, Liu XC. Cannabinoid Receptor Agonist WIN55, 212-2 Attenuates Injury in the Hippocampus of Rats after Deep Hypothermic Circulatory Arrest. Brain Sci 2023; 13:brainsci13030525. [PMID: 36979335 PMCID: PMC10046860 DOI: 10.3390/brainsci13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES Postoperative neurological deficits remain a challenge in cardiac surgery employing deep hypothermic circulatory arrest (DHCA). This study aimed to investigate the effect of WIN55, 212-2, a cannabinoid agonist, on brain injury in a rat model of DHCA. METHODS Twenty-four male Sprague Dawley rats were randomly divided into three groups: a control group (which underwent cardiopulmonary bypass (CPB) only), a DHCA group (CPB with DHCA), and a WIN group (WIN55, 212-2 pretreatment before CPB with DHCA). Histopathological changes in the brain were evaluated by hematoxylin-eosin staining. Plasma levels of superoxide dismutase (SOD) and proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-a) were determined using an enzyme-linked immunosorbent assay (ELISA). The expression of SOD in the hippocampus was detected by Western blot and immunofluorescence staining. Levels of apoptotic-related protein caspase-3 and type 1 cannabinoid receptor (CB1R) in the hippocampus were evaluated by Western blot. RESULTS WIN55, 212-2 administration attenuated histopathological injury of the hippocampus in rats undergoing DHCA, associated with lowered levels of IL-1β, IL-6, and TNF-α (p < 0.05, p < 0.001, and p < 0.01, vs. DHCA, respectively) and an increased level of SOD (p < 0.05 vs. DHCA). WIN55, 212-2 treatment also increased the content of SOD in the hippocampus. The protein expression of caspase-3 was downregulated and the expression of CB1R was upregulated in the hippocampus by WIN55, 212-2. CONCLUSIONS the administration of WIN55, 212-2 alleviates hippocampal injury induced by DHCA in rats by regulating intrinsic inflammatory and oxidative stress responses through a CB1R-dependent mechanism.
Collapse
Affiliation(s)
- Ming-Huan Yu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Qin Yang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Jia-Hui Wang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Ren-Jian-Zhi Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| |
Collapse
|
6
|
Li W, Yang K, Li B, Wang Y, Liu J, Chen D, Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front Pharmacol 2022; 13:1060104. [PMID: 36506567 PMCID: PMC9727192 DOI: 10.3389/fphar.2022.1060104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal ischemia reperfusion (II/R) is a clinical emergency that frequently occurs in a variety of clinical conditions. Severe intestinal injury results in the release of cytotoxic substances and inflammatory mediators which can activate local inflammatory response and bacterial translocation. This triggers multi-organ failure, including lung injury, which is a common complication of II/R injury and contributes to the high mortality rate. Corilagin (Cor) is a natural ellagitannin found in a variety of plants. It has many biological and pharmacological properties, including antioxidant, anti-inflammatory and anti-apoptosis activities. However, no studies have evaluated the effects and molecular mechanisms of Cor in alleviating II/R-induced intestinal and lung damage. In this study, Cor was found to significantly alleviate II/R-induced pathological damage, inflammatory response, oxidative stress, NLRP3 inflammasome activation, and pyroptosis in intestinal and lung tissues both in vivo and in vitro. Further, Cor inhibited the NLRP3 inflammasome activation and pyroptosis in RAW264.7 and MLE-12 cells induced by LPS/nigericin and that in IEC-6 cells induced by nigericin, indicating an amelioration of Cor in II/R-induced intestinal and lung injury via inhibiting NLRP3 inflammasome activation and pyroptosis. Thus, Cor might be a potential therapeutic agent for II/R-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kejia Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| |
Collapse
|
7
|
Chen Y, Gu Y, Xiong X, Zheng Y, Liu X, Wang W, Meng G. Roles of the adaptor protein tumor necrosis factor receptor type 1-associated death domain protein (TRADD) in human diseases. Biomed Pharmacother 2022; 153:113467. [DOI: 10.1016/j.biopha.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
8
|
Network Pharmacology-Based Systematic Analysis of Molecular Mechanisms of Geranium wilfordii Maxim for HSV-2 Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1009551. [PMID: 34777530 PMCID: PMC8580655 DOI: 10.1155/2021/1009551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Background Being a traditional Chinese medicine, Geranium wilfordii Maxim (GWM) is used for the treatment of various infectious diseases, and its main active ingredients are the polyphenolic substances such as polyphenols quercetin, corilagin, and geraniin. Previous studies have demonstrated the anti-HSV-1 viral activity of these three main ingredients. Through employing a network pharmacological method, the authors of the present research intend to probe the mechanism of GWM for the therapeutic treatment of HSV-2 infection. Methods The bioactive substances and related targets of GWM were obtained from the TCMSP database. Gene expression discrepancy for HSV-2 infection was obtained from dataset GSE18527. Crossover genes between disease target genes and GWM target genes were gained via Circos package. Distinctively displayed genes (DDGs) during HSV-2 infection were uploaded to the Metascape database with GWM target genes for further analysis. The tissue-specific distribution of the genes was obtained by uploading the genes to the PaGenBase database. Ingredient-gene-pathway (IGP) networks were constructed using Cytoscape software. Molecular docking investigations were carried out utilizing AutoDock Vina software. Results Nine actively involved components were retrieved from the TCMSP database. After taking the intersection among 153 drug target genes and 83 DDGs, 7 crossover genes were screened. Gene enrichment analysis showed that GWM treatment of HSV-2 infection mainly involves cytokine signaling in the immune system, response to virus, epithelial cell differentiation, and type II interferon signaling (IFNG). One hub, three core objectives, and two critical paths were filtered out from the built network. Geraniin showed strong binding activity with HSV-2 gD protein and STING protein in molecular docking. Conclusions This network pharmacological study provides a fundamental molecular mechanistic exploration of GWM for the treatment of HSV-2 infection.
Collapse
|
9
|
Świątek Ł, Sieniawska E, Sinan KI, Maciejewska-Turska M, Boguszewska A, Polz-Dacewicz M, Senkardes I, Guler GO, Bibi Sadeer N, Mahomoodally MF, Zengin G. LC-ESI-QTOF-MS/MS Analysis, Cytotoxic, Antiviral, Antioxidant, and Enzyme Inhibitory Properties of Four Extracts of Geranium pyrenaicum Burm. f.: A Good Gift from the Natural Treasure. Int J Mol Sci 2021; 22:7621. [PMID: 34299238 PMCID: PMC8307321 DOI: 10.3390/ijms22147621] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/01/2023] Open
Abstract
This study focused on the biological evaluation and chemical characterization of Geranium pyrenaicum Burm. f. Different solvent extracts (hexane, ethyl acetate, methanol, and water extracts) were prepared. The phytochemical profile, antioxidant, and enzyme inhibitory activity were investigated. Cytotoxicity was assessed using VERO, FaDu, HeLa and RKO cells. The antiviral activity was carried out against HSV-1 (Herpes simplex virus 1) propagated in VERO cell line. The aqueous extract, possessing high phenolic content (170.50 mg gallic acid equivalent/g extract), showed the highest reducing capacity (613.27 and 364.10 mg Trolox equivalent/g extract, for cupric reducing antioxidant capacity and ferric reducing antioxidant power, respectively), radical scavenging potential (469.82 mg Trolox equivalent/g extract, against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), metal chelating ability (52.39 mg ethylenediaminetetraacetic acid equivalent/g extract) and total antioxidant capacity (3.15 mmol Trolox equivalent/g extract). Liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) alloved to tentatively identify a total of 56 compounds in the extracts, including ellagitannins, gallic acid and galloyl derivatives amongst others. The ethyl acetate extracts substantially depressed cholinesterase enzymes (4.49 and 12.26 mg galantamine equivalent/g extract against AChE and BChE, respectively) and α-amylase enzyme (1.04 mmol acarbose equivalent/g extract). On the other hand, the methanolic extract inhibited tyrosinase (121.42 mg kojic acid equivalent/g extract) and α-glucosidase (2.39 mmol acarbose equivalent/g extract) activities. The highest selectivity towards all cancer cell lines (SI 4.5-10.8) was observed with aqueous extract with the FaDu cells being the most sensitive (CC50 40.22 µg/mL). It can be concluded that the presence of certain bioactive antiviral molecules may be related to the high anti HSV-1 activity of the methanolic extract. This work has generated vital scientific data on this medicinal plant, which is a prospective candidate for the creation of innovative phyto-pharmaceuticals.
Collapse
Affiliation(s)
- Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (E.S.); (M.M.-T.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | | | - Anastazja Boguszewska
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey;
| | - Gokalp Ozmen Guler
- Department of Biological Education, Ahmet Kelesoglu Education Faculty, Necmettin Erbakan University, Konya 42090, Turkey;
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (N.B.S.); (M.F.M.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (N.B.S.); (M.F.M.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| |
Collapse
|
10
|
Ding Y, Xu J, Cheng LB, Huang YQ, Wang YQ, Li H, Li Y, Ji JY, Zhang JH, Zhao L. Effect of Emodin on Coxsackievirus B3m-Mediated Encephalitis in Hand, Foot, and Mouth Disease by Inhibiting Toll-Like Receptor 3 Pathway In Vitro and In Vivo. J Infect Dis 2021; 222:443-455. [PMID: 32115640 DOI: 10.1093/infdis/jiaa093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-β in serum were tested with enzyme-linked immunosorbent assay. RESULTS Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-β, in serum. CONCLUSIONS Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Medical and Health Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei Province, People's Republic of China.,Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Liang-Bin Cheng
- Department of Liver Diseases, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yong-Qian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - You-Qin Wang
- Department of Pediatrics, Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Yichang Central People's Hospital, Yichang, Hubei Province, People's Republic of China
| | - Jing-Yu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ji-Hong Zhang
- Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
11
|
Yuan H, Zhang J, Yin X, Liu T, Yue X, Li C, Wang Y, Li D, Wang Q. The protective role of corilagin on renal calcium oxalate crystal-induced oxidative stress, inflammatory response, and apoptosis via PPAR-γ and PI3K/Akt pathway in rats. Biotechnol Appl Biochem 2020; 68:1323-1331. [PMID: 33080078 DOI: 10.1002/bab.2054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 11/07/2022]
Abstract
Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats' renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants' activities with upregulated inflammatory cytokines. In contrast, the RT-PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR-γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal-induced oxidative stress, inflammatory response, and apoptosis via PPAR-γ and PI3K/Akt-mediated pathway.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Jinghong Zhang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Xiaosong Yin
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Tongwei Liu
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Xiao Yue
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Chuangui Li
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Yuanyuan Wang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Ding Li
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Qiang Wang
- Department of Urology, Baoding No. 1 Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| |
Collapse
|
12
|
Lu J, Ye C, Huang Y, Huang D, Tang L, Hou W, Kuang Z, Chen Y, Xiao S, Yishake M, He R. Corilagin suppresses RANKL-induced osteoclastogenesis and inhibits oestrogen deficiency-induced bone loss via the NF-κB and PI3K/AKT signalling pathways. J Cell Mol Med 2020; 24:10444-10457. [PMID: 32681612 PMCID: PMC7521306 DOI: 10.1111/jcmm.15657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yanyong Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Donghui Huang
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Shining Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mumingjiang Yishake
- Orthopedics Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Abstract
Herpes simplex virus 1 (HSV-1) can be responsible for life-threatening HSV encephalitis (HSE). The mortality rate of patients with HSE who do not receive antiviral treatment is 70%, with most survivors suffering from permanent neurological sequelae. The use of intravenous acyclovir together with improved diagnostic technologies such as PCR and magnetic resonance imaging has resulted in a reduction in the mortality rate to close to 20%. However, 70% of surviving patients still do not recover complete neurological functions. Thus, there is an urgent need to develop more effective treatments for a better clinical outcome. It is well recognized that cerebral damage resulting from HSE is caused by viral replication together with an overzealous inflammatory response. Both of these processes constitute potential targets for the development of innovative therapies against HSE. In this review, we discuss recent progress in therapy that may be used to ameliorate the outcome of patients with HSE, with a particular emphasis on immunomodulatory agents. Ideally, the administration of adjunctive immunomodulatory drugs should be initiated during the rise of the inflammatory response, and its duration should be limited in time to reduce undesired effects. This critical time frame should be optimized by the identification of reliable biomarkers of inflammation.
Collapse
|