1
|
Gilbert KF, Amontree M, Deasy S, Ma J, Conant K. Pramipexole, a D3 receptor agonist, increases cortical gamma power and biochemical correlates of cortical excitation; implications for mood disorders. Eur J Neurosci 2024; 60:6490-6508. [PMID: 39410873 DOI: 10.1111/ejn.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) has been associated with deficits in working memory as well as underlying gamma oscillation power. Consistent with this, overall reductions in cortical excitation have also been described with MDD. In previous work, we have demonstrated that the monoamine reuptake inhibitor venlafaxine increases gamma oscillation power in ex vivo hippocampal slices and that this is associated with concomitant increases in pyramidal arbour and reduced levels of plasticity-restricting perineuronal nets (PNNs). In the present study, we have examined the effects of chronic treatment with pramipexole (PPX), a D3 dopamine receptor agonist, for its effects on gamma oscillation power as measured by in vivo electroencephalography (EEG) recordings in female BALB/c and C57Bl6 mice. We observe a modest but significant increase in 20-50 Hz gamma power with PPX in both strains. Additionally, biochemical analysis of prefrontal cortex lysates from PPX-treated BALB/c mice shows a number of changes that could contribute to, or follow from, increased pyramidal excitability and/or gamma power. PPX-associated changes include reduced levels of specific PNN components as well as tissue inhibitor of matrix metalloproteases-1 (TIMP-1), which inhibits long-term potentiation of synaptic transmission. Consistent with its effects on gamma power, PNN proteins and TIMP-1, chronic PPX treatment also improves working memory and reduces anhedonia. Together these results add to an emerging literature linking extracellular matrix and/or gamma oscillation power to both mood and cognition.
Collapse
Affiliation(s)
- Karli F Gilbert
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | - Matthew Amontree
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | | | - Junfeng Ma
- Department of Oncology, GUMC, Washington, D.C., USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
- Department of Neuroscience, GUMC, Washington, D.C., USA
| |
Collapse
|
2
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
3
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Morphett JC, Whittaker AL, Reichelt AC, Hutchinson MR. Perineuronal net structure as a non-cellular mechanism contributing to affective state: A scoping review. Neurosci Biobehav Rev 2024; 158:105568. [PMID: 38309496 DOI: 10.1016/j.neubiorev.2024.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Affective state encompasses emotional responses to our physiology and influences how we perceive and respond within our environment. In affective disorders such as depression, cognitive adaptability is challenged, and structural and functional brain changes have been identified. However, an incomplete understanding persists of the molecular and cellular mechanisms at play in affective state. An exciting area of newly appreciated importance is perineuronal nets (PNNs); a specialised component of extracellular matrix playing a critical role in neuroprotection and synaptic plasticity. A scoping review found 24 studies demonstrating that PNNs are still a developing field of research with a promising general trend for stress in adulthood to increase the intensity of PNNs, whereas stress in adolescence reduced (potentially developmentally delayed) PNN numbers and intensity, while antidepressants correlated with reduced PNN numbers. Despite promising trends, limited research underscores the need for further exploration, emphasizing behavioral outcomes for validating affective states. Understanding PNNs' role may offer therapeutic insights for depression and inform biomarker development, advancing precision medicine and enhancing well-being.
Collapse
Affiliation(s)
- J C Morphett
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia.
| | - A L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - A C Reichelt
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia
| | - M R Hutchinson
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
5
|
Chen MH, Lin WC, Li CT, Wu HJ, Bai YM, Tsai SJ, Su TP, Tu PC. Effects of low-dose ketamine infusion on vascular endothelial growth factor and matrix metalloproteinase-9 among patients with treatment-resistant depression and suicidal ideation. J Psychiatr Res 2023; 165:91-95. [PMID: 37487293 DOI: 10.1016/j.jpsychires.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Evidence indicates that vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) influence the pathophysiology of depression. However, whether low-dose ketamine regulates VEGF and MMP-9 levels and whether changes in VEGF and MMP-9 levels are associated with the antidepressant and antisuicidal effects of ketamine remained unclear. METHODS Forty-eight patients with treatment-resistant depression and strong suicidal ideation (TRD-SI) were randomly assigned to a single infusion of 0.5-mg/kg ketamine or 0.045-mg/kg midazolam. The Montgomery-Åsberg Depression Rating Scale (MADRS) and Columbia-Suicide Severity Rating Scale-Ideation Severity Subscale (CSSRS-ISS) were used at baseline and subsequently at several postinfusion timepoints. VEGF and MMP-9 serum levels were analyzed at baseline and on day 3 postinfusion. RESULTS After adjustment for baseline levels, no significant differences in VEGF (p = .912) and MMP-9 (p = .758) levels were identified on day 3 postinfusion between the study groups. Baseline VEGF levels but not MMP-9 levels were negatively associated with MADRS and CSSRS-ISS scores following infusion. DISCUSSION A single infusion of low-dose ketamine did not alter the VEGF and MMP-9 levels of the patients with TRD-SI. Higher baseline VEGF levels were associated with greater antidepressant and antisuicidal effects of single low-dose ketamine infusion.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Wu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Coutens B, Lejards C, Bouisset G, Verret L, Rampon C, Guiard BP. Enriched environmental exposure reduces the onset of action of the serotonin norepinephrin reuptake inhibitor venlafaxine through its effect on parvalbumin interneurons plasticity in mice. Transl Psychiatry 2023; 13:227. [PMID: 37365183 DOI: 10.1038/s41398-023-02519-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Guillaume Bouisset
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| |
Collapse
|
7
|
Jaggar M, Ghosh S, Janakiraman B, Chatterjee A, Maheshwari M, Dewan V, Hare B, Deb S, Figueiredo D, Duman RS, Vaidya VA. Influence of Chronic Electroconvulsive Seizures on Plasticity-Associated Gene Expression and Perineuronal Nets Within the Hippocampi of Young Adult and Middle-Aged Sprague-Dawley Rats. Int J Neuropsychopharmacol 2023; 26:294-306. [PMID: 36879414 PMCID: PMC10109107 DOI: 10.1093/ijnp/pyad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure therapy is often used in both treatment-resistant and geriatric depression. However, preclinical studies identifying targets of chronic electroconvulsive seizure (ECS) are predominantly focused on animal models in young adulthood. Given that putative transcriptional, neurogenic, and neuroplastic mechanisms implicated in the behavioral effects of chronic ECS themselves exhibit age-dependent modulation, it remains unknown whether the molecular and cellular targets of chronic ECS vary with age. METHODS We subjected young adult (2-3 months) and middle-aged (12-13 months), male Sprague Dawley rats to sham or chronic ECS and assessed for despair-like behavior, hippocampal gene expression, hippocampal neurogenesis, and neuroplastic changes in the extracellular matrix, reelin, and perineuronal net numbers. RESULTS Chronic ECS reduced despair-like behavior at both ages, accompanied by overlapping and unique changes in activity-dependent and trophic factor gene expression. Although chronic ECS had a similar impact on quiescent neural progenitor numbers at both ages, the eventual increase in hippocampal progenitor proliferation was substantially higher in young adulthood. We noted a decline in reelin⁺ cell numbers following chronic ECS only in young adulthood. In contrast, an age-invariant, robust dissolution of perineuronal net numbers that encapsulate parvalbumin⁺ neurons in the hippocampus were observed following chronic ECS. CONCLUSION Our findings indicate that age is a key variable in determining the nature of chronic ECS-evoked molecular and cellular changes in the hippocampus. This raises the intriguing possibility that chronic ECS may recruit distinct, as well as overlapping, mechanisms to drive antidepressant-like behavioral changes in an age-dependent manner.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ashmita Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Megha Maheshwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vani Dewan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Brendan Hare
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sukrita Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dwight Figueiredo
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ronald S Duman
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
8
|
Li H, Sheng Z, Khan S, Zhang R, Liu Y, Zhang Y, Yong VW, Xue M. Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Front Neurol 2022; 13:861843. [PMID: 35370878 PMCID: PMC8971905 DOI: 10.3389/fneur.2022.861843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a number of diseases. Amongst the MMP members, MMP−9 has generated considerable attention because of its possible involvement in inflammatory responses, blood-brain barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic long-term potentiation. Emerging evidence indicate an association between MMP−9 and the syndrome of depression. This review provides an updated and comprehensive summary of the probable roles of MMP−9 in depression with an emphasis on the mechanisms and potential of MMP−9 as a biomarker of depression.
Collapse
Affiliation(s)
- Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue
| |
Collapse
|
9
|
Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother Res 2021; 35:6974-6989. [PMID: 34709695 DOI: 10.1002/ptr.7318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB1 and CB2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB1 , CB2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.
Collapse
Affiliation(s)
- Alexandre Augusto Barros Lataliza
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pollyana Mendonça de Assis
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Larissa da Rocha Laurindo
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
10
|
Sundquist K, Memon AA, Palmér K, Sundquist J, Wang X. Inflammatory proteins and miRNA-144-5p in patients with depression, anxiety, or stress- and adjustment disorders after psychological treatment. Cytokine 2021; 146:155646. [PMID: 34325120 DOI: 10.1016/j.cyto.2021.155646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Both inflammatory proteins and microRNAs (miRNA) have been reported to be associated with various psychiatric disorders. However, the association between inflammatory proteins and miRNAs remains largely unknown, especially for patients with depression, anxiety, or stress- and adjustment disorders. In this study, we analyzed plasma levels of 92 inflammatory proteins from 178 patients with depression, anxiety, or stress- and adjustment disorders at baseline and after 8-week psychological treatments which resulted in a significant decrease in the Montgomery Åsberg Depression Rating Scale (MADRS-S) score. We investigated the response of the proteins after treatment and the correlation with miR-144-5p. After Benjamini-Hochberg correction for multiple testing, a total of 36 inflammatory proteins changed significantly after 8-week psychological treatments. Among the 36 significantly changed proteins, 21 proteins showed a decrease, and 17/21 proteins were inversely associated with plasma miR-144-5p levels at baseline. In addition, decreases in these proteins were associated with increases in miR-144-5p after treatment. The findings were similar after stratification by use of medications. The associations between the proteins and depression at baseline, measured by MADRS-S, as well as the change in protein levels and treatment response were, however, less clear. These findings need to be examined in future studies.
Collapse
Affiliation(s)
- Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, NY, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Karolina Palmér
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, NY, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Xiao Wang
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
11
|
Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110050. [PMID: 32738352 DOI: 10.1016/j.pnpbp.2020.110050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
About 20-30% of patients with major depressive disorder (MDD) develop treatment-resistant depression (TRD) and finding new effective treatments for TRD has been a challenge. This study aimed to identify new possible pharmacological options for TRD. Genes in pathways included in predictive models of TRD in a previous whole exome sequence study were compared with those coding for targets of drugs in any phase of development, nutraceuticals, proteins and peptides from Drug repurposing Hub, Drug-Gene Interaction database and DrugBank database. We tested if known gene targets were enriched in TRD-associated genes by a hypergeometric test. Compounds enriched in TRD-associated genes after false-discovery rate (FDR) correction were annotated and compared with those showing enrichment in genes associated with MDD in the last Psychiatric Genomics Consortium genome-wide association study. Among a total of 15,475 compounds, 542 were enriched in TRD-associated genes (FDR p < .05). Significant results included drugs which are currently used in TRD (e.g. lithium and ketamine), confirming the rationale of this approach. Interesting molecules included modulators of inflammation, renin-angiotensin system, proliferator-activated receptor agonists, glycogen synthase kinase 3 beta inhibitors and the rho associated kinase inhibitor fasudil. Nutraceuticals, mostly antioxidant polyphenols, were also identified. Drugs showing enrichment for TRD-associated genes had a higher probability of enrichment for MDD-associated genes compared to those having no TRD-genes enrichment (p = 6.21e-55). This study suggested new potential treatments for TRD using a in silico approach. These analyses are exploratory only but can contribute to the identification of drugs to study in future clinical trials.
Collapse
|
12
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Blanco I, Conant K. Extracellular matrix remodeling with stress and depression: Studies in human, rodent and zebrafish models. Eur J Neurosci 2020; 53:3879-3888. [PMID: 32673433 DOI: 10.1111/ejn.14910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.
Collapse
Affiliation(s)
- Ismary Blanco
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|