1
|
Zhang Z, Li Q, Fan X, You G. Significance of miR-1290 in glioblastoma patients with epilepsy. Sci Rep 2025; 15:13911. [PMID: 40263483 PMCID: PMC12015410 DOI: 10.1038/s41598-025-97855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Epilepsy is often the initial symptom in two-thirds of glioblastoma (GBM) patients. Existing studies have shown that microRNAs (miRNAs) play a crucial role in epilepsy. However, their role in epilepsy associated with glioblastoma remains unclear. The aim of our study was to investigate the correlation between miR-1290 expression in GBM patients and pre-operative seizures, as well as patient outcomes. 81 GBM patients were enrolled in our study, and an independent validation was carried out with 92 similar cases. MiRNA profiling of the 81 patients was conducted to identify differentially expressed miRNAs. In the validation cohort, key miRNAs were validated by using quantitative reverse transcriptase polymerase chain reaction (q-PCR). Additionally, functional analysis of these miRNAs was performed through Gene Ontology (GO) analysis. Our array analysis disclosed that there were seven under-expressed miRNAs in patients with preoperative seizures when compared to those without preoperative seizures. Among them, miR-1290 showed the highest fold change. Validation in an independent cohort verified that patients with favorable seizure outcomes had higher miR-1290 expression levels. Functional enrichment analysis demonstrated that the gene expression profiles associated with miR-1290 were enriched in biological processes related to transcription and cell cycle regulation, especially the functions mediated by RNA polymerase II. MiR-1290 emerges as a promising biomarker for predicting seizure susceptibility and overall survival in GBM patients. A specific evaluation of miR-1290 may lead to targeted diagnostic and therapeutic interventions, potentially providing novel strategies for enhancing patient outcomes.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Giliberti A, Frisina AM, Giustiniano S, Carbonaro Y, Roccella M, Nardello R. Autism Spectrum Disorder and Epilepsy: Pathogenetic Mechanisms and Therapeutic Implications. J Clin Med 2025; 14:2431. [PMID: 40217881 PMCID: PMC11989834 DOI: 10.3390/jcm14072431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The co-occurrence of autism spectrum disorder (ASD) and epilepsy is a complex neurological condition that presents significant challenges for both patients and clinicians. ASD is a group of complex developmental disorders characterized by the following: (1) Social communication difficulties: challenges in understanding and responding to social cues, initiating and maintaining conversations, and developing and maintaining relationships. (2) Repetitive behaviors: engaging in repetitive actions, such as hand-flapping, rocking, or lining up objects. (3) Restricted interests: focusing intensely on specific topics or activities, often to the exclusion of other interests. (4) Sensory sensitivities: over- or under-sensitivity to sensory input, such as sounds, touch, tastes, smells, or sights. These challenges can significantly impact individuals' daily lives and require specialized support and interventions. Early diagnosis and intervention can significantly improve the quality of life for individuals with ASD and their families. Epilepsy is a chronic brain disorder characterized by recurrent unprovoked (≥2) seizures that occur >24 h apart. Single seizures are not considered epileptic seizures. Epilepsy is often idiopathic, but various brain disorders, such as malformations, strokes, and tumors, can cause symptomatic epilepsy. While these two conditions were once considered distinct, growing evidence suggests a substantial overlap in their underlying neurobiology. The prevalence of epilepsy in individuals with ASD is significantly higher than in the general population. This review will explore the epidemiology of this comorbidity, delve into the potential mechanisms linking ASD and epilepsy, and discuss the implications for diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Alessandra Giliberti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Adele Maria Frisina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Stefania Giustiniano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Ylenia Carbonaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| |
Collapse
|
3
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
4
|
Kobayashi K, Shibata T, Tsuchiya H, Akiyama M, Akiyama T. Hypotheses of pathophysiological mechanisms in epileptic encephalopathies: A review. Brain Dev 2025; 47:104318. [PMID: 39787996 DOI: 10.1016/j.braindev.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE. REVIEW Current hypotheses are as follows: 1) neuronal dysfunction based on genetic abnormalities that may affect neurocognitive functions and epilepsy separately; 2) impairment of synaptic homeostasis during sleep that may be responsible for DEE/EE with spike-and-wave activation in sleep; 3) abnormal subcortical regulation of the cerebral cortex; 4) abnormal cortical metabolism and hemodynamics with impairment of the neural network including default mode network; 5) neurotransmitter imbalance and disordered neural excitability; 6) the effects of neuroinflammation that may be caused by epileptic seizures and in turn aggravate epileptogenesis; 7) the interaction between physiological and pathological high-frequency EEG activity; etc. The causal relationship between epileptiform EEG activity and neurocognitive dysfunctions is small in DEE based on genetic abnormalities and it is largely unestablished in the other hypothetical mechanisms. CONCLUSION We have not yet found answers to the question of whether the single-central or multiple derangements are present and what seizures and intense epileptiform EEG abnormalities mean in EE. We need to continue our best efforts in both aspects to elucidate the pathophysiological mechanisms of DEE/EE and further develop epilepsy treatment and precision medicine.
Collapse
Affiliation(s)
- Katsuhiro Kobayashi
- Department of Pediatrics, Asahigawaso Rehabilitation and Medical Center, Okayama, Japan.
| | - Takashi Shibata
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mari Akiyama
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
6
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Borghi E, Xynomilakis O, Ottaviano E, Ceccarani C, Viganò I, Tognini P, Vignoli A. Gut microbiota profile in CDKL5 deficiency disorder patients. Sci Rep 2024; 14:7376. [PMID: 38548767 PMCID: PMC10978852 DOI: 10.1038/s41598-024-56989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by global developmental delay, early-onset seizures, intellectual disability, visual and motor impairments. Unlike Rett Syndrome (RTT), CDD lacks a clear regression period. Patients with CDD frequently encounter gastrointestinal (GI) disturbances and exhibit signs of subclinical immune dysregulation. However, the underlying causes of these conditions remain elusive. Emerging studies indicate a potential connection between neurological disorders and gut microbiota, an area completely unexplored in CDD. We conducted a pioneering study, analyzing fecal microbiota composition in individuals with CDD (n = 17) and their healthy relatives (n = 17). Notably, differences in intestinal bacterial diversity and composition were identified in CDD patients. In particular, at genus level, CDD microbial communities were characterized by an increase in the relative abundance of Clostridium_AQ, Eggerthella, Streptococcus, and Erysipelatoclostridium, and by a decrease in Eubacterium, Dorea, Odoribacter, Intestinomonas, and Gemmiger, pointing toward a dysbiotic profile. We further investigated microbiota changes based on the severity of GI issues, seizure frequency, sleep disorders, food intake type, impairment in neuro-behavioral features and ambulation capacity. Enrichment in Lachnoclostridium and Enterobacteriaceae was observed in the microbiota of patients with more severe GI symptoms, while Clostridiaceae, Peptostreptococcaceae, Coriobacteriaceae, Erysipelotrichaceae, Christensenellaceae, and Ruminococcaceae were enriched in patients experiencing daily epileptic seizures. Our findings suggest a potential connection between CDD, microbiota and symptom severity. This study marks the first exploration of the gut-microbiota-brain axis in subjects with CDD. It adds to the growing body of research emphasizing the role of the gut microbiota in neurodevelopmental disorders and opens doors to potential interventions that target intestinal microbes with the aim of improving the lives of patients with CDD.
Collapse
Affiliation(s)
- Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Ornella Xynomilakis
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Dipartimento di Scienze Biomediche e Cliniche, Università Degli Studi di Milano, 20157, Milan, Italy
| | | | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Ilaria Viganò
- Epilepsy Center-Child Neuropsychiatric Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Paola Tognini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Milan, Italy
| |
Collapse
|
9
|
Zuo RR, Jin M, Sun SZ. Etiological analysis of 167 cases of drug-resistant epilepsy in children. Ital J Pediatr 2024; 50:50. [PMID: 38481309 PMCID: PMC10938754 DOI: 10.1186/s13052-024-01619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND To analyze the etiological distribution characteristics of drug-resistant epilepsy (DRE) in children, with the aim of providing valuable perspectives to enhance clinical practice. METHODS In this retrospective study, clinical data were collected on 167 children with DRE who were hospitalized between January 2020 and December 2022, including gender, age of onset, seizure types, video electroencephalogram(VEEG) recordings, neuroimaging, and genetic testing results. Based on the etiology of epilepsy, the enrolled children were categorized into different groups. The rank-sum test was conducted to compare the age of onset for different etiologies. RESULTS Of the 167 cases, 89 (53.3%) had a clear etiology. Among them, structural factors account for 23.4%, genetic factors for 19.2%, multiple factors for 7.2%, and immunological factors for 3.6%. The age of onset was significantly earlier in children with genetic causes than those with structural (P < 0.001) or immunological (P = 0.001) causes. CONCLUSIONS More than half of children with DRE have a distinct underlying cause, predominantly attributed to structural factors, followed by genetic factors. Genetic etiology primarily manifests at an early age, especially among children aged less than one year. This underscores the need for proactive enhancements in genetic testing to unveil the underlying causes and subsequently guide treatment protocols.
Collapse
Affiliation(s)
- Ran-Ran Zuo
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China
| | - Mei Jin
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, 050000, Shijiazhuang, Hebei, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, 050000, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Sánchez-Hernández J, Jiménez A, Organista-Juárez D, Guzmán-Ruiz MA, Guevara-Guzmán R. Cellular and Molecular Mechanisms of Neuroinflammation in Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:131-156. [DOI: 10.1007/978-3-031-36526-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Wang W, Zhang Y, Yang Y, Gu L. Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3333878. [PMID: 36193133 PMCID: PMC9525756 DOI: 10.1155/2022/3333878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Kangxian decoction (KXD) has been used in clinical practice to treat epilepsy. The purpose of this study was to explore the active components of KXD and clarify its antiepileptic mechanism through network pharmacology and molecular docking. METHODS The components of KXD were collected from the Encyclopedia of Traditional Chinese Medicine (ETCM) database and the literature was searched. Then, active ingredients were screened by SwissADME and potential targets were predicted by the SwissTargetPrediction database. Epilepsy-related differentially expressed genes were downloaded from the Gene Expression Omnibus database. A component-target-pathway network was constructed with Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‒protein interaction network analysis revealed the potential mechanism and critical targets. Receiver operating characteristic (ROC) curves and box plots in microarray data validated the good diagnostic value and significant differential expression of these critical genes. Molecular docking verified the association between active ingredients and essential target proteins. RESULTS In our study, we screened the important compounds of KXD for epilepsy, including quercetin, baicalin, kaempferol, yohimbine, geissoschizine methyl ether, baicalein, etc. KXD may exert its therapeutic effect on epilepsy through the following targets: PTGS2, MMP9, CXCL8, ERBB2, and ARG1, acting on the following pathways: neuroactive ligand-receptor interactions, arachidonic acid metabolism, IL-17, TNF, NF-kappa B, and MAPK signaling pathways. The molecular docking results showed that the active ingredients in KXD exhibited good binding ability to the key targets. CONCLUSION In this study, we explored the possibility that KXD for epilepsy may act on multiple targets through multiple active ingredients, involving neurotransmitters and neuroinflammatory pathways, providing a theoretical basis for subsequent clinical and experimental studies that will help develop effective new drugs to treat epilepsy.
Collapse
Affiliation(s)
- Weitao Wang
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yongquan Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Yibing Yang
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| |
Collapse
|
12
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:10807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
13
|
Chen W, Wang J, Yang H, Sun Y, Chen B, Liu Y, Han Y, Shan M, Zhan J. Interleukin 22 and its association with neurodegenerative disease activity. Front Pharmacol 2022; 13:958022. [PMID: 36176437 PMCID: PMC9514046 DOI: 10.3389/fphar.2022.958022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
It is worth noting that neuroinflammation is well recognized as a symptom of neurodegenerative diseases (NDs). The regulation of neuroinflammation becomes an attractive focus for innovative ND treatment technologies. There is evidence that IL-22 is associated with the development and progression of a wide assortment of NDs. For example, IL-22 can activate glial cells, causing them to generate pro-inflammatory cytokines and encourage lymphocyte infiltration in the brain. IL-22 mRNA is highly expressed in Alzheimer's disease (AD) patients, and a high expression of IL-22 has also been detected in the brains of patients with other NDs. We examine the role of IL-22 in the development and treatment of NDs in this review, and we believe that IL-22 has therapeutic potential in these diseases.
Collapse
Affiliation(s)
- Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jianpeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Huaizhi Yang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuankai Sun
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanxun Han
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Shan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Junfeng Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Costagliola G, Depietri G, Michev A, Riva A, Foiadelli T, Savasta S, Bonuccelli A, Peroni D, Consolini R, Marseglia GL, Orsini A, Striano P. Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications. Front Neurol 2022; 13:741244. [PMID: 35359659 PMCID: PMC8961811 DOI: 10.3389/fneur.2022.741244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent studies prompted the identification of neuroinflammation as a potential target for the treatment of epilepsy, particularly drug-resistant epilepsy, and refractory status epilepticus. This work provides a systematic review of the clinical experience with anti-cytokine agents and agents targeting lymphocytes and aims to evaluate their efficacy and safety for the treatment of refractory epilepsy. Moreover, the review analyzes the main therapeutic perspectives in this field. Methods A systematic review of the literature was conducted on MEDLINE database. Search terminology was constructed using the name of the specific drug (anakinra, canakinumab, tocilizumab, adalimumab, rituximab, and natalizumab) and the terms “status epilepticus,” “epilepsy,” and “seizure.” The review included clinical trials, prospective studies, case series, and reports published in English between January 2016 and August 2021. The number of patients and their age, study design, specific drugs used, dosage, route, and timing of administration, and patients outcomes were extracted. The data were synthesized through quantitative and qualitative analysis. Results Our search identified 12 articles on anakinra and canakinumab, for a total of 37 patients with epilepsy (86% febrile infection-related epilepsy syndrome), with reduced seizure frequency or seizure arrest in more than 50% of the patients. The search identified nine articles on the use of tocilizumab (16 patients, 75% refractory status epilepticus), with a high response rate. Only one reference on the use of adalimumab in 11 patients with Rasmussen encephalitis showed complete response in 45% of the cases. Eight articles on rituximab employment sowed a reduced seizure burden in 16/26 patients. Finally, one trial concerning natalizumab evidenced a response in 10/32 participants. Conclusion The experience with anti-cytokine agents and drugs targeting lymphocytes in epilepsy derives mostly from case reports or series. The use of anti-IL-1, anti-IL-6, and anti-CD20 agents in patients with drug-resistant epilepsy and refractory status epilepticus has shown promising results and a good safety profile. The experience with TNF inhibitors is limited to Rasmussen encephalitis. The use of anti-α4-integrin agents did not show significant effects in refractory focal seizures. Concerning research perspectives, there is increasing interest in the potential use of anti-chemokine and anti-HMGB-1 agents.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Greta Depietri
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
- *Correspondence: Alexandre Michev
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Salvatore Savasta
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
15
|
Ray S, Kenchaiah R, Asranna A, Padmanabha H, Kulanthaivelu K, Mundlamuri RC, Viswanathan LG, Chatterjee A, Thennarasu K, Sinha S. Clinical spectrum of pediatric drug refractory epilepsy secondary to parieto-occipital gliosis. Epilepsy Res 2021; 178:106804. [PMID: 34753071 DOI: 10.1016/j.eplepsyres.2021.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Parieto-occipital (PO) gliosis secondary to perinatal insult, is often associated with neurologic sequelae such as epilepsy, which can be drug resistant. OBJECTIVE To evaluate the spectrum of epilepsy among patients presenting with seizures in association with PO gliosis and to determine factors that influence the development of epileptic encephalopathy (EE) in these patients. METHODS We retrospectively evaluated patients aged < 16 years with drug refractory epilepsy and PO gliosis who underwent video electroencephalography (Video EEG). We evaluated the clinical, electrophysiological and radiological profile including treatment responsiveness of subjects with EE. RESULTS One hundred one patients (M: F=3:1) with mean age of onset of epilepsy at 28.9 ± 33.1 months were recruited into the study. Based on video EEG findings, Based on video EEG findings, the commonest type of focal onset ictus was tonic seizures with impaired awareness (n = 26, 29.9%). Myoclonic jerks (n = 20, 23%) were the commonest type of generalised onset seizures. Ictal onset from parieto occipital region were observed in 28 patients. Ictal onset from frontal, temporal and fronto temporal region were observed in 6 (6.8%), 7(7.9%) and 9 (8.9%) patients, respectively. Comparison of the seizure types and ictal onset among subgroups of patients with occipital gliosis, parieto-occipital gliosis and parieto-occipital with frontal gliosis revealed that the extent of gliosis did not significantly affect seizure semiology or ictal onset. EE was significantly associated with presence of neonatal seizures (p = 0.04), hypoglycaemia (p = 0.005), longer duration of ICU stay (Z score = -3.55, p < 0.001) and younger age of onset of seizures (Z score = - 2.97, p = 0.03). Eleven out of eighteen (64.7%) subjects with EE showed greater than 50% improvement in seizure frequency following three months of pulse intravenous methylprednisolone therapy. CONCLUSIONS Among subjects with PO gliosis on MRI, the seizure semiology is unaffected by laterality, radiologic extension beyond the occipital cortex or presence of ulegyria. Patients with PO gliosis can have florid interictal epileptiform discharges anteriorly and can have seizures with ictal onset from frontal and temporal region. Development of EE is strongly related to the age of onset of seizures, neonatal seizures, prolonged NICU admission, rather than the radiological findings. Subjects with EE and PO gliosis show good response to intravenous pulse methylprednisolone.
Collapse
Affiliation(s)
- Somdattaa Ray
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Raghavendra Kenchaiah
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ajay Asranna
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - L G Viswanathan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Aparajita Chatterjee
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Kandavel Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India.
| |
Collapse
|
16
|
Faheem M, Althobaiti YS, Khan AW, Ullah A, Ali SH, Ilyas U. Investigation of 1, 3, 4 Oxadiazole Derivative in PTZ-Induced Neurodegeneration: A Simulation and Molecular Approach. J Inflamm Res 2021; 14:5659-5679. [PMID: 34754213 PMCID: PMC8572052 DOI: 10.2147/jir.s328609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The study investigated the effect 5-[(naphthalen-2-yloxy) methyl]-1,3,4-oxadiaszole2-thiol (B3) in animal model of acute epileptic shock. METHODS The pharmacokinetics profile of B3 was checked through SwissADME software. The binding affinities of B3, diazepam, and flumazenil (FLZ) were obtained through Auto Dock and PyRx. Post docking analysis and interpretation of hydrogen bonds were performed through Discovery Studio Visualizer 2016. Molecular dynamics simulations of three complexes were carried out through Desmond software package. B3 was then proceeded in PTZ-induced acute seizures models. Flumazenil was used in animal studies for elucidation of possible mechanism of B3. After behavioral studies, the animals were sacrificed, and the brain samples were isolated and stored in 4% formalin for molecular investigations including H and E staining, IHC staining and Elisa etc. RESULTS The results demonstrate that B3 at 20 and 40 mg/kg prolonged the onset time of generalized seizures. B3 considerably increased the expression of protective glutathione S-transferase and glutathione reductase and reduced lipid peroxidation and inducible nitric oxide synthase (P < 0.001) in the cortex. B3 significantly suppressed (P < 0.01) the over expression of the inflammatory mediator tumor necrosis factor-α, whose up-regulation is reported in acute epileptic shocks. CONCLUSION Hence, it is concluded from the aforementioned results that B3 provides neuroprotective effects PTZ-induced acute epileptic model. FLZ pretreatment resulted in inhibition of the anticonvulsant effect of B3. B3 possesses anticonvulsant effect which may be mediated through GABAA mediated antiepileptic pathway.
Collapse
Affiliation(s)
- Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| | - Abdul Waheed Khan
- Department of Pharmacy, The University of Lahore, Islamabad, Pakistan
| | - Aman Ullah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Syed Hussain Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Umair Ilyas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
17
|
Venti V, Consentino MC, Smilari P, Greco F, Oliva CF, Fiumara A, Falsaperla R, Ruggieri M, Pavone P. Malformations of Cortical Development, Cognitive Involvementand Epilepsy: A Single Institution Experience in 19 Young Patients. CHILDREN (BASEL, SWITZERLAND) 2021; 8:637. [PMID: 34438528 PMCID: PMC8392186 DOI: 10.3390/children8080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Malformations of cortical development (MCD) include a wide range of congenital disorders mostly causing severe cognitive dysfunction and epilepsy. OBJECTIVE to report on clinical features including cognitive involvement, epileptic seizures with response to antiseizure medications, comorbidities in young patients affected by MCD and followed in a single tertiary hospital. PATIENTS AND METHODS A retrospective review of the medical records and magnetic resonance images (MRI) of 19 young patients with an age ranging between eight days and fifteen years affected by MCD and admitted to Pediatrics Department University of Catania, Italy from October 2009 and October 2020 were selected. Patients were distinguished in three groups following the Barcovich et al. 2012 classification for MCD: 4 (21%) in Group I; 8 (42%) in Group II; and, and 7 (37%) in Group III. Clinical features and MRI of the patients including cognitive involvement, epilepsy type and response to drugs treatment were analyzed. RESULTS In Group I, two patients showed cortical dysplasia and two dysembryoplastic neuroepithelial tumors plus focal cortical dysplasia; developmental delay/intellectual disability (DD/ID) was severe in one, moderate in one and absent in two; the type of seizures was in all the cases focal to bilateral tonic-clonic (FBTCs), and drug resistant was found in one case. In Group II, three patients showed neuronal hetero-topias and five had pachygyria-lissencephaly: DD/ID was severe in four, moderate in two, and absent in two; the type of seizure was focal (FS) in five, focal to bilateral tonic-clonic (FBTCs) in two, infantile spasms (IS) in one, and drug resistant was found in three. In Group III, six showed polymicrogyria and one schizencephaly: DD/ID was found severe in five, moderate in two, and the type of seizure was focal (FS) in five, FBTCS in two, and drug resistance was found in three.
Collapse
Affiliation(s)
- Valeria Venti
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Maria Chiara Consentino
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (M.C.C.); (C.F.O.)
| | - Pierluigi Smilari
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Filippo Greco
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Claudia Francesca Oliva
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (M.C.C.); (C.F.O.)
| | - Agata Fiumara
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Raffaele Falsaperla
- Unit of Pediatrics and Neonatology, Neonatal Intensive Care, and Pediatric Emergency, AUO San Marco-Policlinico, University of Catania, 95123 Catania, Italy;
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| | - Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (V.V.); (P.S.); (F.G.); (A.F.); (M.R.)
| |
Collapse
|
18
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
19
|
Orsini A, Foiadelli T, Costagliola G, Michev A, Consolini R, Vinci F, Peroni D, Striano P, Savasta S. The role of inflammatory mediators in epilepsy: Focus on developmental and epileptic encephalopathies and therapeutic implications. Epilepsy Res 2021; 172:106588. [PMID: 33721708 DOI: 10.1016/j.eplepsyres.2021.106588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
In recent years, there has been an increasing interest in the potential involvement of neuroinflammation in the pathogenesis of epilepsy. Specifically, the role of innate immunity (that includes cytokines and chemokines) has been extensively investigated either in animal models of epilepsy and in clinical settings. Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of epileptic disorders, in which uncontrolled epileptic activity results in cognitive, motor and behavioral impairment. By definition, epilepsy in DEE is poorly controlled by common antiepileptic drugs but may respond to alternative treatments, including steroids and immunomodulatory drugs. In this review, we will focus on how cytokines and chemokines play a role in the pathogenesis of DEE and why expanding our knowledge about the role of neuroinflammation in DEE may be crucial to develop new and effective targeted therapeutic strategies to prevent seizure recurrence and developmental regression.
Collapse
Affiliation(s)
- Alessandro Orsini
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.
| | - Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Rita Consolini
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Federica Vinci
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, "G. Gaslini" Institute, Via Gaslini 5, 16147 Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Gaslini 5, 16147 Genova, Italy
| | - Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
20
|
Lin CH, Chou IC, Hong SY. Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopment disability: A prospective study and updated meta-analysis. Medicine (Baltimore) 2021; 100:e25277. [PMID: 33761731 PMCID: PMC8049163 DOI: 10.1097/md.0000000000025277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Drug-resistant epilepsy (DRE) affects 7% to 20% of children with epilepsy. Although some risk factors for DRE have been identified, the results have not been consistent. Moreover, data regarding the risk factors for epilepsy and its seizure outcome in the first 2 years of life are limited.We analyzed data for children aged 0 to 2 years with epilepsy and neurodevelopmental disability from January, 2013, through December, 2017. These patients were followed up to compare the risk of DRE in patients with genetic defect (genetic group) with that without genetic defect (nongenetic group). Additionally, we conducted a meta-analysis to identify the pooled prevalence of genetic factors in children with DRE.A total of 96 patients were enrolled. A total of 68 patients were enrolled in the nongenetic group, whereas 28 patients were enrolled in the genetic group. The overall DRE risk in the genetic group was 6.5 times (95% confidence interval [CI], 2.15-19.6; p = 0.03) higher than that in the nongenetic group. Separately, a total of 1308 DRE patients were participated in the meta-analysis. The pooled prevalence of these patients with genetic factors was 22.8% (95% CI 17.4-29.3).The genetic defect plays a crucial role in the development of DRE in younger children with epilepsy and neurodevelopmental disability. The results can serve as a reference for further studies of epilepsy panel design and may also assist in the development of improved treatments and prevention strategies for DRE.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatrics Pulmonology, China Medical University, Children's Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
| |
Collapse
|
21
|
Ma YL, Xu KL, Chen GH, Wang L, Wang Y, Jin ZP. Acute encephalopathy with biphasic seizures and late reduced diffusion: A case report. Medicine (Baltimore) 2020; 99:e22940. [PMID: 33120854 PMCID: PMC7581119 DOI: 10.1097/md.0000000000022940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) has been reported almost exclusively in the Japanese population. PATIENT CONCERNS A 17-month-old male patient presented with fever and seizures, and subsequently fell into a coma. On the second day, he recovered consciousness. On the fourth day, he developed complex partial seizures and fell into a coma again. On day 10, the fever and seizures subsided. Head computed tomography on the first day showed no abnormalities. Brain diffusion-weighted images on the fourth day revealed reduced diffusion in the bilateral subcortical white matter. DIAGNOSIS A diagnosis of AESD was made. INTERVENTIONS The patient was treated with corticosteroids and intravenous immunoglobulin. OUTCOMES At the 4-month follow-up, the patient was able to walk independently, and the epileptic seizures were well controlled. LESSONS AESD is a rare entity, and treatment with corticosteroids and intravenous immunoglobulin can lead to a favorable prognosis. Clinicians should be aware of this condition, and clinicoradiological features can suggest the diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-peng Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Alekseeva LA, Zheleznikova GF, Gorelik EY, Sckripchenko NV, Zhirkov AA. Cytokines and neuro-specific proteins in viral encephalitis and convulsive syndrome in children. II. Convulsive syndrome. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020; 11:433-446. [DOI: 10.15789/2220-7619-can-1449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In this Section we provide new data on the pathogenetic factors in pediatric convulsive syndrome, including a prominent role of viral infection in developing seizures and epilepsy (EPL) in children, as evidenced by clinical and experimental studies. Various forms of convulsive syndrome associated with viral infection include febrile convulsions and febrile epileptic status, encephalitis-related acute symptomatic seizures, and postencephalitic epilepsy. The human herpesvirus-6 isolated in temporal lobe epilepsy is a frequent causative agent of febrile seizures and febrile epileptic status. Febrile seizures and, especially, febrile epileptic status are associated with further developing epilepsy. Of special note is the febrile infection-related epileptic syndrome (FIRES) more often affecting school-aged children and characterized by extremely severe course and unfavorable outcome. Convulsive syndrome is associated with systemic inflammation and overproduced pro-inflammatory cytokines that increase permeability of the blood-brain barrier and functional activity of brain-resident cells, which are involved in eliciting seizures and maintaining epileptogenesis. Taking into consideration the key role of inflammation underlying convulsive syndrome, in recent decades cytokines and chemokines have been widely studied as possible prognostic criteria for epileptogenesis. Neuron-specific proteins are examined as markers of brain cell damage in various inflammatory diseases of the central nervous system. The first Section of the review presented current understanding on systemic and local cytokine/chemokine response in viral encephalitis. Here we present clinical trials published within the last 5—7 years assessing cytokines/chemokines and neuron-specific proteins in children with various forms of convulsive syndrome, including epilepsy. Association between biomarker level and disease clinical parameters as well as potential for their use to diagnose and predict its further course are discussed.
Collapse
|
23
|
Jia Q, Jiang F, Ma D, Li J, Wang F, Wang Z. Association Between IL-6 and Seizure Recurrence in Patients with the First Post-Ischemic Stroke Seizure. Neuropsychiatr Dis Treat 2020; 16:1955-1963. [PMID: 32848401 PMCID: PMC7429209 DOI: 10.2147/ndt.s257870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To study the association between IL-6 level and seizure recurrence in patients with the first post-ischemic stroke seizure and assess its predictive value for seizure recurrence. PATIENTS AND METHODS A total of 2976 consecutive ischemic stroke patients were retrospectively enrolled. Among them, 209 (7.02%) patients with the first post-ischemic stroke seizure were included in this analysis. The IL-6 mRNA expression level was evaluated through quantitative real-time PCR (qRT-PCR) and the 2-ΔΔCt method. Demographic data and clinical characteristics were collected. Univariate analysis was performed with independent-samples t-test, Mann-Whitney U-test, or chi-square test. Multivariate analysis was conducted using a backward stepwise logistic regression model for variables with P<0.10 in univariate analysis. The predictive value was assessed using a receiver operating characteristic (ROC) curve. RESULTS Among the patients included, 105 (50.24%) had recurrence of seizures, and 104 (49.76%) had no recurrence. Multivariate analysis demonstrated that the IL-6 mRNA expression level was independently correlated with seizure recurrence in patients with the first post-ischemic stroke seizure after adjusting for age, NIHSS scores, time of seizure, seizure type, lesion size, location of the offending lesion to different hemispheric lobes, cortical involvement, gender, electroencephalography (EEG) findings, and hemorrhagic transformation. When the IL-6 mRNA expression level was used to predict seizure recurrence, the area under the ROC curve (AUC) was 0.763 (SE=0.033, 95% CI=0.698-0.829). The diagnostic power was moderate. CONCLUSION IL-6 was independently correlated with seizure recurrence in patients with the first post-ischemic stroke seizure and might be a potential biomarker for prediction of seizure recurrence.
Collapse
Affiliation(s)
- Qi Jia
- Encephalopathy Center, The Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830000, People’s Republic of China
| | - Fan Jiang
- Neonatal Intensive Care Unit, The First People’s Hospital of Urumqi, Urumqi830000, People’s Republic of China
| | - Daliang Ma
- Encephalopathy Center, The Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830000, People’s Republic of China
| | - Jun Li
- Encephalopathy Center, The Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830000, People’s Republic of China
| | - Fan Wang
- Encephalopathy Center, The Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830000, People’s Republic of China
| | - Zhiqiang Wang
- Encephalopathy Center, The Third People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830000, People’s Republic of China
| |
Collapse
|
24
|
Kamble A, Khairkar P, Kalantri SP, Babhulkar S. Fatal Suicidal Attempt by Deliberate Ingestion of Nicotine-containing Solution in Childhood-onset Depression Mediated through Internet Suicide Guideline: A Case Report. Indian J Crit Care Med 2020; 24:719-721. [PMID: 33024383 PMCID: PMC7519620 DOI: 10.5005/jp-journals-10071-23524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Nicotine is one of the most easily accessible, commonly abused drugs worldwide and if taken in overdose can cause serious clinical presentation, including cardiac arrhythmias and neurotoxicity mediated through oxidative stress. Its toxicity though rare can cause sudden deaths by cardiovascular arrest, respiratory muscle paralysis, and/or central respiratory failure. Here, we describe a case of intentional fatal ingestion of nicotine sulfate decoction used as a mean for fatal suicidal attempt by a 15-year-old adolescent male who was suffering from childhood-onset depression since about 3 months. He developed drooling of saliva, syncopal attacks, paroxysmal episodes of hematemesis, abdominal pain, signs and symptoms of hypoxia, nonfatal atrial tachycardia, and encephalopathy after ingestion of heavy dose of nicotine-containing concoction; however, he recovered successfully within 24-48 hours without any significant cardiac, respiratory, or neurological deficits (except short-term verbal memory). Authors discussed the details of management and reasons behind the reversible encephalopathy and molecular mechanism of nicotine toxicity. HOW TO CITE THIS ARTICLE Kamble A, Khairkar P, Kalantri SP, Babhulkar S. Fatal Suicidal Attempt by Deliberate Ingestion of Nicotine-containing Solution in Childhood-onset Depression Mediated through Internet Suicide Guideline: A Case Report. Indian J Crit Care Med 2020;24(8):719-721.
Collapse
Affiliation(s)
- Ashwini Kamble
- Department of Biochemistry, Kamineni Institute of Medical Sciences, Narketpally, Nalgonda, Telangana, India
| | - Praveen Khairkar
- Department of Psychiatry and Clinical Neurosciences, Kamineni Institute of Medical Sciences, Narketpally, Nalgonda, Telangana, India
| | - Sri Prakash Kalantri
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | - Sneh Babhulkar
- Department of Psychiatry, BJ Medical College, Pune, Maharashtra, India
| |
Collapse
|
25
|
Seo YS, Ang MJ, Moon BC, Kim HS, Choi G, Lim HS, Kang S, Jeon M, Kim SH, Moon C, Kim JS. Protective Effects of Scolopendra Water Extract on Trimethyltin-Induced Hippocampal Neurodegeneration and Seizures in Mice. Brain Sci 2019; 9:369. [PMID: 31842431 PMCID: PMC6955677 DOI: 10.3390/brainsci9120369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/15/2023] Open
Abstract
Trimethyltin (TMT) is an organotin compound with potent neurotoxic action characterized by neuronal degeneration in the hippocampus. This study evaluated the protective effects of a Scolopendra water extract (SWE) against TMT intoxication in hippocampal neurons, using both in vitro and in vivo model systems. Specifically, we examined the actions of SWE on TMT- (5 mM) induced cytotoxicity in primary cultures of mouse hippocampal neurons (7 days in vitro) and the effects of SWE on hippocampal degeneration in adult TMT- (2.6 mg/kg, intraperitoneal) treated C57BL/6 mice. We found that SWE pretreatment (0-100 μg/mL) significantly reduced TMT-induced cytotoxicity in cultured hippocampal neurons in a dose-dependent manner, as determined by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assays. Additionally, this study showed that perioral administration of SWE (5 mg/kg), from -6 to 0 days before TMT injection, significantly attenuated hippocampal cell degeneration and seizures in adult mice. Furthermore, quantitative analysis of Iba-1 (Allograft inflammatory factor 1)- and GFAP (Glial fibrillary acidic protein)-immunostained cells revealed a significant reduction in the levels of Iba-1- and GFAP-positive cell bodies in the dentate gyrus (DG) of mice treated with SWE prior to TMT injection. These data indicated that SWE pretreatment significantly protected the hippocampus against the massive activation of microglia and astrocytes elicited by TMT. In addition, our data showed that the SWE-induced reduction of immune cell activation was linked to a significant reduction in cell death and a significant improvement in TMT-induced seizure behavior. Thus, we conclude that SWE ameliorated the detrimental effects of TMT toxicity on hippocampal neurons, both in vivo and in vitro. Altogether, our findings hint at a promising pharmacotherapeutic use of SWE in hippocampal degeneration and dysfunction.
Collapse
Affiliation(s)
- Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| | - Mary Jasmin Ang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.K.); (M.J.); (S.-H.K.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| | - Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| | - Sohi Kang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.K.); (M.J.); (S.-H.K.)
| | - Mijin Jeon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.K.); (M.J.); (S.-H.K.)
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.K.); (M.J.); (S.-H.K.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.K.); (M.J.); (S.-H.K.)
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Korea; (Y.-S.S.); (B.C.M.); (H.S.K.); (G.C.); (H.-S.L.)
| |
Collapse
|