1
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2025; 28:405-424. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Tutas J, Tolve M, Özer-Yildiz E, Ickert L, Klein I, Silverman Q, Liebsch F, Dethloff F, Giavalisco P, Endepols H, Georgomanolis T, Neumaier B, Drzezga A, Schwarz G, Thorens B, Gatto G, Frezza C, Kononenko NL. Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity. Nat Metab 2025; 7:297-320. [PMID: 39815080 PMCID: PMC11860254 DOI: 10.1038/s42255-024-01196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Collapse
Affiliation(s)
- Janine Tutas
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marianna Tolve
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lotte Ickert
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Quinn Silverman
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | | | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | | | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Christian Frezza
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany.
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Wang C, Zhai J, Zhou X, Chen Y. Lipid metabolism: Novel approaches for managing idiopathic epilepsy. Neuropeptides 2024; 108:102475. [PMID: 39366134 DOI: 10.1016/j.npep.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuemei Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Chai L, Cao Q, Liu K, Zhu R, Li H, Yu Y, Wang J, Niu R, Zhang D, Yang B, Ommati MM, Sun Z. Exercise Alleviates Fluoride-Induced Learning and Memory Impairment in Mice: Role of miR-206-3p and PREG. Biol Trace Elem Res 2024; 202:5126-5144. [PMID: 38244175 DOI: 10.1007/s12011-024-04068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Fluorosis decreases the learning and memory ability in humans and animals, while exercise can reduce the risk of cognitive decline. However, the effect of exercise on learning and memory in fluoride-exposed mice is unclear. For this purpose, in this study, mice were randomly allotted into four groups (16 mice per group, half male and half female): control group (group C), fluoride group (group F, 100 mg/L sodium fluoride (NaF)), exercise group (group E, treadmill exercise), and E plus F group (group EF, treadmill exercise, and 100 mg/L NaF). During 6 months of exposure, exercise alleviated the NaF-induced decline in memory and learning. In addition, NaF induced injuries in mitochondria and myelin sheath ultrastructure and reduced the neurons number, while exercise restored them. Metabolomics results showed that phosphatidylethanolamine, pregnenolone (PREG), and lysophosphatidic acid (LysoPA) were altered among groups C, F, and EF. Combined with previous studies, it can be suggested that PREG might be a biomarker in response to exercise-relieving fluorine neurotoxicity. The miRNA sequencing results indicated that in the differently expressed miRNAs (DEmiRNAs), miR-206-3p, miR-96-5p, and miR-144-3p were shared in groups C, F, and EF. After the QRT-PCR validation and in vitro experiments, it was proved that miR-206-3p could reduce cell death and regulate AP-1 transcription factor subunit (JunD) and histone deacetylase 4 (HDAC4) to alleviate fluoride neurotoxicity. To sum up, the current study reveals that exercise could alleviate NaF-induced neurotoxicity by targeting miR-206-3p or PREG, which will contribute to revealing the pathogenesis and therapeutic method of fluoride neurotoxicity.
Collapse
Affiliation(s)
- Lei Chai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ke Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Run Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Hao Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
5
|
Polyzou A, Fuchs J, Kroon C, Kotoula A, Delis F, Turko P, Antoniou K, Eickholt B, Leondaritis G. Cell type-specific and subcellular expression of phospholipid phosphatase-related proteins to modulate lyso-phosphatidic acid synaptic signaling in the developing and adult CNS. J Neurochem 2024; 168:3050-3062. [PMID: 38994820 DOI: 10.1111/jnc.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that participates in critical processes in neural development and adult brain function and is implicated in various pathophysiological conditions. Along with its six well-characterized receptors, atypical regulators of LPA signaling have also been suggested, including phospholipid phosphatase-related proteins (PLPPRs). PLPPRs have been mostly studied in the developing brain where they control LPA-dependent axon guidance, cortical network hyperexcitability, and glutamatergic neurotransmission. PLPPR4 and PLPPR3 represent two closely related proteins reported to localize predominantly in dendrites and axons, respectively, and differ in their developmental expression patterns. Herein, we have revised the expression patterns of PLPPRs in the cerebellum, dorsal and ventral hippocampus, prefrontal cortex (PFC), nucleus accumbens, and striatum during development and in the adult using quantitative PCR. Expression patterns of Plppr2,4 and 5 were consistent with previous studies, whereas Plppr3 and Plppr1 exhibited a unique expression profile in nucleus accumbens (NAc) and striatum in later developmental and adult stages, which we verified at the protein level for PLPPR3. To investigate neuron type-specific expression at the single cell level, we developed a bioinformatic tool to analyze recent single-cell RNA-sequencing data in the cerebral cortex and hippocampus of adult mice. Our analysis revealed a widespread but also selective adult neuron-type expression with higher expression levels of Plppr3, Plppr1, and Plppr5 in GABAergic and Plppr4 and Plppr2 in glutamatergic neurons. PLPPR4 has been identified as a post-synaptic modulator of LPA levels in glutamatergic synapses operating via an uptake mechanism, to control LPA-dependent cortical network hyperexcitability. Using subcellular fractionation experiments, we found that both PLPPR4 and PLPPR3 are co-expressed in adult synaptosomal membranes. Furthermore, flow cytometry experiments in HEK293 cells showed comparable LPA uptake by PLPPR4 and PLPPR3, whereas PLPRR3, but not PLPPR4, induced also uptake of monoacylglycerol, the dephosphorylation product of LPA. We propose that synaptic LPA may be subject to both pre-synaptic and post-synaptic mechanisms of regulation by PLPPRs in addition to LPARs in developing and adult synapses.
Collapse
Affiliation(s)
- Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité -Universitätsmedizin-Berlin, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité -Universitätsmedizin-Berlin, Berlin, Germany
| | - Androniki Kotoula
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Paul Turko
- Institut für Integrative Neuroanatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | - Britta Eickholt
- Institute of Molecular Biology and Biochemistry, Charité -Universitätsmedizin-Berlin, Berlin, Germany
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
7
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
8
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
9
|
Wang C, Li N, Feng Y, Sun S, Rong J, Xie XH, Xu S, Liu Z. Effects of autotaxin and lysophosphatidic acid deficiencies on depression-like behaviors in mice exposed to chronic unpredictable mild stress. Neurobiol Stress 2024; 30:100632. [PMID: 38601361 PMCID: PMC11004986 DOI: 10.1016/j.ynstr.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.
Collapse
Affiliation(s)
- Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, Hubei, PR China
| | - Ningyuan Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuqi Feng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Xin-hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
10
|
Chen YC, Hou CY, Hsu MH, Huang LT, Hsiao CC, Sheen JM. The Impact of Gut Microbiota Changes on Methotrexate-Induced Neurotoxicity in Developing Young Rats. Biomedicines 2024; 12:908. [PMID: 38672262 PMCID: PMC11048417 DOI: 10.3390/biomedicines12040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is an essential part of therapy in the treatment of acute lymphoblastic leukemia (ALL) in children, and inferior intellectual outcomes have been reported in children who are leukemia survivors. Although several studies have demonstrated that the interaction between gut microbiota changes and the brain plays a vital role in the pathogenesis of chemotherapy-induced brain injury, preexisting studies on the effect of MTX on gut microbiota changes focused on gastrointestinal toxicity only. Based on our previous studies, which revealed that MTX treatment resulted in inferior neurocognitive function in developing young rats, we built a young rat model mimicking MTX treatment in a child ALL protocol, trying to investigate the interactions between the gut and brain in response to MTX treatment. We found an association between gut microbiota changes and neurogenesis/repair processes in response to MTX treatment, which suggest that MTX treatment results in gut dysbiosis, which is considered to be related to MTX neurotoxicity through an alteration in gut-brain axis communication.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Kim JH, Lee RM, Oh HB, Kim TY, Rhim H, Choi YK, Kim JH, Oh S, Kim DG, Cho IH, Nah SY. Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases. J Ginseng Res 2024; 48:1-11. [PMID: 38223830 PMCID: PMC10785247 DOI: 10.1016/j.jgr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.
Collapse
Affiliation(s)
- Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Bin Oh
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Tae-Young Kim
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Bio/Molecular Informatics Center, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
13
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
14
|
Forte N, Fernández-Rilo AC, Palomba L, Marfella B, Piscitelli F, De Girolamo P, Di Costanzo A, Di Marzo V, Cristino L. Positive association between plasmatic levels of orexin A and the endocannabinoid-derived 2-arachidonoyl lysophosphatidic acid in Alzheimer’s disease. Front Aging Neurosci 2022; 14:1004002. [DOI: 10.3389/fnagi.2022.1004002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A regular sleep-wake cycle plays a positive function that preserves synaptic plasticity and brain activity from neuropathological injuries. The hypothalamic neuropeptide orexin-A (OX-A) is central in sleep-wake regulation and has been found to be over-expressed in the cerebrospinal fluid (CSF) of patients with Alzheimer’s disease (AD) suffering from sleep disturbances. OX-A promotes the biosynthesis of 2-arachidonoylglycerol (2-AG), which, in turn, could be phosphorylated to 2-arachidonoyl lysophosphatidic acid (2-AGP). The reorganization of the actin cytoskeleton during neurite retraction is one of the best-characterized effects of lysophosphatidic acids. However, less information is available regarding the reorganization of the neuronal microtubule network in response to OX-A-induced 2-AG and, possibly consequent, 2-AGP production in AD patients. This is of special relevance also considering that higher 2-AG levels are reported in the CSF of AD patients. Here, we found a positive correlation between OX-A and 2-AGP concentrations in the plasma, and an increase of 2-AGP levels in the CSF of AD patients. Furthermore, a negative correlation between the plasmatic 2-AGP levels and the mini-mental state examination score is also revealed in AD patients. By moving from the human patients to in vitro and in vivo models of AD we investigated the molecular pathway linking OX-A, 2-AG and 2-AGP to the phosphorylation of pT231-Tau, which is a specific early plasma biomarker of this disorder. By LC-MS analysis we show that OX-A, via OX-1R, induces 2-AG biosynthesis via DAGLα, and in turn 2-AG is converted to 2-AGP in primary hippocampal neurons. By confocal microscopy and western blotting assay we found an OX-A- or 2-AGP-mediated phosphorylation of Tau at threonine 231 residue, in a manner prevented by LPA1R (2-AGP receptor) or OX1R (OX-A receptor) antagonism with AM095 or SB334867, respectively. Finally, by patch-clamp recording we documented that 2-AGP-mediated pT231-Tau phosphorylation impairs glutamatergic transmission in the mouse hippocampus. Although further additional research is still required to clarify the potential role of orexin signaling in neurodegeneration, this study provides evidence that counteraction of aberrant OX-A signaling, also via LPA-1R antagonism, may be beneficial in the mild-to-moderate age-related cognitive decline associated with sleep disturbances.
Collapse
|
15
|
Zhang YY, Liu F, Fang ZH, Li YL, Liao HL, Song QX, Zhou C, Shen JF. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun 2022; 106:129-146. [PMID: 36038077 DOI: 10.1016/j.bbi.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1β, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
17
|
Diaz JR, Martá-Ariza M, Khodadadi-Jamayran A, Heguy A, Tsirigos A, Pankiewicz JE, Sullivan PM, Sadowski MJ. Apolipoprotein E4 Effects a Distinct Transcriptomic Profile and Dendritic Arbor Characteristics in Hippocampal Neurons Cultured in vitro. Front Aging Neurosci 2022; 14:845291. [PMID: 35572125 PMCID: PMC9099260 DOI: 10.3389/fnagi.2022.845291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The APOE gene is diversified by three alleles ε2, ε3, and ε4 encoding corresponding apolipoprotein (apo) E isoforms. Possession of the ε4 allele is signified by increased risks of age-related cognitive decline, Alzheimer's disease (AD), and the rate of AD dementia progression. ApoE is secreted by astrocytes as high-density lipoprotein-like particles and these are internalized by neurons upon binding to neuron-expressed apoE receptors. ApoE isoforms differentially engage neuronal plasticity through poorly understood mechanisms. We examined here the effects of native apoE lipoproteins produced by immortalized astrocytes homozygous for ε2, ε3, and ε4 alleles on the maturation and the transcriptomic profile of primary hippocampal neurons. Control neurons were grown in the presence of conditioned media from Apoe -/- astrocytes. ApoE2 and apoE3 significantly increase the dendritic arbor branching, the combined neurite length, and the total arbor surface of the hippocampal neurons, while apoE4 fails to produce similar effects and even significantly reduces the combined neurite length compared to the control. ApoE lipoproteins show no systemic effect on dendritic spine density, yet apoE2 and apoE3 increase the mature spines fraction, while apoE4 increases the immature spine fraction. This is associated with opposing effects of apoE2 or apoE3 and apoE4 on the expression of NR1 NMDA receptor subunit and PSD95. There are 1,062 genes differentially expressed across neurons cultured in the presence of apoE lipoproteins compared to the control. KEGG enrichment and gene ontology analyses show apoE2 and apoE3 commonly activate expression of genes involved in neurite branching, and synaptic signaling. In contrast, apoE4 cultured neurons show upregulation of genes related to the glycolipid metabolism, which are involved in dendritic spine turnover, and those which are usually silent in neurons and are related to cell cycle and DNA repair. In conclusion, our work reveals that lipoprotein particles comprised of various apoE isoforms differentially regulate various neuronal arbor characteristics through interaction with neuronal transcriptome. ApoE4 produces a functionally distinct transcriptomic profile, which is associated with attenuated neuronal development. Differential regulation of neuronal transcriptome by apoE isoforms is a newly identified biological mechanism, which has both implication in the development and aging of the CNS.
Collapse
Affiliation(s)
- Jenny R. Diaz
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Mitchell Martá-Ariza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Adriana Heguy
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Joanna E. Pankiewicz
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics), Duke University School of Medicine, Durham, NC, United States
- Durham VA Medical Center’s, Geriatric Research Education and Clinical Center, Durham, NC, United States
| | - Martin J. Sadowski
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
19
|
Glutamate triggers the expression of functional ionotropic and metabotropic glutamate receptors in mast cells. Cell Mol Immunol 2021; 18:2383-2392. [PMID: 32313211 PMCID: PMC8484602 DOI: 10.1038/s41423-020-0421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mast cells are emerging as players in the communication between peripheral nerve endings and cells of the immune system. However, it is not clear the mechanism by which mast cells communicate with peripheral nerves. We previously found that mast cells located within healing tendons can express glutamate receptors, raising the possibility that mast cells may be sensitive to glutamate signaling. To evaluate this hypothesis, we stimulated primary mast cells with glutamate and showed that glutamate induced the profound upregulation of a panel of glutamate receptors of both the ionotropic type (NMDAR1, NMDAR2A, and NMDAR2B) and the metabotropic type (mGluR2 and mGluR7) at both the mRNA and protein levels. The binding of glutamate to glutamate receptors on the mast cell surface was confirmed. Further, glutamate had extensive effects on gene expression in the mast cells, including the upregulation of pro-inflammatory components such as IL-6 and CCL2. Glutamate also induced the upregulation of transcription factors, including Egr2, Egr3 and, in particular, FosB. The extensive induction of FosB was confirmed by immunofluorescence assessment. Glutamate receptor antagonists abrogated the responses of the mast cells to glutamate, supporting the supposition of a functional glutamate-glutamate receptor axis in mast cells. Finally, we provide in vivo evidence supporting a functional glutamate-glutamate receptor axis in the mast cells of injured tendons. Together, these findings establish glutamate as an effector of mast cell function, thereby introducing a novel principle for how cells in the immune system can communicate with nerve cells.
Collapse
|
20
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
21
|
Schoretsanitis G, de Filippis R, Ntogka M, Leucht S, Correll CU, Kane JM. Matrix Metalloproteinase 9 Blood Alterations in Patients With Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis. Schizophr Bull 2021; 47:986-996. [PMID: 33491066 PMCID: PMC8266643 DOI: 10.1093/schbul/sbab001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP-9), an extracellular network protease implicated in glutamatergic signaling, may be part of the pathophysiology of schizophrenia spectrum disorders (SSD). METHODS We performed a systematic review in PubMed/Embase until July 15, 2020, conducting a random-effects meta-analysis of studies comparing MMP-9 blood levels in SSD vs healthy controls (HCs) and psychiatric controls (PCs), calculating between-group differences in standardized mean differences (SMDs) ± 95% confidence intervals (CIs). Meta-regression analyses included sex, age, illness duration, antipsychotic dose, and Positive and Negative Syndrome Scale (PANSS) total/subscales. Subgroup analyses included first-episode patients (FEP) vs non-FEP, each vs HCs and vs PCs, and blood sample type. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS Four, five, and two trials were rated as high, fair, and low quality. In 11 studies (n = 1443), 643 patients (age = 36.7 ± 14.1 years, females = 42.9%) were compared with HCs (n = 631), with 4 studies including also 169 PCs. MMP-9 levels were higher in SSD vs HCs (SMD = 0.52, 95%CI = 0.20-0.85, P = .002), but not in PCs vs HCs (n = 132, after removing one implausible outlier [SMD = 0.33, 95%CI = -0.16 to 0.85, P = .082]). MMP-9 differences between SSD and HCs were associated with higher PANSS total (coefficient = 0.02, 95%CI = 0.01-0.02, P < .001), PANSS positive (coefficient = 0.08, 95%CI = 0.02-0.13, P = .006), and PANSS general scores (coefficient = 0.02, 95%CI = 0.01-0.03, P < .001). MMP-9 level differences vs HCs did not vary significantly between FEP (n = 103, SMD = 0.44, 95%CI = 0.15-0.72, P = .71) and non-FEP patients (n = 466, SMD = 0.59, 95%CI = 0.38-0.80; P = .34) (FEP vs non-FEP: P = .39). In four high-quality studies, MMP-9 levels remained significantly higher in SSD vs HCs (SMD = 0.82, 95%CI = 0.03-1.61). CONCLUSIONS Findings suggest MMP-9 upregulation in SSD, requiring further validation and understanding of related pathways.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,To whom correspondence should be addressed; 7559 263rd Street, Glen Oaks, NY 11004, USA; tel: +1 718-470-5914, fax: +1 718-343-7739, e-mail:
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Ntogka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany,Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Christoph U Correll
- Department of Psychiatry and Molecular Medicine, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - John M Kane
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry and Molecular Medicine, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
22
|
Zheng L, Xie C, Zheng J, Dong Q, Si T, Zhang J, Hou ST. An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury. J Biol Chem 2021; 296:100151. [PMID: 33288676 PMCID: PMC7900749 DOI: 10.1074/jbc.ra120.016565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022] Open
Abstract
Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics strategy, we semiquantitively measured the differential lipid contents in the mouse cerebral cortex recovering from a transient middle cerebral artery occlusion (MCAO). The lipidomic data were interrogated using the soft independent modeling of class analogy (SIMCA) method involving principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Statistics of the 578 confirmed lipids revealed 84 species were differentially changed during MCAO/reperfusion. The most dynamic changes in lipids occurred between 1 and 7 days post-MCAO, whereas concentrations had subsided to the Sham group level at 14 and 28 days post-MCAO. Quantitative analyses revealed a strong monotonic relationship between the reduction in phosphatidylcholine (PC)(16:0/16:0) and the increase in lysophosphatidylcholine (LPC)(16:0) levels (Spearman's Rs = -0.86) during the 1 to 7 days reperfusion period. Inhibition of cPLA2 prevented changes in the ratio between PC(16:0/16:0) and LPC(16:0), indicating altered Land's cycle of PC. A series of in vitro studies showed that LPC(16:0), but not PC(16:0/16:0), was detrimental to the integrity of neuronal growth cones and neuronal viability through evoking intracellular calcium influx. In contrast, PC(16:0/16:0) significantly suppressed microglial secretion of IL-1β and TNF-α, limiting neuroinflammation pathways. Together, these data support the role of the imbalanced ratio between PC(16:0/16:0) and LPC(16:0), maintained by Lands' cycle, in neuronal damage and microglia-mediated inflammatory response during ischemic recovery.
Collapse
Affiliation(s)
- Lifeng Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Chengbin Xie
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ju Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiangrui Dong
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Tengxiao Si
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Zhang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|