1
|
Chen Y, Abudureyimu G, Lin J, Wang L, Ma X, Wu X, Wu Y. Effects of CSTB on in vitro maturation of ovine oocytes. Anim Reprod Sci 2025; 276:107839. [PMID: 40252273 DOI: 10.1016/j.anireprosci.2025.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Cystatin B (CSTB) primarily acts as an intracellular cysteine cathepsin inhibitor and plays important biological functions in multiple tissues. This study aimed to investigate the expression of CSTB in ovine ovaries and its effect on the in vitro maturation of ovine oocytes. We cloned a 390 bp CSTB cDNA fragment, containing 297 bp coding sequence and encoding 98 amino acids. The amino acid sequence of the homologues of ovine CSTB is 72.45-98.98 % similar to other species. In addition, CSTB is highly expressed in the ovary and uterus of the reproductive system, specifically localized in granulosa cells and oocytes. Adding recombinant CSTB to in vitro maturation medium increased the maturation rate, cleavage rate and blastocyst rate of small follicle oocytes. Conversely, interfering with CSTB knockdown reduced the maturation rate and developmental potential of oocytes. Recombinant protein upregulated mitochondrial membrane potential, ATP, and autophagy protein LC3A/LC3B in oocytes while downregulated reactive oxygen species. In contrast, CSTB knockdown reversed these trends, resulting in significant downregulation of membrane potential, ATP, and LC3A/LC3B and upregulation of reactive oxygen species. In conclusion, CSTB is a critical functional molecule for the in vitro maturation of ovine oocytes. It regulates oocyte developmental potential by modulating reactive oxygen species (ROS), membrane potential and autophagy in ovine oocytes. These findings enhance the understanding of the role of CSTB in ovine oocyte maturation in vitro.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Gulimire Abudureyimu
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jiapeng Lin
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Liqin Wang
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiuling Ma
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiangli Wu
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yangsheng Wu
- Key Laboratory of Animal Biotechnology of XinJiang, Urumqi, China; Key laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural affairs, Urumqi, China; Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China.
| |
Collapse
|
2
|
Di Matteo F, Bonrath R, Pravata V, Schmidt H, Ayo Martin AC, Di Giaimo R, Menegaz D, Riesenberg S, de Vrij FMS, Maccarrone G, Holzapfel M, Straub T, Kushner SA, Robertson SP, Eder M, Cappello S. Neuronal hyperactivity in neurons derived from individuals with gray matter heterotopia. Nat Commun 2025; 16:1737. [PMID: 39966398 PMCID: PMC11836124 DOI: 10.1038/s41467-025-56998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Periventricular heterotopia (PH), a common form of gray matter heterotopia associated with developmental delay and drug-resistant seizures, poses a challenge in understanding its neurophysiological basis. Human cerebral organoids (hCOs) derived from patients with causative mutations in FAT4 or DCHS1 mimic PH features. However, neuronal activity in these 3D models has not yet been investigated. Here we show that silicon probe recordings reveal exaggerated spontaneous spike activity in FAT4 and DCHS1 hCOs, suggesting functional changes in neuronal networks. Transcriptome and proteome analyses identify changes in neuronal morphology and synaptic function. Furthermore, patch-clamp recordings reveal a decreased spike threshold specifically in DCHS1 neurons, likely due to increased somatic voltage-gated sodium channels. Additional analyses reveal increased morphological complexity of PH neurons and synaptic alterations contributing to hyperactivity, with rescue observed in DCHS1 neurons by wild-type DCHS1 expression. Overall, we provide new comprehensive insights into the cellular changes underlying symptoms of gray matter heterotopia.
Collapse
Affiliation(s)
- Francesco Di Matteo
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rebecca Bonrath
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Veronica Pravata
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | | | - Ane Cristina Ayo Martin
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University Federico II, Naples, Italy
| | | | | | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | - Tobias Straub
- Bioinformatics Core, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Matthias Eder
- Max Planck Institute of Psychiatry, Munich, Germany.
| | - Silvia Cappello
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany.
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
3
|
Pizzella A, Penna E, Liu Y, Abate N, Lacivita E, Leopoldo M, Perrone-Capano C, Crispino M, Baudry M, Bi X. Alterations of synaptic plasticity in Angelman syndrome model mice are rescued by 5-HT7R stimulation. Prog Neurobiol 2024; 242:102684. [PMID: 39481590 DOI: 10.1016/j.pneurobio.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by motor disfunction, seizures, intellectual disability, speech deficits, and autism-like behavior, showing high comorbidity with Autism Spectrum Disorders (ASD). It is known that stimulation of the serotonin receptor 7 (5-HT7R) can rescue some of the behavioral and neuroplasticity dysfunctions in animal models of Fragile X and Rett syndrome, two pathologies associated with ASD. In view of these observations, we hypothesised that alterations of 5-HT7R signalling might also be involved in AS. To test this hypothesis, we stimulated 5-HT7R with the selective agonist LP-211 to investigate its possible beneficial effects on synaptic dysfunctions and altered behavior in the AS mice model. In mutant mice, we observed impairment of the synaptic machinery of protein synthesis, which was reversed by 5-HT7R activation. Moreover, stimulation of 5-HT7R was able to: i) enhance dendritic spine density in hippocampal neurons, which was reduced in AS mice; ii) restore impaired long-term potentiation (LTP) in hippocampal slices of the AS mice; iii) improve cognitive performance of the mutant animals subjected to the fear conditioning paradigm. Altogether, our results, showing beneficial effects of 5-HT7R stimulation in restoring molecular and cognitive deficits associated with AS, suggest that targeting 5-HT7R could be a promising therapeutic approach for the pathology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Eduardo Penna
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, USA.
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| |
Collapse
|
4
|
Pizzella A, Penna E, Abate N, Frenna E, Canafoglia L, Ragona F, Russo R, Chambery A, Perrone-Capano C, Cappello S, Crispino M, Di Giaimo R. Pathological Deficit of Cystatin B Impairs Synaptic Plasticity in EPM1 Human Cerebral Organoids. Mol Neurobiol 2024; 61:4318-4334. [PMID: 38087165 PMCID: PMC11236866 DOI: 10.1007/s12035-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 07/11/2024]
Abstract
Cystatin B (CSTB) is a small protease inhibitor protein being involved in cell proliferation and neuronal differentiation. Loss-of-function mutations in CSTB gene cause progressive myoclonic epilepsy 1 (EPM1). We previously demonstrated that CSTB is locally synthesized in synaptic nerve terminals from rat brain and secreted into the media, indicating its role in synaptic plasticity. In this work, we have further investigated the involvement of CSTB in synaptic plasticity, using synaptosomes from human cerebral organoids (hCOs) as well as from rodents' brain. Our data demonstrate that CSTB is released from synaptosomes in two ways: (i) as a soluble protein and (ii) in extracellular vesicles-mediated pathway. Synaptosomes isolated from hCOs are enriched in pre-synaptic proteins and contain CSTB at all developmental stages analyzed. CSTB presence in the synaptic territories was also confirmed by immunostaining on human neurons in vitro. To investigate if the depletion of CSTB affects synaptic plasticity, we characterized the synaptosomes from EPM1 hCOs. We found that the levels of presynaptic proteins and of an initiation factor linked to local protein synthesis were both reduced in EPM1 hCOs and that the extracellular vesicles trafficking pathway was impaired. Moreover, EPM1 neurons displayed anomalous morphology with longer and more branched neurites bearing higher number of intersections and nodes, suggesting connectivity alterations. In conclusion, our data strengthen the idea that CSTB plays a critical role in the synapse physiology and reveal that pathologically low levels of CSTB may affect synaptic plasticity, leading to synaptopathy and altered neuronal morphology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elisa Frenna
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | | | - Silvia Cappello
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Naples, Italy.
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Trinchese G, Feola A, Cavaliere G, Cimmino F, Catapano A, Penna E, Scala G, Greco L, Bernardo L, Porcellini A, Crispino M, Pezone A, Mollica MP. Mitochondrial metabolism and neuroinflammation in the cerebral cortex and cortical synapses of rats: effect of milk intake through DNA methylation. J Nutr Biochem 2024; 128:109624. [PMID: 38518858 DOI: 10.1016/j.jnutbio.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.
Collapse
Affiliation(s)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Gumusgoz E, Kasiri S, Verma M, Wu J, Villarreal Acha D, Marriam U, Fyffe-Maricich S, Lin A, Chen X, Gray SJ, Minassian BA. CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy. Gene Ther 2024; 31:234-241. [PMID: 38135787 DOI: 10.1038/s41434-023-00433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Singh S, Hämäläinen RH. The Roles of Cystatin B in the Brain and Pathophysiological Mechanisms of Progressive Myoclonic Epilepsy Type 1. Cells 2024; 13:170. [PMID: 38247861 PMCID: PMC10814315 DOI: 10.3390/cells13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht-Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 is caused by mutations in the Cystatin B gene (CSTB). The CSTB protein functions as an intracellular thiol protease inhibitor and inhibits Cathepsin function. It also plays a crucial role in brain development and regulates various functions in neurons beyond maintaining cellular proteostasis. These include controlling cell proliferation and differentiation, synaptic functions and protection against oxidative stress, likely through regulation of mitochondrial function. Depending on the differentiation stage and status of neurons, the protein localizes either to the cytoplasm, nucleus, lysosomes or mitochondria. Further, CSTB can also be secreted to the extracellular matrix for interneuron rearrangement and migration. In this review, we will review the various functions of CSTB in the brain and discuss the putative pathophysiological mechanism underlying EPM1.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
8
|
Pollari E, Tegelberg S, Björklund H, Kälviäinen R, Lehesjoki AE, Haapalinna A. In depth behavioral phenotyping unravels complex motor disturbances in Cstb-/- mouse, a model for progressive myoclonus epilepsy type 1. Front Behav Neurosci 2023; 17:1325051. [PMID: 38179183 PMCID: PMC10764494 DOI: 10.3389/fnbeh.2023.1325051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive myoclonus epilepsy type 1 (EPM1) is an autosomal recessively inherited childhood-adolescence onset neurodegenerative disease caused by mutations in the cystatin B (CSTB gene). The key clinical manifestation in EPM1 is progressive, stimulus-sensitive, in particular action-induced myoclonus. The cystatin B-deficient mouse model, Cstb-/-, has been described to present with myoclonic seizures and progressive ataxia. Here we describe results from in-depth behavioral phenotyping of the Cstb-/- mouse model in pure isogenic 129S2/SvHsd background covering ages from 1.5 to 6 months. We developed a method for software-assisted detection of myoclonus from video recordings of the Cstb-/- mice. Additionally, we observed that the mice were hyperactive and showed reduced startle response, problems in motor coordination and lack of inhibition. We were, however, not able to demonstrate an ataxic phenotype in them. This detailed behavioral phenotyping of the Cstb-/- mice reveals new aspects of this mouse model. The nature of the motor problems in the Cstb-/- mice seems to be more complex and more resembling the human phenotype than initially described.
Collapse
Affiliation(s)
| | - Saara Tegelberg
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
Moaddel R, Farmer CA, Yavi M, Kadriu B, Zhu M, Fan J, Chen Q, Lehrmann E, Fantoni G, De S, Mazucanti CH, Acevedo-Diaz EE, Yuan P, Gould TD, Park LT, Egan JM, Ferrucci L, Zarate CA. Cerebrospinal fluid exploratory proteomics and ketamine metabolite pharmacokinetics in human volunteers after ketamine infusion. iScience 2023; 26:108527. [PMID: 38162029 PMCID: PMC10755719 DOI: 10.1016/j.isci.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ketamine is a treatment for both refractory depression and chronic pain syndromes. In order to explore ketamine's potential mechanism of action and whether ketamine or its metabolites cross the blood brain barrier, we examined the pharmacokinetics of ketamine and its metabolites-norketamine (NK), dehydronorketamine (DHNK), and hydroxynorketamines (HNKs)-in cerebrospinal fluid (CSF) and plasma, as well as in an exploratory proteomic analysis in the CSF of nine healthy volunteers who received ketamine intravenously (0.5 mg/kg IV). We found that ketamine, NK, and (2R,6R;2S,6S)-HNK readily crossed the blood brain barrier. Additionally, 354 proteins were altered in the CSF in at least two consecutive timepoints (p < 0.01). Proteins in the classes of tyrosine kinases, cellular adhesion molecules, and growth factors, including insulin, were most affected, suggesting an interplay of altered neurotransmission, neuroplasticity, neurogenesis, synaptogenesis, and neural network functions following ketamine administration.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cristan A. Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Min Zhu
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Qinghua Chen
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Caio H. Mazucanti
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elia E. Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Lawrence T. Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Josephine M. Egan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Goikolea J, Latorre-Leal M, Tsagkogianni C, Pikkupeura S, Gulyas B, Cedazo-Minguez A, Loera-Valencia R, Björkhem I, Rodriguez Rodriguez P, Maioli S. Different effects of CYP27A1 and CYP7B1 on cognitive function: Two mouse models in comparison. J Steroid Biochem Mol Biol 2023; 234:106387. [PMID: 37648096 DOI: 10.1016/j.jsbmb.2023.106387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3β-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- Julen Goikolea
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Maria Latorre-Leal
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Christina Tsagkogianni
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Sonja Pikkupeura
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Balazs Gulyas
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Raul Loera-Valencia
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden; Tecnologico de Monterrey, School of Medicine and Health Sciences, Chihuahua, Mexico
| | - Ingemar Björkhem
- Karolinska Institutet, Department of Laboratory Medicine, Huddinge, Sweden
| | - Patricia Rodriguez Rodriguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden.
| |
Collapse
|
11
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
12
|
Wu Y, Mumford P, Noy S, Cleverley K, Mrzyglod A, Luo D, van Dalen F, Verdoes M, Fisher EMC, Wiseman FK. Cathepsin B abundance, activity and microglial localisation in Alzheimer's disease-Down syndrome and early onset Alzheimer's disease; the role of elevated cystatin B. Acta Neuropathol Commun 2023; 11:132. [PMID: 37580797 PMCID: PMC10426223 DOI: 10.1186/s40478-023-01632-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme. Individuals who have Down syndrome are also at significantly increased risk of developing early-onset Alzheimer's disease (EOAD). The impact of the additional copy of CSTB on Alzheimer's disease development in people who have Down syndrome is not well understood. Here we compared the biology of cathepsin B and CSTB in individuals who had Down syndrome and Alzheimer's disease, with disomic individuals who had Alzheimer's disease or were ageing healthily. We find that the activity of cathepsin B enzyme is decreased in the brain of people who had Down syndrome and Alzheimer's disease compared with disomic individuals who had Alzheimer's disease. This change occurs independently of an alteration in the abundance of the mature enzyme or the number of cathepsin B+ cells. We find that the abundance of CSTB is significantly increased in the brains of individuals who have Down syndrome and Alzheimer's disease compared to disomic individuals both with and without Alzheimer's disease. In mouse and human cellular preclinical models of Down syndrome, three-copies of CSTB increases CSTB protein abundance but this is not sufficient to modulate cathepsin B activity. EOAD and Alzheimer's disease-Down syndrome share many overlapping mechanisms but differences in disease occur in individuals who have trisomy 21. Understanding this biology will ensure that people who have Down syndrome access the most appropriate Alzheimer's disease therapeutics and moreover will provide unique insight into disease pathogenesis more broadly.
Collapse
Affiliation(s)
- Yixing Wu
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Paige Mumford
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Alicja Mrzyglod
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Dinghao Luo
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Floris van Dalen
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
13
|
Gorski K, Jackson CB, Nyman TA, Rezov V, Battersby BJ, Lehesjoki AE. Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Front Mol Neurosci 2023; 16:1175851. [PMID: 37251643 PMCID: PMC10213208 DOI: 10.3389/fnmol.2023.1175851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Veronika Rezov
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Lü L, Yuan F, Fan H, Li Y, Liu J, Feng W, Zhang HG, Chen SY. Ethanol exposure disrupted the formation of radial glial processes and impaired the generation and migration of outer radial glial cells in forebrain organoids derived from human embryonic stem cells. Exp Neurol 2023; 362:114325. [PMID: 36669750 PMCID: PMC9992138 DOI: 10.1016/j.expneurol.2023.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Radial glial cells (RGCs) play a pivotal role in cerebral cortical development by functioning as a source of new neurons and by supporting the migration of newborn neurons. These functions are primarily dependent on the apical-basolateral structures of radial glial processes. This study aims to investigate the effects of ethanol exposure on the development of radial glial processes and the generation, migration, and transformation of outer radial glial cells (oRGCs). For this purpose, forebrain organoids were developed from human embryonic stem cells. These forebrain organoids contain abundant neural progenitor cells (SOX2+), express high levels of neural epithelial markers β-catenin and PKCλ, and dorsal forebrain marker PAX6, and display well-organized cortical architectures containing abundant apical and basal RGCs, intermediate progenitors (IPCs), and neurons. Exposure of forebrain organoids to ethanol resulted in a significant increase in apoptosis in Nestin-positive radial glial cells. Ethanol exposure also remarkably decreased the levels of radial glial process-associated proteins, including Nestin, GFAP, and Vimentin, in radial glial cells and distinctly impaired the integrity and morphologies of radial glial processes. In addition, the ethanol-induced impairment of the radial glial processes is associated with decreased migration and proliferation of radial glial cells, reduction in the generation of HOPX+ oRGCs, and the accelerated transformation of oRGCs into astrocytes. These results demonstrate that ethanol exposure can disrupt cerebral cortex development by impairing the formation of radial glial processes and the generation, migration, and transformation of oRGCs.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY 40292, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
15
|
Contini C, Serrao S, Manconi B, Olianas A, Iavarone F, Guadalupi G, Messana I, Castagnola M, Masullo C, Bizzarro A, Turck CW, Maccarrone G, Cabras T. Characterization of Cystatin B Interactome in Saliva from Healthy Elderly and Alzheimer’s Disease Patients. Life (Basel) 2023; 13:life13030748. [PMID: 36983903 PMCID: PMC10054399 DOI: 10.3390/life13030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cystatin B is a small, multifunctional protein involved in the regulation of inflammation, innate immune response, and neuronal protection and found highly abundant in the brains of patients with Alzheimer’s disease (AD). Recently, our study demonstrated a significant association between the level of salivary cystatin B and AD. Since the protein is able to establish protein-protein interaction (PPI) in different contexts and aggregation-prone proteins and the PPI networks are relevant for AD pathogenesis, and due to the relevance of finding new AD markers in peripheral biofluids, we thought it was interesting to study the possible involvement of cystatin B in PPIs in saliva and to evaluate differences and similarities between AD and age-matched elderly healthy controls (HC). For this purpose, we applied a co-immunoprecipitation procedure and a bottom-up proteomics analysis to purify, identify, and quantify cystatin B interactors. Results demonstrated for the first time the existence of a salivary cystatin B-linked multi-protein complex composed by 82 interactors and largely expressed in the body. Interactors are involved in neutrophil activation, antimicrobial activity, modulation of the cytoskeleton and extra-cellular matrix (ECM), and glucose metabolism. Preliminary quantitative data showed significantly lower levels of triosophosphate isomerase 1 and higher levels of mucin 7, BPI, and matrix Gla protein in AD with respect to HC, suggesting implications associated with AD of altered glucose metabolism, antibacterial activities, and calcification-associated processes. Data are available via ProteomeXchange with identifiers PXD039286 and PXD030679.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Policlinico Universitario “A. Gemelli” Foundation IRCCS, 00168 Rome, Italy
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy
| | - Carlo Masullo
- Department of Neuroscience, Neurology Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
16
|
Cavaliere G, Catapano A, Trinchese G, Cimmino F, Penna E, Pizzella A, Cristiano C, Lama A, Crispino M, Mollica MP. Butyrate Improves Neuroinflammation and Mitochondrial Impairment in Cerebral Cortex and Synaptic Fraction in an Animal Model of Diet-Induced Obesity. Antioxidants (Basel) 2022; 12:antiox12010004. [PMID: 36670866 PMCID: PMC9854835 DOI: 10.3390/antiox12010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by cognitive impairment and behavioural abnormalities. The incidence of NDDs in recent years has increased globally and the pathological mechanism is not fully understood. To date, plentiful evidence has showed that metabolic alterations associated with obesity and related issues such as neuroinflammation, oxidative stress and mitochondrial dysfunction may represent an important risk factor, linking obesity and NDDs. Numerous studies have indicated a correlation between diet and brain activities. In this context, a key role is played by mitochondria located in the synaptic fraction; indeed, it has been shown that high-fat diets cause their dysfunction, affecting synaptic plasticity. In this scenario, the use of natural molecules that improve brain mitochondrial function represents an important therapeutic approach to treat NDDs. Recently, it was demonstrated that butyrate, a short-chain fatty acid is capable of counteracting obesity in an animal model, modulating mitochondrial function. The aim of this study has been to evaluate the effects of butyrate on neuroinflammatory state, oxidative stress and mitochondrial dysfunction in the brain cortex and in the synaptic fraction of a mouse model of diet-induced obesity. Our data have shown that butyrate partially reverts neuroinflammation and oxidative stress in the brain cortex and synaptic area, improving mitochondrial function and efficiency.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-679-990
| |
Collapse
|
17
|
Lucchino V, Scaramuzzino L, Scalise S, Lo Conte M, Zannino C, Benedetto GL, Aguglia U, Ferlazzo E, Cuda G, Parrotta EI. Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs. Cells 2022; 11:3491. [PMID: 36359887 PMCID: PMC9655992 DOI: 10.3390/cells11213491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.
Collapse
Affiliation(s)
- Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | |
Collapse
|
18
|
Žerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci 2022; 15:1009976. [PMID: 36340691 PMCID: PMC9634419 DOI: 10.3389/fnmol.2022.1009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2024] Open
Abstract
Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
19
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
20
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
21
|
Jahić Mujkić A, Tušek Žnidarič M, Berbić S, Žerovnik E. Synergy of the Inhibitory Action of Polyphenols Plus Vitamin C on Amyloid Fibril Formation: Case Study of Human Stefin B. Antioxidants (Basel) 2021; 10:1471. [PMID: 34573102 PMCID: PMC8464686 DOI: 10.3390/antiox10091471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/06/2022] Open
Abstract
In order to study how polyphenols and vitamin C (vitC) together affect protein aggregation to amyloid fibrils, we performed similar in vitro studies as before using stefin B as a model and a potentially amyloid-forming protein (it aggregates upon overexpression, under stressful conditions and some progressive myoclonus epilepsy of tape 1-EPM1-missense mutations). In addition to the chosen polyphenol, this time, we added a proven antioxidant concentration of 0.5 mM vitC into the fibrillation mixture and varied concentrations of resveratrol, quercetin, and curcumin. Synergy with vitC was observed with curcumin and quercetin.
Collapse
Affiliation(s)
- Alma Jahić Mujkić
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina; (A.J.M.); (S.B.)
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia;
| | - Selma Berbić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina; (A.J.M.); (S.B.)
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/Differentiation Program. Front Oncol 2021; 11:707066. [PMID: 34504787 PMCID: PMC8421684 DOI: 10.3389/fonc.2021.707066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from lysosomes and causing inappropriate proteolysis. Our study found that CSTB was downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells compared with normal controls. Immunohistochemical analysis showed that CSTB was mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity was related to the grade classification. A correlation analysis between CSTB and clinical prognosis was performed using gene expression data and clinical information acquired from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of CSTB had shorter disease-free survival times and poorer clinicopathological features (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed based on the TCGA data to explore potential mechanisms, and CSTB appeared to correlate with squamous epithelial proliferation-differentiation processes, such as epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module most associated with CSTB expression (i.e., the brown module) was also the one most associated with grade classification. Upregulation of CSTB promoted the expression levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for differentiation and keratinization in vitro. Gene expression profile data of the overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq) technology. By comparing the GSEA enrichment results of RNA-seq data (from the OSCC models overexpressing CSTB) and existing public database data, three gene sets (i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the data from both sources. Overall, our study shows that CSTB is downregulated in OSCC and might regulate the malignant characteristics of OSCC via the epithelial proliferation/differentiation program.
Collapse
Affiliation(s)
- Tian-Tian Xu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xin-Hong Wang
- Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lu-Xi Yang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Luo
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
23
|
Liśkiewicz AD, Liśkiewicz D, Marczak Ł, Przybyła M, Grabowska K, Student S, Dębiec M, Sługocka A, Lewin-Kowalik J. Obesity-associated deterioration of the hippocampus is partially restored after weight loss. Brain Behav Immun 2021; 96:212-226. [PMID: 34087424 DOI: 10.1016/j.bbi.2021.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Obesity is a multidimensional condition that is treatable by the restoration of a lean phenotype; however, some obesity-related outcomes may persist after weight normalization. Among the organs of the human body, the brain possesses a relatively low regenerative capacity and could retain perturbations established as a result of developmental obesity. Calorie restriction (CR) or a restricted ketogenic diet (KD) are successfully used as weight loss approaches, but their impact on obesity-related effects in the brain have not been previously evaluated. METHODS We performed a series of experiments in a rat model of developmental obesity induced by a 12-week cafeteria diet, followed by CR to implement weight loss. First, we assessed the impact of obesity on neurogenesis (BrdU incorporation into the hippocampus), cognitive function (water maze), and concomitant changes in hippocampal protein expression (GC/MS-MS, western blot). Next, we repeated these experiments in a rat model of weight loss induced by CR. We also measured mitochondrial enzyme activity in rats after weight loss during the fed or fasting state. This study was extended by additional experiments with restricted KD used as a weight loss approach in order to compare the efficacy of two different nutritional interventions used in the treatment of obesity on hippocampal functions. By using a modified version of the water maze we evaluated cognitive abilities in rats subjected to weight loss by CR or a restricted KD. RESULTS In this study, obesity affected metabolic processes, upregulated hippocampal NF-κB, and induced proteomic differences which were associated with impaired cognition and neurogenesis. Weight loss improved neurogenesis and enhanced cognition. While the expression pattern of some proteins persisted after weight loss, most of the changes appeared de novo revealing metabolic adjustment by overactivation of citrate synthase and downregulation of ATP synthase. As a consequence of fasting, the activity of these enzymes indicated hippocampal adaptation to negative energy balance during the weight loss phase of CR. Moreover, the effects on cognitive abilities measured after weight loss were negatively correlated with the animal weight measured at the final stage of weight gain. This was alleviated by KD, which improved cognition when used as a weight loss approach. CONCLUSIONS The study shows that cognition and mitochondrial metabolism in the hippocampus are affected by CR- or KD-induced weight loss.
Collapse
Affiliation(s)
- Arkadiusz D Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland; Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marta Przybyła
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice 44-100, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice 44-100, Poland
| | - Magdalena Dębiec
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
24
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
25
|
Perrone-Capano C, Volpicelli F, Penna E, Chun JT, Crispino M. Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Prog Neurobiol 2021; 202:102051. [PMID: 33845165 DOI: 10.1016/j.pneurobio.2021.102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
To form and maintain extremely intricate and functional neural circuitry, mammalian neurons are typically endowed with highly arborized dendrites and a long axon. The synapses that link neurons to neurons or to other cells are numerous and often too remote for the cell body to make and deliver new proteins to the right place in time. Moreover, synapses undergo continuous activity-dependent changes in their number and strength, establishing the basis of neural plasticity. The innate dilemma is then how a highly complex neuron provides new proteins for its cytoplasmic periphery and individual synapses to support synaptic plasticity. Here, we review a growing body of evidence that local protein synthesis in discrete sites of the axon and presynaptic terminals plays crucial roles in synaptic plasticity, and that deregulation of this local translation system is implicated in various pathologies of the nervous system.
Collapse
Affiliation(s)
- Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.
| | | | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
26
|
Cimmino F, Catapano A, Trinchese G, Cavaliere G, Culurciello R, Fogliano C, Penna E, Lucci V, Crispino M, Avallone B, Pizzo E, Mollica MP. Dietary Micronutrient Management to Treat Mitochondrial Dysfunction in Diet-Induced Obese Mice. Int J Mol Sci 2021; 22:2862. [PMID: 33799812 PMCID: PMC8000238 DOI: 10.3390/ijms22062862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity and associated metabolic disturbances, which have been increasing worldwide in recent years, are the consequences of unhealthy diets and physical inactivity and are the main factors underlying non-communicable diseases (NCD). These diseases are now responsible for about three out of five deaths worldwide, and it has been shown that they depend on mitochondrial dysfunction, systemic inflammation and oxidative stress. It was also demonstrated that several nutritional components modulating these processes are able to influence metabolic homeostasis and, consequently, to prevent or delay the onset of NCD. An interesting combination of nutraceutical substances, named DMG-gold, has been shown to promote metabolic and physical wellness. The aim of this research was to investigate the metabolic, inflammatory and oxidative pathways modulated by DMG-gold in an animal model with diet-induced obesity. Our data indicate that DMG-gold decreases the metabolic efficiency and inflammatory state and acts as an antioxidant and detoxifying agent, modulating mitochondrial functions. Therefore, DMG-gold is a promising candidate in the prevention/treatment of NCD.
Collapse
Affiliation(s)
- Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
- IEOS, Institute of Experimental Endocrinology and Oncology “G. Salvatore”—National Research Council, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (A.C.); (G.T.); (G.C.); (R.C.); (C.F.); (E.P.); (V.L.); (M.C.); (B.A.); (E.P.)
| |
Collapse
|
27
|
Ayo-Martin AC, Kyrousi C, Di Giaimo R, Cappello S. GNG5 Controls the Number of Apical and Basal Progenitors and Alters Neuronal Migration During Cortical Development. Front Mol Biosci 2020; 7:578137. [PMID: 33330619 PMCID: PMC7673377 DOI: 10.3389/fmolb.2020.578137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cortical development is a very complex process in which any temporal or spatial alterations can give rise to a wide range of cortical malformations. Among those malformations, periventricular heterotopia (PH) is characterized by clusters of neurons that do not migrate to the correct place. Cerebral organoids derived from patients with mutations in DCHS1 and FAT4, which have been associated with PH, exhibit higher levels of GNG5 expression in a patient-specific cluster of neurons. Here we investigate the role of GNG5 during the development of the cerebral cortex in mice and human cerebral organoids. GNG5, highly expressed in progenitors and downregulated in neurons, is critical for controlling the number of apical and basal progenitors and neuronal migration. Moreover, forced expression of GNG5 recapitulates some of the alterations observed upon downregulation of Dchs1 and Fat4 in mice and human cerebral organoids derived from DCHS1 and FAT4 patients, suggesting a critical role of GNG5 in cortical development.
Collapse
Affiliation(s)
- Ane Cristina Ayo-Martin
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
28
|
Gorski K, Spoljaric A, Nyman TA, Kaila K, Battersby BJ, Lehesjoki AE. Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice. Front Mol Neurosci 2020; 13:570640. [PMID: 33281550 PMCID: PMC7691638 DOI: 10.3389/fnmol.2020.570640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Albert Spoljaric
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kai Kaila
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Di Giaimo R, Penna E, Pizzella A, Cirillo R, Perrone-Capano C, Crispino M. Cross Talk at the Cytoskeleton-Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. Int J Mol Sci 2020; 21:ijms21239133. [PMID: 33266269 PMCID: PMC7730950 DOI: 10.3390/ijms21239133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology: (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.
Collapse
Affiliation(s)
- Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Raffaella Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| |
Collapse
|
30
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|
31
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
32
|
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and
unprovoked seizures due to neuronal hyperactivity. A large proportion
of epilepsy cases begin during childhood. Causes of epilepsy include
stroke, infections, brain injury, genetic factors, or other factors
that alter brain structure and development, but in up to 50% of cases
the cause is unknown. Approximately 35% of patients have refractory
seizures that do not respond to medication. Animal models and in vitro
cultures have contributed to our understanding of epilepsy, but there
is a clear need for better models to explore the human brain in normal
and pathological conditions. Human pluripotent stem cell (PSC)
technologies opened the door for new models for analyzing brain
development and disease, especially conditions with a genetic
component. Initially, PSCs were differentiated into 2-dimensional
cultures of a homogenous population of neural cells, such as
glutamatergic excitatory or γ-aminobutyric acidergic inhibitory
neurons, as well as glial cells. Nevertheless, these cultures lacked
the structure and complexity of a human brain. In the last decade, PSC
technology has advanced to the next level through the development of
3-dimensional culture, called organoids. These organoids recapitulate
features of the human brain that are missing in animal models,
enabling a deeper study of the human brain. In this review, we will
summarize the current status of organoid research and its application
to epilepsy.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Department of Biology and Brain Health Consortium, 414492The University of Texas at San Antonio, TX, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, 414492The University of Texas at San Antonio, TX, USA
| |
Collapse
|
33
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
34
|
Poeta L, Drongitis D, Verrillo L, Miano MG. DNA Hypermethylation and Unstable Repeat Diseases: A Paradigm of Transcriptional Silencing to Decipher the Basis of Pathogenic Mechanisms. Genes (Basel) 2020; 11:E684. [PMID: 32580525 PMCID: PMC7348995 DOI: 10.3390/genes11060684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Unstable repeat disorders comprise a variable group of incurable human neurological and neuromuscular diseases caused by an increase in the copy number of tandem repeats located in various regions of their resident genes. It has become clear that dense DNA methylation in hyperexpanded non-coding repeats induces transcriptional silencing and, subsequently, insufficient protein synthesis. However, the ramifications of this paradigm reveal a far more profound role in disease pathogenesis. This review will summarize the significant progress made in a subset of non-coding repeat diseases demonstrating the role of dense landscapes of 5-methylcytosine (5mC) as a common disease modifier. However, the emerging findings suggest context-dependent models of 5mC-mediated silencing with distinct effects of excessive DNA methylation. An in-depth understanding of the molecular mechanisms underlying this peculiar group of human diseases constitutes a prerequisite that could help to discover novel pathogenic repeat loci, as well as to determine potential therapeutic targets. In this regard, we report on a brief description of advanced strategies in DNA methylation profiling for the identification of unstable Guanine-Cytosine (GC)-rich regions and on promising examples of molecular targeted therapies for Fragile X disease (FXS) and Friedrich ataxia (FRDA) that could pave the way for the application of this technique in other hypermethylated expansion disorders.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| | - Lucia Verrillo
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy; (L.P.); (D.D.); (L.V.)
| |
Collapse
|
35
|
Lo LHY, Lai KO. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol Autism 2020; 11:40. [PMID: 32460854 PMCID: PMC7251853 DOI: 10.1186/s13229-020-00349-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain disorder that involves changes in neuronal connections. Abnormal morphology of dendritic spines on postsynaptic neurons has been observed in ASD patients and transgenic mice that model different monogenetic causes of ASD. A number of ASD-associated genetic variants are known to disrupt dendritic local protein synthesis, which is essential for spine morphogenesis, synaptic transmission, and plasticity. Most of our understanding on the molecular mechanism underlying ASD depends on studies using rodents. However, recent advance in human pluripotent stem cells and their neural differentiation provides a powerful alternative tool to understand the cellular aspects of human neurological disorders. In this review, we summarize recent progress on studying mRNA targeting and local protein synthesis in stem cell-derived neurons, and discuss how perturbation of these processes may impact synapse development and functions that are relevant to cognitive deficits in ASD.
Collapse
Affiliation(s)
- Louisa Hoi-Ying Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
36
|
Differential Secretome Profiling of Human Osteoarthritic Synoviocytes Treated with Biotechnological Unsulfated and Marine Sulfated Chondroitins. Int J Mol Sci 2020; 21:ijms21113746. [PMID: 32466468 PMCID: PMC7312545 DOI: 10.3390/ijms21113746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.
Collapse
|
37
|
Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, Chambery A, Russo R, Ayo-Martin AC, Giordano M, Hoffmann A, Ciusani E, Canafoglia L, Götz M, Di Giaimo R, Cappello S. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med 2020; 12:e11419. [PMID: 32378798 PMCID: PMC7278547 DOI: 10.15252/emmm.201911419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive myoclonus epilepsy (PME) of Unverricht–Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder with the highest incidence of PME worldwide. Mutations in the gene encoding cystatin B (CSTB) are the primary genetic cause of EPM1. Here, we investigate the role of CSTB during neurogenesis in vivo in the developing mouse brain and in vitro in human cerebral organoids (hCOs) derived from EPM1 patients. We find that CSTB (but not one of its pathological variants) is secreted into the mouse cerebral spinal fluid and the conditioned media from hCOs. In embryonic mouse brain, we find that functional CSTB influences progenitors’ proliferation and modulates neuronal distribution by attracting interneurons to the site of secretion via cell‐non‐autonomous mechanisms. Similarly, in patient‐derived hCOs, low levels of functional CSTB result in an alteration of progenitor's proliferation, premature differentiation, and changes in interneurons migration. Secretion and extracellular matrix organization are the biological processes particularly affected as suggested by a proteomic analysis in patients’ hCOs. Overall, our study sheds new light on the cellular mechanisms underlying the development of EPM1.
Collapse
Affiliation(s)
- Francesco Di Matteo
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Isabella Tovecci
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University Federico II, Naples, Italy
| | | | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ane Cristina Ayo-Martin
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | | | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Planegg/Martinsried, Germany.,Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Planegg/Martinsried, Germany.,SyNergy Excellence Cluster, Munich, Germany
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | | |
Collapse
|
38
|
Cefaliello C, Penna E, Barbato C, Di Ruberto G, Mollica MP, Trinchese G, Cigliano L, Borsello T, Chun JT, Giuditta A, Perrone-Capano C, Miniaci MC, Crispino M. Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer's Disease. Mol Neurobiol 2019; 57:1529-1541. [PMID: 31784883 DOI: 10.1007/s12035-019-01835-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
While protein synthesis in neurons is largely attributed to cell body and dendrites, the capability of synaptic regions to synthesize new proteins independently of the cell body has been widely demonstrated as an advantageous mechanism subserving synaptic plasticity. Thus, the contribution that local protein synthesis at synapses makes to physiology and pathology of brain plasticity may be more prevalent than initially thought. In this study, we tested if local protein synthesis at synapses is deregulated in the brains of TgCRND8 mice, an animal model for Alzheimer's disease (AD) overexpressing mutant human amyloid precursor protein (APP). To this end, we used synaptosomes as a model system to study the functionality of the synaptic regions in mouse brains. Our results showed that, while TgCRND8 mice exhibit early signs of brain inflammation and deficits in learning, the electrophoretic profile of newly synthesized proteins in their synaptosomes was subtly different from that of the control mice. Interestingly, APP itself was, in part, locally synthesized in the synaptosomes, underscoring the potential importance of local translation at synapses. More importantly, after the contextual fear conditioning, de novo synthesis of some individual proteins was significantly enhanced in the synaptosomes of control animals, but the TgCRND8 mice failed to display such synaptic modulation by training. Taken together, our results demonstrate that synaptic synthesis of proteins is impaired in the brain of a mouse model for AD, and raise the possibility that this deregulation may contribute to the early progression of the pathology.
Collapse
Affiliation(s)
- Carolina Cefaliello
- Department of Biology, University of Naples Federico II, Naples, Italy.,current address: Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmela Barbato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Antonio Giuditta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati Traverso," CNR, Naples, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
39
|
Cavaliere G, Trinchese G, Penna E, Cimmino F, Pirozzi C, Lama A, Annunziata C, Catapano A, Mattace Raso G, Meli R, Monda M, Messina G, Zammit C, Crispino M, Mollica MP. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front Cell Neurosci 2019; 13:509. [PMID: 31798417 PMCID: PMC6861522 DOI: 10.3389/fncel.2019.00509] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Brain mitochondrial dysfunction is involved in the development of neurological and neurodegenerative diseases. Mitochondria specifically located at synapses play a key role in providing energy to support synaptic functions and plasticity, thus their defects may lead to synaptic failure, which is a common hallmark of neurodegenerative diseases. High-Fat Diet (HFD) consumption increases brain oxidative stress and impairs brain mitochondrial functions, although the underlying mechanisms are not completely understood. The aim of our study is to analyze neuroinflammation and mitochondrial dysfunctions in brain cortex and synaptosomal fraction isolated from a mouse model of diet-induced obesity. Male C57Bl/6 mice were divided into two groups fed a standard diet or HFD for 18 weeks. At the end of the treatment, inflammation (detected by ELISA), antioxidant state (measured by enzymatic activity), mitochondrial functions and efficiency (detected by oxidative capacity and Seahorse analysis), and brain-derived neurotrophic factor (BDNF) pathway (analyzed by western blot) were determined in brain cortex and synaptosomal fraction. In HFD animals, we observed an increase in inflammatory parameters and oxidative stress and a decrease in mitochondrial oxidative capacity both in the brain cortex and synaptosomal fraction. These alterations parallel with modulation of BDNF, a brain key signaling molecule that is linking synaptic plasticity and energy metabolism. Neuroinflammation HFD-dependent negatively affects BDNF pathway and mitochondrial activity in the brain cortex. The effect is even more pronounced in the synaptic region, where the impaired energy supply may have a negative impact on neuronal plasticity.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Marcellino Monda
- Unit of Dietetics and Sports Medicine, Section of Human Physiology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|