1
|
Bhatnagar A, Heller EA. Alternative splicing in addiction. Curr Opin Genet Dev 2025; 92:102340. [PMID: 40107114 DOI: 10.1016/j.gde.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Addiction is a chronic and relapsing medical condition characterized by the compulsive use of drugs or alcohol despite harmful consequences. While transcriptional regulation has long been recognized for its role in addiction, recent genome-wide analyses have uncovered widespread alternative splicing changes that shift protein isoform diversity in multiple brain reward regions central to addiction. In this review, we discuss emerging research and evidence that alternative splicing is dysregulated in cocaine, alcohol, and opioid use disorders.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
3
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Carvalho L, Lasek AW. It is not just about transcription: involvement of brain RNA splicing in substance use disorders. J Neural Transm (Vienna) 2024; 131:495-503. [PMID: 38396082 PMCID: PMC11055753 DOI: 10.1007/s00702-024-02740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/04/2024] [Indexed: 02/25/2024]
Abstract
Alternative splicing is a co-transcriptional process that significantly contributes to the molecular landscape of the cell. It plays a multifaceted role in shaping gene transcription, protein diversity, and functional adaptability in response to environmental cues. Recent studies demonstrate that drugs of abuse have a profound impact on alternative splicing patterns within different brain regions. Drugs like alcohol and cocaine modify the expression of genes responsible for encoding splicing factors, thereby influencing alternative splicing of crucial genes involved in neurotransmission, neurogenesis, and neuroinflammation. Notable examples of these alterations include alcohol-induced changes in splicing factors such as HSPA6 and PCBP1, as well as cocaine's impact on PTBP1 and SRSF11. Beyond the immediate effects of drug exposure, recent research has shed light on the role of alternative splicing in contributing to the risk of substance use disorders (SUDs). This is exemplified by exon skipping events in key genes like ELOVL7, which can elevate the risk of alcohol use disorder. Lastly, drugs of abuse can induce splicing alterations through epigenetic modifications. For example, cocaine exposure leads to alterations in levels of trimethylated lysine 36 of histone H3, which exhibits a robust association with alternative splicing and serves as a reliable predictor for exon exclusion. In summary, alternative splicing has emerged as a critical player in the complex interplay between drugs of abuse and the brain, offering insights into the molecular underpinnings of SUDs.
Collapse
Affiliation(s)
- Luana Carvalho
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad ST, Box 980613, Richmond, VA, 23298, USA.
| | - Amy W Lasek
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Broad ST, Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
5
|
Hitzemann R, Gao L, Fei SS, Ray K, Vigh-Conrad KA, Phillips TJ, Searles R, Cervera-Juanes RP, Khadka R, Carlson TL, Gonzales SW, Newman N, Grant KA. Effects of repeated alcohol abstinence on within-subject prefrontal cortical gene expression in rhesus macaques. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12528. [PMID: 38737578 PMCID: PMC11082748 DOI: 10.3389/adar.2024.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Male rhesus monkeys (n = 24) had a biopsy of prefrontal cortical area 46 prior to chronic ethanol self-administration (n = 17) or caloric control (n = 7). Fourteen months of daily self-administration (water vs. 4% alcohol, 22 h access/day termed "open-access") was followed by two cycles of prolonged abstinence (5 weeks) each followed by 3 months of open-access alcohol and a final abstinence followed by necropsy. At necropsy, a biopsy of Area 46, contralateral to the original biopsy, was obtained. Gene expression data (RNA-Seq) were collected comparing biopsy/necropsy samples. Monkeys were categorized by drinking status during the final post-abstinent drinking phase as light (LD), binge (BD), heavy (HD) and very heavy (VHD drinkers). Comparing pre-ethanol to post-abstinent biopsies, four animals that converted from HD to VHD status had significant ontology enrichments in downregulated genes (necropsy minus biopsy n = 286) that included immune response (FDR < 9 × 10-7) and plasma membrane changes (FDR < 1 × 10-7). Genes in the immune response category included IL16 and 18, CCR1, B2M, TLR3, 6 and 7, SP2 and CX3CR1. Upregulated genes (N = 388) were particularly enriched in genes associated with the negative regulation of MAP kinase activity (FDR < 3 × 10-5), including DUSP 1, 4, 5, 6 and 18, SPRY 2, 3, and 4, SPRED2, BMP4 and RGS2. Overall, these data illustrate the power of the NHP model and the within-subject design of genomic changes due to alcohol and suggest new targets for treating severe escalated drinking following repeated alcohol abstinence attempts.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Lina Gao
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Suzanne S. Fei
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Karina Ray
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Katinka A. Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Robert Searles
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, OR, United States
| | - Rita P. Cervera-Juanes
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Rupak Khadka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Timothy L. Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Steven W. Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
6
|
Wu Y, Xing YH, Tao S, Jiao M, Zhu M, Han YT, Guo W, Tao XB. Integrated analysis of potential biomarkers associated with diabetic periodontitis development based on bioinformatics: An observational study. Medicine (Baltimore) 2023; 102:e36019. [PMID: 37986309 PMCID: PMC10659692 DOI: 10.1097/md.0000000000036019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Based on the importance of chronic inflammation in the pathogenesis of periodontitis and diabetes, the bidirectional relationship between these 2 diseases has been widely confirmed. However, the molecular mechanisms of bidirectional relationship still need to be studied further. In this study, gene expression profile data for diabetes and periodontitis were obtained from Gene Expression Omnibus (GEO) database. Integrative analytical platform were constructed, including common differentially expressed genes (cDEGs), Gene Ontology-Kyoto Encyclopedia of Genes and Genomes (GO-KEGG), and protein-protein interaction. Hub genes and essential modules were detected via Cytoscape. Key hub genes and signaling pathway that mediate chronic inflammation were validated by qPCR and Western blot. Eleven cDEGs were identified. Function analysis showed that cDEGs plays an important role in inflammatory response, cytokine receptor binding, TNF signaling pathway. As hub genes, CXCR4, IL1B, IL6, CXCL2, and MMP9 were detected based on the protein-protein interactions network. IL1B, CXCR4 mRNA were up-regulated in gingivitis samples compared with normal tissues (P < .05). Western blot indicated that the levels of TNF were enhanced in gingivitis of type 2 diabetes compared with normal tissues (P < .01). Hub gene and TNF signaling pathway are helpful to elucidate the molecular mechanism of the bidirectional relationship between periodontitis and diabetes.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yong-Hu Xing
- Oral Medical Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shuai Tao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Min Jiao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Min Zhu
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Ya-Ting Han
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wei Guo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Xiu-Bin Tao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Carvalho L, Chen H, Maienschein-Cline M, Glover EJ, Pandey SC, Lasek AW. Conserved role for PCBP1 in altered RNA splicing in the hippocampus after chronic alcohol exposure. Mol Psychiatry 2023; 28:4215-4224. [PMID: 37537282 PMCID: PMC10827656 DOI: 10.1038/s41380-023-02184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
We previously discovered using transcriptomics that rats undergoing withdrawal after chronic ethanol exposure had increased expression of several genes encoding RNA splicing factors in the hippocampus. Here, we examined RNA splicing in the rat hippocampus during withdrawal from chronic ethanol exposure and in postmortem hippocampus of human subjects diagnosed with alcohol use disorder (AUD). We found that expression of the gene encoding the splicing factor, poly r(C) binding protein 1 (PCBP1), was elevated in the hippocampus of rats during withdrawal after chronic ethanol exposure and AUD subjects. We next analyzed the rat RNA-Seq data for differentially expressed (DE) exon junctions. One gene, Hapln2, had increased usage of a novel 3' splice site in exon 4 during withdrawal. This splice site was conserved in human HAPLN2 and was used more frequently in the hippocampus of AUD compared to control subjects. To establish a functional role for PCBP1 in HAPLN2 splicing, we performed RNA immunoprecipitation (RIP) with a PCBP1 antibody in rat and human hippocampus, which showed enriched PCBP1 association near the HAPLN2 exon 4 3' splice site in the hippocampus of rats during ethanol withdrawal and AUD subjects. Our results indicate a conserved role for the splicing factor PCBP1 in aberrant splicing of HAPLN2 after chronic ethanol exposure. As the HAPLN2 gene encodes an extracellular matrix protein involved in nerve conduction velocity, use of this alternative splice site is predicted to result in loss of protein function that could negatively impact hippocampal function in AUD.
Collapse
Affiliation(s)
- Luana Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Research Informatics Core, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
8
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. RESEARCH SQUARE 2023:rs.3.rs-3337670. [PMID: 37841864 PMCID: PMC10571638 DOI: 10.21203/rs.3.rs-3337670/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. Due to limited understanding of the molecular basis of the disease, there are few pharmacological interventions available to combat AUD. In this study, we aimed to investigate the molecular correlates of impaired extinction of alcohol seeking during alcohol withdrawal using a mouse model of AUD implemented in the automated IntelliCage social system. This model enabled us to distinguish between animals exhibiting AUD-prone and AUD-resistant phenotypes, based on the presence of ≥ 2 or < 2 criteria of AUD, respectively. We utilized new generation RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. To complement the sequencing studies, we conducted ex vivo electrophysiology experiments. Our findings revealed significant dysregulation of the hippocampal genes associated with the actin cytoskeleton and synaptic function, including actin binding molecule cofilin, during alcohol withdrawal in mice meeting ≥ 2 criteria compared to those meeting < 2 criteria. Moreover, this dysregulation was accompanied by impaired synaptic transmission in the molecular layer of the hippocampal dentate gyrus (ML-DG). Additionally, we demonstrated that overexpression of cofilin in the polymorphic layer of the hippocampal dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol, impaired extinction of alcohol seeking and increased correlation between AUD behaviors, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
9
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554622. [PMID: 37662388 PMCID: PMC10473700 DOI: 10.1101/2023.08.24.554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alcohol use disorder (AUD) is characterized by excessive alcohol seeking and use. Here, we investigated the molecular correlates of impaired extinction of alcohol seeking using a multidimentional mouse model of AUD. We distinguished AUD-prone and AUD-resistant mice, based on the presence of ≥ 2 or < 2 criteria of AUD and utilized RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. Our findings revealed dysregulation of the genes associated with the actin cytoskeleton, including actin binding molecule cofilin, and impaired synaptic transmission in the hippocampi of mice meeting ≥ 2 criteria. Overexpression of cofilin in the polymorphic layer of the dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol and impaired extinction of alcohol seeking, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
11
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
12
|
Choi MR, Cho S, Kim DJ, Choi JS, Jin YB, Kim M, Chang HJ, Jeon SH, Yang YD, Lee SR. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int J Mol Sci 2022; 23:ijms23137294. [PMID: 35806296 PMCID: PMC9267046 DOI: 10.3390/ijms23137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive use of alcohol can induce neurobiological and neuropathological alterations in the brain, including the hippocampus and forebrain, through changes in neurotransmitter systems, hormonal systems, and neuroimmune processes. We aimed to investigate the effects of ethanol on the expression of coding and noncoding RNAs in a brain-derived cell line exposed to ethanol. After exposing Neuro2a cells, a neuroblastoma cell line, to ethanol for 24 and 72 h, we observed cell proliferation and analyzed up- and downregulated mRNAs and long noncoding RNAs (lncRNAs) using total RNA-Seq technology. We validated the differential expression of some mRNAs and lncRNAs by RT-qPCR and analyzed the expression of Cebpd and Rnu3a through knock-down of Cebpd. Cell proliferation was significantly reduced in cells exposed to 100 mM ethanol for 72 h, with 1773 transcripts up- or downregulated by greater than three-fold in ethanol-treated cells compared to controls. Of these, 514 were identified as lncRNAs. Differentially expressed mRNAs and lncRNAs were mainly observed in cells exposed to ethanol for 72 h, in which Atm and Cnr1 decreased, but Trib3, Cebpd, and Spdef increased. On the other hand, lncRNAs Kcnq1ot1, Tug1, and Xist were changed by ethanol, and Rnu3a in particular was greatly increased by chronic ethanol treatment through inhibition of Cebpd. Our results increase the understanding of cellular and molecular mechanisms related to coding and noncoding RNAs in an in vitro model of acute and chronic exposure to ethanol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sinyoung Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Seoul 06351, Korea;
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| |
Collapse
|
13
|
Foreman TN, Limaye AT, Bogenpohl JW. Heterozygous deletion of Cdc42bpb does not alter ethanol behaviors in mice. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000537. [PMID: 35622514 PMCID: PMC9010111 DOI: 10.17912/micropub.biology.000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/06/2022]
Abstract
The gene
Cdc42bpb
encodes a kinase with an important role in cell migration and neurodevelopment. Recent evidence suggests this gene also has an important function in the genomic response to alcohol in the brain. We tested mice with a heterozygous deletion of
Cdc42bpb
in a battery of three alcohol-related behavioral tests: loss of righting reflex, light-dark box, and two-bottle choice drinking.
Cdc42bpb
+/- mice showed no significant differences from wild type littermates in the primary output measure of any of the three tests.
Cdc42bpb
+/- mice did show a mild hyperactivity in the light-dark box, as well as some urogenital deformities.
Collapse
Affiliation(s)
- Taylor N Foreman
- Christopher Newport University; Department of Molecular Biology and Chemistry
| | - Ayanna T Limaye
- Christopher Newport University; Department of Molecular Biology and Chemistry
| | - James W Bogenpohl
- Christopher Newport University; Department of Molecular Biology and Chemistry
,
Correspondence to: James W Bogenpohl (
)
| |
Collapse
|
14
|
Singh A, Mahesh A, Noack F, Cardoso de Toledo B, Calegari F, Tiwari VK. Tcf12 and NeuroD1 cooperatively drive neuronal migration during cortical development. Development 2022; 149:dev200250. [PMID: 35147187 PMCID: PMC8918803 DOI: 10.1242/dev.200250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/06/2023]
Abstract
Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.
Collapse
Affiliation(s)
- Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Beatriz Cardoso de Toledo
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
15
|
Bogenpohl JW, Weston RM, Foreman TN, Kitchen KE, Miles MF. Chloride intracellular channel 4 (CLIC4) expression profile in the mouse medial prefrontal cortex and its regulation by ethanol. Alcohol Clin Exp Res 2022; 46:29-39. [PMID: 34839533 PMCID: PMC8799520 DOI: 10.1111/acer.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chloride intracellular channel 4 (CLIC4) is a multifunctional metamorphic protein for which a growing body of evidence supports a major role in the brain's molecular and behavioral responses to ethanol (EtOH). Although key to understanding the functional biology underlying this role, little is known about the cellular and subcellular expression patterns of CLIC4 in brain and how they are affected by EtOH. METHODS We used qRT-PCR to assess Clic4 mRNA expression in the medial prefrontal cortex (mPFC) of C57BL/6J mice in the absence and presence of acute EtOH exposure. Two complementary immunohistochemical techniques were employed to assess the subcellular localization of the CLIC4 protein and its pattern of expression across brain cell types in the mPFC in the absence and presence of acute EtOH. RESULTS Through immunohistochemical and stereological techniques, we show that CLIC4 protein is robustly expressed by oligodendrocytes (most abundant), microglia, and astrocytes, with minimal expression in neurons. Following acute EtOH exposure, we observed a rapid increase in Clic4 mRNA expression in female but not male mice and an overall increase in the number of oligodendrocytes and astrocytes expressing the CLIC4 protein. CONCLUSIONS These findings suggest that Clic4 functions as an early response gene for acute EtOH in brain, which likely underlies its ability to modulate EtOH behavior. Our results also suggest that the role of CLIC4 in the brain's response to EtOH is mediated through oligodendrocytes.
Collapse
Affiliation(s)
- James W. Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Rory M. Weston
- Department of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, VA, USA
| | - Taylor N. Foreman
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Kaitlyn E. Kitchen
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Michael F. Miles
- Department of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, VA, USA
- VCU Alcohol Research Center, Virginia Commonwealth
University, Richmond, VA, USA
| |
Collapse
|
16
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 PMCID: PMC8616825 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Walter N, Cervera-Juanes R, Zheng C, Darakjian P, Lockwood D, Cuzon-Carlson V, Ray K, Fei S, Conrad D, Searles R, Grant K, Hitzemann R. Effect of chronic ethanol consumption in rhesus macaques on the nucleus accumbens core transcriptome. Addict Biol 2021; 26:e13021. [PMID: 33942443 PMCID: PMC8588809 DOI: 10.1111/adb.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
The nucleus accumbens core (NAcc) has been repeatedly demonstrated to be a key component of the circuitry associated with excessive ethanol consumption. Previous studies have illustrated that in a nonhuman primate (NHP) model of chronic ethanol consumption, there is significant epigenetic remodeling of the NAcc. In the current study, RNA-Seq was used to examine genome-wide gene expression in eight each of control, low/binge (LD*), and high/very high (HD*) rhesus macaque drinkers. Using an FDR < 0.05, zero genes were significantly differentially expressed (DE) between LD* and controls, six genes between HD* and LD*, and 734 genes between HD* and controls. Focusing on HD* versus control DE genes, the upregulated genes (N = 366) were enriched in genes with annotations associated with signal recognition particle (SRP)-dependent co-translational protein targeting to membrane (FDR < 3 × 10-59 ), structural constituent of ribosome (FDR < 3 × 10-47 ), and ribosomal subunit (FDR < 5 × 10-48 ). Downregulated genes (N = 363) were enriched in annotations associated with behavior (FDR < 2 × 10-4 ), membrane organization (FDR < 1 × 10-4 ), inorganic cation transmembrane transporter activity (FDR < 2 × 10-3 ), synapse part (FDR < 4 × 10-10 ), glutamatergic synapse (FDR < 1 × 10-6 ), and GABAergic synapse (FDR < 6 × 10-4 ). Ingenuity Pathway Analysis (IPA) revealed that EIF2 signaling and mTOR pathways were significantly upregulated in HD* animals (FDR < 3 × 10-33 and <2 × 10-16 , respectively). Overall, the data supported our working hypothesis; excessive consumption would be associated with transcriptional differences in GABA/glutamate-related genes.
Collapse
Affiliation(s)
- Nicole Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Rita Cervera-Juanes
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Zheng
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Priscila Darakjian
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Denesa Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Verginia Cuzon-Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Karina Ray
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne Fei
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Don Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Kathleen Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
19
|
Ren K, Wang L, Wang L, Du Q, Cao J, Jin Q, An G, Li N, Dang L, Tian Y, Wang Y, Sun J. Investigating Transcriptional Dynamics Changes and Time-Dependent Marker Gene Expression in the Early Period After Skeletal Muscle Injury in Rats. Front Genet 2021; 12:650874. [PMID: 34220936 PMCID: PMC8248501 DOI: 10.3389/fgene.2021.650874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Following skeletal muscle injury (SMI), from post-injury reaction to repair consists of a complex series of dynamic changes. However, there is a paucity of research on detailed transcriptional dynamics and time-dependent marker gene expression in the early stages after SMI. In this study, skeletal muscle tissue in rats was taken at 4 to 48 h after injury for next-generation sequencing. We examined the transcriptional kinetics characteristics during above time periods after injury. STEM and maSigPro were used to screen time-correlated genes. Integrating 188 time-correlated genes with 161 genes in each time-related gene module by WGCNA, we finally identified 18 network-node regulatory genes after SMI. Histological staining analyses confirmed the mechanisms underlying changes in the tissue damage to repair process. Our research linked a variety of dynamic biological processes with specific time periods and provided insight into the characteristics of transcriptional dynamics, as well as screened time-related biological indicators with biological significance in the early stages after SMI.
Collapse
Affiliation(s)
- Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China.,Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Liangliang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Liang Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qianqian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lihong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingjie Tian
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingyuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
20
|
Araujo I, Henriksen A, Gamsby J, Gulick D. Impact of Alcohol Abuse on Susceptibility to Rare Neurodegenerative Diseases. Front Mol Biosci 2021; 8:643273. [PMID: 34179073 PMCID: PMC8220155 DOI: 10.3389/fmolb.2021.643273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the prevalence and well-recognized adverse effects of prenatal alcohol exposure and alcohol use disorder in the causation of numerous diseases, their potential roles in the etiology of neurodegenerative diseases remain poorly characterized. This is especially true of the rare neurodegenerative diseases, for which small population sizes make it difficult to conduct broad studies of specific etiological factors. Nonetheless, alcohol has potent and long-lasting effects on neurodegenerative substrates, at both the cellular and systems levels. This review highlights the general effects of alcohol in the brain that contribute to neurodegeneration across diseases, and then focuses on specific diseases in which alcohol exposure is likely to play a major role. These specific diseases include dementias (alcohol-induced, frontotemporal, and Korsakoff syndrome), ataxias (cerebellar and frontal), and Niemann-Pick disease (primarily a Type B variant and Type C). We conclude that there is ample evidence to support a role of alcohol abuse in the etiology of these diseases, but more work is needed to identify the primary mechanisms of alcohol's effects.
Collapse
Affiliation(s)
- Iskra Araujo
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Amy Henriksen
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Joshua Gamsby
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| | - Danielle Gulick
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| |
Collapse
|
21
|
Pei W, Fu L, Li SQ, Yu Y. Brain transcriptomics of nonhuman primates: A review. Neurosci Lett 2021; 753:135872. [PMID: 33812931 DOI: 10.1016/j.neulet.2021.135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/12/2022]
Abstract
The brain is one of the most important and intricate organs in our bodies. Interpreting brain function and illustrating the changes and molecular mechanisms during physiological or pathological processes are essential but sometimes difficult to achieve. In addition to histology, ethology and pharmacology, the development of transcriptomics alleviates this condition by enabling high-throughput observation of the brain at various levels of anatomical specificity. Moreover, because human brain samples are scarce, the brains of nonhuman primates are important alternative models. Here in this review, we summarize the applications of transcriptomics in nonhuman primate brain studies, including investigations of brain development, aging, toxic effects and diseases. Overall, as a powerful tool with developmental potential, transcriptomics has been widely utilized in neuroscience.
Collapse
Affiliation(s)
- Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Shui-Qing Li
- Department of Pain, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
22
|
Harris GM, Abbas S, Miles MF. GCSscore: an R package for differential gene expression analysis in Affymetrix/Thermo-Fisher whole transcriptome microarrays. BMC Genomics 2021; 22:96. [PMID: 33522903 PMCID: PMC7848880 DOI: 10.1186/s12864-021-07370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite the increasing use of RNAseq for transcriptome analysis, microarrays remain a widely-used methodology for genomic studies. The latest generation of Affymetrix/Thermo-Fisher microarrays, the ClariomD/XTA and ClariomS array, provide a sensitive and facile method for complex transcriptome expression analysis. However, existing methods of analysis for these high-density arrays do not leverage the statistical power contained in having multiple oligonucleotides representing each gene/exon, but rather summarize probes into a single expression value. We previously developed a methodology, the Sscore algorithm, for probe-level identification of differentially expressed genes (DEGs) between treatment and control samples with oligonucleotide microarrays. The Sscore algorithm was validated for sensitive detection of DEGs by comparison with existing methods. However, the prior version of the Sscore algorithm and a R-based implementation software, sscore, do not function with the latest generations of Affymetrix/Fisher microarrays due to changes in microarray design that eliminated probes previously used for estimation of non-specific binding. RESULTS Here we describe the GCSscore algorithm, which utilizes the GC-content of a given oligonucleotide probe to estimate non-specific binding using antigenomic background probes found on new generations of arrays. We implemented this algorithm in an improved GCSscore R package for analysis of modern oligonucleotide microarrays. GCSscore has multiple methods for grouping individual probes on the ClariomD/XTA chips, providing the user with differential expression analysis at the gene-level and the exon-level. By utilizing the direct probe-level intensities, the GCSscore algorithm was able to detect DEGs under stringent statistical criteria for all Clariom-based arrays. We demonstrate that for older 3'-IVT arrays, GCSscore produced very similar differential gene expression analysis results compared to the original Sscore method. However, GCSscore functioned well for both the ClariomS and ClariomD/XTA newer microarrays and outperformed existing analysis approaches insofar as the number of DEGs and cognate biological functions identified. This was particularly striking for analysis of the highly complex ClariomD/XTA based arrays. CONCLUSIONS The GCSscore package represents a powerful new application for analysis of the newest generation of oligonucleotide microarrays such as the ClariomS and ClariomD/XTA arrays produced by Affymetrix/Fisher.
Collapse
Affiliation(s)
- Guy M Harris
- VCU Pharmacology and Toxicology, Richmond, Virginia, 23298, USA
| | - Shahroze Abbas
- VCU Center for the Study of Biological Complexity, Richmond, Virginia, 23298, USA
| | - Michael F Miles
- VCU Pharmacology and Toxicology, Richmond, Virginia, 23298, USA.
- VCU Center for the Study of Biological Complexity, Richmond, Virginia, 23298, USA.
- Department of Pharmacology & Toxicology and Neurology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
23
|
Martins de Carvalho L, Fonseca PAS, Paiva IM, Damasceno S, Pedersen ASB, da Silva E Silva D, Wiers CE, Volkow ND, Brunialti Godard AL. Identifying functionally relevant candidate genes for inflexible ethanol intake in mice and humans using a guilt-by-association approach. Brain Behav 2020; 10:e01879. [PMID: 33094916 PMCID: PMC7749619 DOI: 10.1002/brb3.1879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Gene prioritization approaches are useful tools to explore and select candidate genes in transcriptome studies. Knowing the importance of processes such as neuronal activity, intracellular signal transduction, and synapse plasticity to the development and maintenance of compulsive ethanol drinking, the aim of the present study was to explore and identify functional candidate genes associated with these processes in an animal model of inflexible pattern of ethanol intake. To do this, we applied a guilt-by-association approach, using the GUILDify and ToppGene software, in our previously published microarray data from the prefrontal cortex (PFC) and striatum of inflexible drinker mice. We then tested some of the prioritized genes that showed a tissue-specific pattern in postmortem brain tissue (PFC and nucleus accumbens (NAc)) from humans with alcohol use disorder (AUD). In the mouse brain, we prioritized 44 genes in PFC and 26 in striatum, which showed opposite regulation patterns in PFC and striatum. The most prioritized of them (i.e., Plcb1 and Prkcb in PFC, and Dnm2 and Lrrk2 in striatum) were associated with synaptic neuroplasticity, a neuroadaptation associated with excessive ethanol drinking. The identification of transcription factors among the prioritized genes suggests a crucial role for Irf4 in the pattern of regulation observed between PFC and striatum. Lastly, the differential transcription of IRF4 and LRRK2 in PFC and nucleus accumbens in postmortem brains from AUD compared to control highlights their involvement in compulsive ethanol drinking in humans and mice.
Collapse
Affiliation(s)
- Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Pablo A S Fonseca
- Laboratório de Genética Humana e Médica, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
| | - Isadora M Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Samara Damasceno
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agatha S B Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel da Silva E Silva
- Laboratory on the Neurobiology of Compulsive Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA.,National Institute on Drug Abuse, Bethesda, National Institute of Health, Bethesda, MD, USA
| | - Ana L Brunialti Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
24
|
Huggett SB, Bubier JA, Chesler EJ, Palmer RHC. Do gene expression findings from mouse models of cocaine use recapitulate human cocaine use disorder in reward circuitry? GENES BRAIN AND BEHAVIOR 2020; 20:e12689. [PMID: 32720468 DOI: 10.1111/gbb.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
Abstract
Animal models of drug use have investigated possible mechanisms governing human substance use traits for over 100 years. Most cross-species research on drug use/addiction examines behavioral overlap, but studies assessing neuromolecular (e.g. RNA) correspondence are lacking. Our study utilized transcriptome-wide data from the hippocampus and ventral tegmental area (VTA)/midbrain from a total of 35 human males with cocaine use disorder/controls and 49 male C57BL/6J cocaine/saline administering/exposed mice. We hypothesized differential expressed genes and systems of co-expressed genes (gene networks) would show appreciable overlap across mouse cocaine self-administration and human cocaine use disorder. We found modest, but significant relationships between differentially expressed genes associated with cocaine self-administration (short access) and cocaine use disorder within reward circuitry. Differentially expressed genes underlying models of acute cocaine exposure (cocaine), context re-exposure and cocaine + context re-exposure were not consistently associated with human CUD across brain regions. Investigating systems of co-expressed genes, we found several validated gene networks with weak to moderate conservation between cocaine/saline self-administering mice and disordered cocaine users/controls. The most conserved hippocampal and VTA gene networks demonstrated substantial overlap (2029 common genes) and included both novel and previously implicated targets for cocaine use/addiction. Lastly, we conducted (expression-based) phenome-wide association studies of the nine common hub genes across conserved gene networks. Common hub genes were associated with dopamine/serotonin function, cocaine self-administration and other relevant mouse traits. Overall, our study pinpointed and characterized conserved brain-related RNA patterns across mouse cocaine self-administration and human cocaine use disorder. We offer recommendations for future research and add to the dialogue surrounding pre-clinical animal research for human disease.
Collapse
Affiliation(s)
- Spencer B Huggett
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, Georgia, USA
| | - Jason A Bubier
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Elissa J Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Smith ML, Lopez MF, Wolen AR, Becker HC, Miles MF. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption. PLoS One 2020; 15:e0233319. [PMID: 32469986 PMCID: PMC7259766 DOI: 10.1371/journal.pone.0233319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022] Open
Abstract
Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD). Persistent changes in brain gene expression are hypothesized to underlie the altered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. This model has previously been shown to produce long-lasting increased ethanol consumption, particularly when combining oral ethanol access with repeated cycles of intermittent vapor exposure. The interaction of CIE and oral consumption was studied by expression profiling and network analysis in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies. In all brain-regions studied the largest number of changes in gene expression were seen when comparing ethanol naïve mice to those exposed to CIE and drinking. In the prefrontal cortex, however, unique patterns of gene expression were seen compared to other brain-regions. Network analysis identified modules of co-expressed genes in all brain regions. The prefrontal cortex and nucleus accumbens showed the greatest number of modules with significant correlation to drinking behavior. Across brain-regions, however, many modules with strong correlations to drinking, both baseline intake and amount consumed after CIE, showed functional enrichment for synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Maren L. Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aaron R. Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Howard C. Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States of America
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|