1
|
Andrey T, Alexander S, Inna B, Daria Z, Viktoria A, Anastasiia SG, Kumar A, Ivan F, Arina E, Oxana SG. Age as a limiting factor for effectiveness of photostimulation of brain drainage and cognitive functions. FRONTIERS OF OPTOELECTRONICS 2025; 18:6. [PMID: 40163163 PMCID: PMC11958890 DOI: 10.1007/s12200-025-00149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/21/2025] [Indexed: 04/02/2025]
Abstract
The progressive number of old adults with cognitive impairment worldwide and the lack of effective pharmacologic therapies require the development of non-pharmacologic strategies. The photobiomodulation (PBM) is a promising method in prevention of early or mild age-related cognitive impairments. However, it remains unclear the efficacy of PBM for old patients with significant age-related cognitive dysfunction. In our study on male mice, we show a gradual increase in the brain amyloid beta (Aβ) levels and a decrease in brain drainage with age, which, however, is associated with a decline in cognitive function only in old (24 months of age) mice but not in middle-aged (12 months of age) and young (3 month of age) animals. These age-related features are accompanied by the development of hyperplasia of the meningeal lymphatic vessels (MLVs) in old mice underlying the decrease in brain drainage. PBM improves cognitive training exercises and Aβ clearance only in young and middle-aged mice, while old animals are not sensitive to PBM. These results clearly demonstrate that the PBM effects on cognitive function are correlated with age-mediated changes in the MLV network and may be effective if the MLV function is preserved. These findings expand fundamental knowledge about age differences in the effectiveness of PBM for improvement of cognitive functions and Aβ clearance as well as about the lymphatic mechanisms responsible for age decline in sensitivity to the therapeutic PBM effects.
Collapse
Affiliation(s)
- Terskov Andrey
- Department of Biology, Saratov State University, Saratov, 410012, Russia
| | - Shirokov Alexander
- Department of Biology, Saratov State University, Saratov, 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | - Blokhina Inna
- Department of Biology, Saratov State University, Saratov, 410012, Russia
| | | | - Adushkina Viktoria
- Department of Biology, Saratov State University, Saratov, 410012, Russia
| | | | - Atul Kumar
- The Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, Varanasi, 221005, India
| | - Fedosov Ivan
- Institute of Physics, Saratov State University, Saratov, 410012, Russia
| | - Evsukova Arina
- Department of Biology, Saratov State University, Saratov, 410012, Russia
| | | |
Collapse
|
2
|
Kim D, Park P, Li X, Wong-Campos JD, Tian H, Moult EM, Grimm JB, Lavis LD, Cohen AE. EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation. Nat Neurosci 2025:10.1038/s41593-025-01922-5. [PMID: 40164742 DOI: 10.1038/s41593-025-01922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Chavlis S, Poirazi P. Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning. Nat Commun 2025; 16:943. [PMID: 39843414 PMCID: PMC11754790 DOI: 10.1038/s41467-025-56297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Artificial neural networks (ANNs) are at the core of most Deep Learning (DL) algorithms that successfully tackle complex problems like image recognition, autonomous driving, and natural language processing. However, unlike biological brains who tackle similar problems in a very efficient manner, DL algorithms require a large number of trainable parameters, making them energy-intensive and prone to overfitting. Here, we show that a new ANN architecture that incorporates the structured connectivity and restricted sampling properties of biological dendrites counteracts these limitations. We find that dendritic ANNs are more robust to overfitting and match or outperform traditional ANNs on several image classification tasks while using significantly fewer trainable parameters. These advantages are likely the result of a different learning strategy, whereby most of the nodes in dendritic ANNs respond to multiple classes, unlike classical ANNs that strive for class-specificity. Our findings suggest that the incorporation of dendritic properties can make learning in ANNs more precise, resilient, and parameter-efficient and shed new light on how biological features can impact the learning strategies of ANNs.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
4
|
Cupolillo D, Regio V, Barberis A. Synaptic microarchitecture: the role of spatial interplay between excitatory and inhibitory inputs in shaping dendritic plasticity and neuronal output. Front Cell Neurosci 2024; 18:1513602. [PMID: 39758273 PMCID: PMC11695373 DOI: 10.3389/fncel.2024.1513602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
| | | | - Andrea Barberis
- Istituto Italiano di Tecnologia, Synaptic Plasticity of Inhibitory Networks, Genova, Italy
| |
Collapse
|
5
|
Gerasimov E, Pchitskaya E, Vlasova O, Bezprozvanny I. Dynamic changes in the hippocampal neuronal circuits activity following acute stress revealed by miniature fluorescence microscopy imaging. Mol Brain 2024; 17:92. [PMID: 39695833 DOI: 10.1186/s13041-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Coordinated activity of neuronal ensembles is a basis for information processing in the brain. Recent development of miniscope imaging technology enabled recordings of neuronal circuits activity in vivo in freely behaving animals. Acute stress is believed to affect various hippocampal functions, especially memory. In the current study, we utilized miniscope imaging to investigate the hippocampal neuronal circuits properties in a mouse as function of time and immediately in response to an acute stress, induced by passive restraint, 3 h and 10 days after. Comprehensive quantitative analysis of network activity changes at the neuronal ensembles level revealed highly stable neuronal activity parameters, which exhibited a rapid and robust shift in response to acute stress stimulation. This shift was accompanied by the restructuring of the pairwise-correlated neuronal pairs. Remarkably, we discovered that ensembles activity characteristics returned to the initial state following recovery period, demonstrating hippocampal homeostatic stability at the neuronal circuits level. Obtained results provide an evidence about hippocampal neuronal ensembles activity in response to acute stress over time.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| |
Collapse
|
6
|
Lee C, Kaang BK. Clustering of synaptic engram: Functional and structural basis of memory. Neurobiol Learn Mem 2024; 216:107993. [PMID: 39424222 DOI: 10.1016/j.nlm.2024.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Studies on memory engram have demonstrated how experience and learning can be allocated at a neuronal level for centuries. Recently emerging evidence narrowed down further to the synaptic connections and their patterned allocation on dendrites. Notably, groups of synapses within a specific range within dendrites known as 'synaptic clusters' have been revealed in association with learning and memory. Previous investigations have shown that a variety of factors mediated by both presynaptic inputs and postsynaptic dendrites contribute to clustering. Here, we review the neural mechanism of synaptic clustering and its correlation with memory. We highlight the recent findings about the clustering of synaptic engrams and memory formation and discuss future directions.
Collapse
Affiliation(s)
- Chaery Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
7
|
Zhang C, Vatan T, Speer CM. Activity-dependent synapse clustering underlies eye-specific competition in the developing retinogeniculate system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560055. [PMID: 39484601 PMCID: PMC11526857 DOI: 10.1101/2023.09.28.560055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Co-active synaptic connections are often spatially clustered to facilitate local dendritic computations underlying learning, memory, and basic sensory processing. In the mammalian visual system, retinal ganglion cell (RGC) axons converge to form clustered synaptic inputs that enable local signal integration in the dorsal lateral geniculate nucleus (dLGN) of the thalamus. While visual experience promotes retinogeniculate synapse clustering after eye-opening, the earliest events in cluster formation prior to visual experience are unknown. Here, using volumetric super-resolution single-molecule localization microscopy and eye-specific labeling of developing retinogeniculate synapses in mice, we show that synaptic clustering is eye-specific and activity-dependent during retinogeniculate refinement in the first postnatal week. We identified a subset of retinogeniculate synapses with multiple active zones that are surrounded by like-eye synapses and depleted of synapse clustering from the opposite eye. In mutant mice with disrupted spontaneous retinal wave activity, synapses with multiple active zones still form, but do not exhibit the synaptic clustering seen in controls. These results highlight a role for spontaneous retinal activity in regulating eye-specific synaptic clustering in circuits essential for visual perception and behavior.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| | - Tarlan Vatan
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| |
Collapse
|
8
|
Chavlis S, Poirazi P. Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning. ARXIV 2024:arXiv:2404.03708v2. [PMID: 39314509 PMCID: PMC11419189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Artificial neural networks (ANNs) are at the core of most Deep learning (DL) algorithms that successfully tackle complex problems like image recognition, autonomous driving, and natural language processing. However, unlike biological brains who tackle similar problems in a very efficient manner, DL algorithms require a large number of trainable parameters, making them energy-intensive and prone to overfitting. Here, we show that a new ANN architecture that incorporates the structured connectivity and restricted sampling properties of biological dendrites counteracts these limitations. We find that dendritic ANNs are more robust to overfitting and outperform traditional ANNs on several image classification tasks while using significantly fewer trainable parameters. These advantages are likely the result of a different learning strategy, whereby most of the nodes in dendritic ANNs respond to multiple classes, unlike classical ANNs that strive for class-specificity. Our findings suggest that the incorporation of dendritic properties can make learning in ANNs more precise, resilient, and parameter-efficient and shed new light on how biological features can impact the learning strategies of ANNs.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| |
Collapse
|
9
|
Regele-Blasco E, Palmer LM. The plasticity of pyramidal neurons in the behaving brain. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230231. [PMID: 38853566 PMCID: PMC11407500 DOI: 10.1098/rstb.2023.0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Elena Regele-Blasco
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| | - Lucy M. Palmer
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| |
Collapse
|
10
|
Horton S, Mastrolia V, Jackson RE, Kemlo S, Pereira Machado PM, Carbajal MA, Hindges R, Fleck RA, Aguiar P, Neves G, Burrone J. Excitatory and inhibitory synapses show a tight subcellular correlation that weakens over development. Cell Rep 2024; 43:114361. [PMID: 38900634 DOI: 10.1016/j.celrep.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 μm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.
Collapse
Affiliation(s)
- Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Vincenzo Mastrolia
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rachel E Jackson
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sarah Kemlo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Robert Hindges
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Paulo Aguiar
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
11
|
Faress I, Khalil V, Hou WH, Moreno A, Andersen N, Fonseca R, Piriz J, Capogna M, Nabavi S. Non-Hebbian plasticity transforms transient experiences into lasting memories. eLife 2024; 12:RP91421. [PMID: 39023519 PMCID: PMC11257676 DOI: 10.7554/elife.91421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The dominant models of learning and memory, such as Hebbian plasticity, propose that experiences are transformed into memories through input-specific synaptic plasticity at the time of learning. However, synaptic plasticity is neither strictly input-specific nor restricted to the time of its induction. The impact of such forms of non-Hebbian plasticity on memory has been difficult to test, and hence poorly understood. Here, we demonstrate that synaptic manipulations can deviate from the Hebbian model of learning, yet produce a lasting memory. First, we established a weak associative conditioning protocol in mice, where optogenetic stimulation of sensory thalamic input to the amygdala was paired with a footshock, but no detectable memory was formed. However, when the same input was potentiated minutes before or after, or even 24 hr later, the associative experience was converted into a lasting memory. Importantly, potentiating an independent input to the amygdala minutes but not 24 hr after the pairing produced a lasting memory. Thus, our findings suggest that the process of transformation of a transient experience into a memory is neither restricted to the time of the experience nor to the synapses triggered by it; instead, it can be influenced by past and future events.
Collapse
Affiliation(s)
- Islam Faress
- Department of Molecular Biology and Genetics, Aarhus UniversityAahrusDenmark
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAahrusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| | - Valentina Khalil
- Department of Molecular Biology and Genetics, Aarhus UniversityAahrusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAahrusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Andrea Moreno
- Department of Molecular Biology and Genetics, Aarhus UniversityAahrusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAahrusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| | - Niels Andersen
- Department of Molecular Biology and Genetics, Aarhus UniversityAahrusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAahrusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Universidade Nova de LisboaLisbonPortugal
| | - Joaquin Piriz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos AiresBuenos AiresArgentina
| | - Marco Capogna
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| | - Sadegh Nabavi
- Department of Molecular Biology and Genetics, Aarhus UniversityAahrusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAahrusDenmark
- Center for Proteins in Memory – PROMEMO, Danish National Research Foundation, Aarhus UniversityAahrusDenmark
| |
Collapse
|
12
|
Choucry A, Nomoto M, Inokuchi K. Engram mechanisms of memory linking and identity. Nat Rev Neurosci 2024; 25:375-392. [PMID: 38664582 DOI: 10.1038/s41583-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Memories are thought to be stored in neuronal ensembles referred to as engrams. Studies have suggested that when two memories occur in quick succession, a proportion of their engrams overlap and the memories become linked (in a process known as prospective linking) while maintaining their individual identities. In this Review, we summarize the key principles of memory linking through engram overlap, as revealed by experimental and modelling studies. We describe evidence of the involvement of synaptic memory substrates, spine clustering and non-linear neuronal capacities in prospective linking, and suggest a dynamic somato-synaptic model, in which memories are shared between neurons yet remain separable through distinct dendritic and synaptic allocation patterns. We also bring into focus retrospective linking, in which memories become associated after encoding via offline reactivation, and discuss key temporal and mechanistic differences between prospective and retrospective linking, as well as the potential differences in their cognitive outcomes.
Collapse
Affiliation(s)
- Ali Choucry
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masanori Nomoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
13
|
Jauch J, Becker M, Tetzlaff C, Fauth MJ. Differences in the consolidation by spontaneous and evoked ripples in the presence of active dendrites. PLoS Comput Biol 2024; 20:e1012218. [PMID: 38917228 PMCID: PMC11230591 DOI: 10.1371/journal.pcbi.1012218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/08/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Ripples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other brain areas and often coincides with dendritic spikes. Yet, it is unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect plasticity and consolidation. Here, we use mathematical modeling to compare these cases. We find that consolidation as well as the emergence of spontaneous ripples depends on a reliable propagation of activity in feed-forward structures which constitute memory representations. This propagation is facilitated by excitable dendrites, which entail that a few strong synapses are sufficient to trigger neuronal firing. In this situation, stimulation-evoked ripples lead to the potentiation of weak synapses within the feed-forward structure and, thus, to a consolidation of a more general sequence memory. However, spontaneous ripples that occur without stimulation, only consolidate a sparse backbone of the existing strong feed-forward structure. Based on this, we test a recently hypothesized scenario in which the excitability of dendrites is transiently enhanced after learning, and show that such a transient increase can strengthen, restructure and consolidate even weak hippocampal memories, which would be forgotten otherwise. Hence, a transient increase in dendritic excitability would indeed provide a mechanism for stabilizing memories.
Collapse
Affiliation(s)
- Jannik Jauch
- Third Institute for Physics, Georg-August-University, Göttingen, Germany
| | - Moritz Becker
- Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Jan Fauth
- Third Institute for Physics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
14
|
Chelini G, Mirzapourdelavar H, Durning P, Baidoe-Ansah D, Sethi MK, O'Donovan SM, Klengel T, Balasco L, Berciu C, Boyer-Boiteau A, McCullumsmith R, Ressler KJ, Zaia J, Bozzi Y, Dityatev A, Berretta S. Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice. Cell Rep 2024; 43:114112. [PMID: 38676925 PMCID: PMC11251421 DOI: 10.1016/j.celrep.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Peter Durning
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sinead M O'Donovan
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Translational Molecular Genomics Laboratory, Mclean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luigi Balasco
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Cristina Berciu
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Anne Boyer-Boiteau
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert McCullumsmith
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Yuri Bozzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy; CNR Neuroscience Institute Pisa, 56124 Pisa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Moreno-Sanchez A, Vasserman AN, Jang H, Hina BW, von Reyn CR, Ausborn J. Morphology and synapse topography optimize linear encoding of synapse numbers in Drosophila looming responsive descending neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591016. [PMID: 38712267 PMCID: PMC11071487 DOI: 10.1101/2024.04.24.591016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography in Drosophila melanogaster looming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites. Within these spatially constrained clusters, synapses are not retinotopically organized, but instead adopt near random distributions. To investigate how this organization strategy impacts DN integration, we developed multicompartment models of DNs fitted to experimental data and using precise EM morphologies and synapse locations. We find that DN dendrite morphologies normalize EPSP amplitudes of individual synaptic inputs and that near random distributions of synapses ensure linear encoding of synapse numbers from individual VPNs. These findings illuminate how synaptic topography influences dendritic integration and suggest that linear encoding of synapse numbers may be a default strategy established through connectivity and passive neuron properties, upon which active properties and plasticity can then tune as needed.
Collapse
Affiliation(s)
- Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Alexander N. Vasserman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - HyoJong Jang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
16
|
Stevens NA, Lankisch K, Draguhn A, Engelhardt M, Both M, Thome C. Increased Interhemispheric Connectivity of a Distinct Type of Hippocampal Pyramidal Cells. J Neurosci 2024; 44:e0440232023. [PMID: 38123997 PMCID: PMC10869156 DOI: 10.1523/jneurosci.0440-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.
Collapse
Affiliation(s)
- Nikolas Andreas Stevens
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Katja Lankisch
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Thome
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
17
|
Baronig M, Legenstein R. Context association in pyramidal neurons through local synaptic plasticity in apical dendrites. Front Neurosci 2024; 17:1276706. [PMID: 38357522 PMCID: PMC10864492 DOI: 10.3389/fnins.2023.1276706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
The unique characteristics of neocortical pyramidal neurons are thought to be crucial for many aspects of information processing and learning in the brain. Experimental data suggests that their segregation into two distinct compartments, the basal dendrites close to the soma and the apical dendrites branching out from the thick apical dendritic tuft, plays an essential role in cortical organization. A recent hypothesis states that layer 5 pyramidal cells associate top-down contextual information arriving at their apical tuft with features of the sensory input that predominantly arrives at their basal dendrites. It has however remained unclear whether such context association could be established by synaptic plasticity processes. In this work, we formalize the objective of such context association learning through a mathematical loss function and derive a plasticity rule for apical synapses that optimizes this loss. The resulting plasticity rule utilizes information that is available either locally at the synapse, through branch-local NMDA spikes, or through global Ca2+events, both of which have been observed experimentally in layer 5 pyramidal cells. We show in computer simulations that the plasticity rule enables pyramidal cells to associate top-down contextual input patterns with high somatic activity. Furthermore, it enables networks of pyramidal neuron models to perform context-dependent tasks and enables continual learning by allocating new dendritic branches to novel contexts.
Collapse
Affiliation(s)
| | - Robert Legenstein
- Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| |
Collapse
|
18
|
Karbowski J, Urban P. Cooperativity, Information Gain, and Energy Cost During Early LTP in Dendritic Spines. Neural Comput 2024; 36:271-311. [PMID: 38101326 DOI: 10.1162/neco_a_01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023]
Abstract
We investigate a mutual relationship between information and energy during the early phase of LTP induction and maintenance in a large-scale system of mutually coupled dendritic spines, with discrete internal states and probabilistic dynamics, within the framework of nonequilibrium stochastic thermodynamics. In order to analyze this computationally intractable stochastic multidimensional system, we introduce a pair approximation, which allows us to reduce the spine dynamics into a lower-dimensional manageable system of closed equations. We found that the rates of information gain and energy attain their maximal values during an initial period of LTP (i.e., during stimulation), and after that, they recover to their baseline low values, as opposed to a memory trace that lasts much longer. This suggests that the learning phase is much more energy demanding than the memory phase. We show that positive correlations between neighboring spines increase both a duration of memory trace and energy cost during LTP, but the memory time per invested energy increases dramatically for very strong, positive synaptic cooperativity, suggesting a beneficial role of synaptic clustering on memory duration. In contrast, information gain after LTP is the largest for negative correlations, and energy efficiency of that information generally declines with increasing synaptic cooperativity. We also find that dendritic spines can use sparse representations for encoding long-term information, as both energetic and structural efficiencies of retained information and its lifetime exhibit maxima for low fractions of stimulated synapses during LTP. Moreover, we find that such efficiencies drop significantly with increasing the number of spines. In general, our stochastic thermodynamics approach provides a unifying framework for studying, from first principles, information encoding, and its energy cost during learning and memory in stochastic systems of interacting synapses.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Paulina Urban
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences and Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
- Laboratory of Databases and Business Analytics, National Information Processing Institute, National Research Institute, Warsaw 00-608, Poland
| |
Collapse
|
19
|
Sanabria BD, Baskar SS, Yonk AJ, Linares-Garcia I, Abraira VE, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. eNeuro 2024; 11:ENEURO.0503-23.2023. [PMID: 38164611 PMCID: PMC10849041 DOI: 10.1523/eneuro.0503-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.
Collapse
Affiliation(s)
- Branden D Sanabria
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Sindhuja S Baskar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Iván Linares-Garcia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| |
Collapse
|
20
|
Kim D, Park P, Li X, Wong Campos JD, Tian H, Moult EM, Grimm JB, Lavis L, Cohen AE. Mapping memories: pulse-chase labeling reveals AMPA receptor dynamics during memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.541296. [PMID: 37292614 PMCID: PMC10246012 DOI: 10.1101/2023.05.26.541296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms governing learning and memory. We developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) insertion in vivo by pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach allows for single-synapse resolution maps of plasticity in genetically targeted neurons during memory formation. We investigated the relationship between synapse-level and cell-level memory encodings by mapping synaptic plasticity and cFos expression in hippocampal CA1 pyramidal cells upon contextual fear conditioning (CFC). We observed a strong correlation between synaptic plasticity and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J David Wong Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Makarov R, Pagkalos M, Poirazi P. Dendrites and efficiency: Optimizing performance and resource utilization. Curr Opin Neurobiol 2023; 83:102812. [PMID: 37980803 DOI: 10.1016/j.conb.2023.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
The brain is a highly efficient system that has evolved to optimize performance under limited resources. In this review, we highlight recent theoretical and experimental studies that support the view that dendrites make information processing and storage in the brain more efficient. This is achieved through the dynamic modulation of integration versus segregation of inputs and activity within a neuron. We argue that under conditions of limited energy and space, dendrites help biological networks to implement complex functions such as processing natural stimuli on behavioral timescales, performing the inference process on those stimuli in a context-specific manner, and storing the information in overlapping populations of neurons. A global picture starts to emerge, in which dendrites help the brain achieve efficiency through a combination of optimization strategies that balance the tradeoff between performance and resource utilization.
Collapse
Affiliation(s)
- Roman Makarov
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece; Department of Biology, University of Crete, Heraklion, 70013, Greece. https://twitter.com/_RomanMakarov
| | - Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece; Department of Biology, University of Crete, Heraklion, 70013, Greece. https://twitter.com/MPagkalos
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
22
|
Jeanneteau F. Stress and the risk of Alzheimer dementia: Can deconstructed engrams be rebuilt? J Neuroendocrinol 2023; 35:e13235. [PMID: 36775895 DOI: 10.1111/jne.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The exact neuropathological mechanism by which the dementia process unfolds is under intense scrutiny. The disease affects about 38 million people worldwide, 70% of which are clinically diagnosed with Alzheimer's disease (AD). If the destruction of synapses essential for learning, planning and decision-making is part of the problem, must the restoration of previously lost synapses be part of the solution? It is plausible that neuronal capacity to restitute information corresponds with the adaptive capacity of its connectivity reserve. A challenge will be to promote the functional connectivity that can compensate for the lost one. This will require better clarification of the remodeling of functional connectivity during the progression of AD dementia and its reversal upon experimental treatment. A major difficulty is to promote the neural pathways that are atrophied in AD dementia while suppressing others that are bolstered. Therapeutic strategies should aim at scaling functional connectivity to a just balance between the atrophic and hypertrophic systems. However, the exact factors that can help reach this objective are still unclear. Similarities between the effects of chronic stress and some neuropathological mechanisms underlying AD dementia support the idea that common components deserve prime attention as therapeutic targets.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
23
|
Cohen T, Shomron N. Can RNA Affect Memory Modulation? Implications for PTSD Understanding and Treatment. Int J Mol Sci 2023; 24:12908. [PMID: 37629089 PMCID: PMC10454422 DOI: 10.3390/ijms241612908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Memories are a central aspect of our lives, but the mechanisms underlying their formation, consolidation, retrieval, and extinction remain poorly understood. In this review, we explore the molecular mechanisms of memory modulation and investigate the effects of RNA on these processes. Specifically, we examine the effects of time and location on gene expression alterations. We then discuss the potential for harnessing these alterations to modulate memories, particularly fear memories, to alleviate post-traumatic stress disorder (PTSD) symptoms. The current state of research suggests that transcriptional changes play a major role in memory modulation and targeting them through microRNAs may hold promise as a novel approach for treating memory-related disorders such as PTSD.
Collapse
Affiliation(s)
- Tehila Cohen
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Innovation Labs (TILabs), Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
Bell MK, Lee CT, Rangamani P. Spatiotemporal modelling reveals geometric dependence of AMPAR dynamics on dendritic spine morphology. J Physiol 2023; 601:3329-3350. [PMID: 36326020 DOI: 10.1113/jp283407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
The modification of neural circuits depends on the strengthening and weakening of synaptic connections. Synaptic strength is often correlated to the density of the ionotropic, glutamatergic receptors, AMPARs, (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) at the postsynaptic density (PSD). While AMPAR density is known to change based on complex biological signalling cascades, the effect of geometric factors such as dendritic spine shape, size and curvature remain poorly understood. In this work, we developed a deterministic, spatiotemporal model to study the dynamics of AMPARs during long-term potentiation (LTP). This model includes a minimal set of biochemical events that represent the upstream signalling events, trafficking of AMPARs to and from the PSD, lateral diffusion in the plane of the spine membrane, and the presence of an extrasynaptic AMPAR pool. Using idealized and realistic spine geometries, we show that the dynamics and increase of bound AMPARs at the PSD depends on a combination of endo- and exocytosis, membrane diffusion, the availability of free AMPARs and intracellular signalling interactions. We also found non-monotonic relationships between spine volume and the change in AMPARs at the PSD, suggesting that spines restrict changes in AMPARs to optimize resources and prevent runaway potentiation. KEY POINTS: Synaptic plasticity involves dynamic biochemical and physical remodelling of small protrusions called dendritic spines along the dendrites of neurons. Proper synaptic functionality within these spines requires changes in receptor number at the synapse, which has implications for downstream neural functions, such as learning and memory formation. In addition to being signalling subcompartments, spines also have unique morphological features that can play a role in regulating receptor dynamics on the synaptic surface. We have developed a spatiotemporal model that couples biochemical signalling and receptor trafficking modalities in idealized and realistic spine geometries to investigate the role of biochemical and biophysical factors in synaptic plasticity. Using this model, we highlight the importance of spine size and shape in regulating bound AMPA receptor dynamics that govern synaptic plasticity, and predict how spine shape might act to reset synaptic plasticity as a built-in resource optimization and regulation tool.
Collapse
Affiliation(s)
- Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
25
|
Trpevski D, Khodadadi Z, Carannante I, Hellgren Kotaleski J. Glutamate spillover drives robust all-or-none dendritic plateau potentials-an in silico investigation using models of striatal projection neurons. Front Cell Neurosci 2023; 17:1196182. [PMID: 37469606 PMCID: PMC10352111 DOI: 10.3389/fncel.2023.1196182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Plateau potentials are a critical feature of neuronal excitability, but their all-or-none behavior is not easily captured in modeling. In this study, we investigated models of plateau potentials in multi-compartment neuron models and found that including glutamate spillover provides robust all-or-none behavior. This result arises due to the prolonged duration of extrasynaptic glutamate. When glutamate spillover is not included, the all-or-none behavior is very sensitive to the steepness of the Mg2+ block. These results suggest a potentially significant role of glutamate spillover in plateau potential generation, providing a mechanism for robust all-or-none behavior across a wide range of slopes of the Mg2+ block curve. We also illustrate the importance of the all-or-none plateau potential behavior for nonlinear computation with regard to the nonlinear feature binding problem.
Collapse
Affiliation(s)
- Daniel Trpevski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zahra Khodadadi
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Carannante
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Makarov R, Pagkalos M, Poirazi P. Dendrites and Efficiency: Optimizing Performance and Resource Utilization. ARXIV 2023:arXiv:2306.07101v1. [PMID: 37396597 PMCID: PMC10312813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The brain is a highly efficient system evolved to achieve high performance with limited resources. We propose that dendrites make information processing and storage in the brain more efficient through the segregation of inputs and their conditional integration via nonlinear events, the compartmentalization of activity and plasticity and the binding of information through synapse clustering. In real-world scenarios with limited energy and space, dendrites help biological networks process natural stimuli on behavioral timescales, perform the inference process on those stimuli in a context-specific manner, and store the information in overlapping populations of neurons. A global picture starts to emerge, in which dendrites help the brain achieve efficiency through a combination of optimization strategies balancing the tradeoff between performance and resource utilization.
Collapse
Affiliation(s)
- Roman Makarov
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| |
Collapse
|
27
|
Lube AJ, Ma X, Carlson BA. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo. J Neurophysiol 2023; 129:1127-1144. [PMID: 37073981 PMCID: PMC10151048 DOI: 10.1152/jn.00498.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strength could alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity in vivo and replicate those patterns in vitro in behaviorally relevant ways. This makes it difficult to make connections between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the mormyrid species Brevimyrus niger and Brienomyrus brachyistius, which produce electric organ discharges for electrolocation and communication, we can precisely control the timing of synaptic input in vivo and replicate these same temporal patterns of synaptic input in vitro. In central electrosensory neurons in the electric communication pathway, using whole cell intracellular recordings in vitro, we paired presynaptic input with postsynaptic spiking at different delays. Using whole cell intracellular recordings in awake, behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found that Hebbian STDP predictably alters sensory tuning in vitro and is mediated by NMDA receptors. However, the change in synaptic responses induced by sensory stimulation in vivo did not adhere to the direction predicted by the STDP observed in vitro. Further analysis suggests that this difference is influenced by polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at identified synapses may not drive predictable changes in sensory responses at the circuit level.NEW & NOTEWORTHY We replicated behaviorally relevant temporal patterns of synaptic activity in vitro and used the same patterns during sensory stimulation in vivo. There was a Hebbian spike timing-dependent plasticity (STDP) pattern in vitro, but sensory responses in vivo did not shift according to STDP predictions. Analysis suggests that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons. These results suggest that STDP rules at synapses in vitro do not necessarily apply to circuits in vivo.
Collapse
Affiliation(s)
- Adalee J Lube
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaofeng Ma
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
28
|
Wagle S, Kraynyukova N, Hafner AS, Tchumatchenko T. Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. Mol Cell Neurosci 2023; 125:103846. [PMID: 36963534 DOI: 10.1016/j.mcn.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function.
Collapse
Affiliation(s)
- Surbhit Wagle
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany
| | - Nataliya Kraynyukova
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tatjana Tchumatchenko
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
29
|
Dainauskas JJ, Marie H, Migliore M, Saudargiene A. GluN2B-NMDAR subunit contribution on synaptic plasticity: A phenomenological model for CA3-CA1 synapses. Front Synaptic Neurosci 2023; 15:1113957. [PMID: 37008680 PMCID: PMC10050887 DOI: 10.3389/fnsyn.2023.1113957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Synaptic plasticity is believed to be a key mechanism underlying learning and memory. We developed a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model for synaptic modifications at hippocampal CA3-CA1 synapses on a hippocampal CA1 pyramidal neuron. The model incorporates the GluN2A-NMDA and GluN2B-NMDA receptor subunit-based functions and accounts for the synaptic strength dependence on the postsynaptic NMDA receptor composition and functioning without explicitly modeling the NMDA receptor-mediated intracellular calcium, a local trigger of synaptic plasticity. We embedded the model into a two-compartmental model of a hippocampal CA1 pyramidal cell and validated it against experimental data of spike-timing-dependent synaptic plasticity (STDP), high and low-frequency stimulation. The developed model predicts altered learning rules in synapses formed on the apical dendrites of the detailed compartmental model of CA1 pyramidal neuron in the presence of the GluN2B-NMDA receptor hypofunction and can be used in hippocampal networks to model learning in health and disease.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Ausra Saudargiene
| |
Collapse
|
30
|
Balcioglu A, Gillani R, Doron M, Burnell K, Ku T, Erisir A, Chung K, Segev I, Nedivi E. Mapping thalamic innervation to individual L2/3 pyramidal neurons and modeling their 'readout' of visual input. Nat Neurosci 2023; 26:470-480. [PMID: 36732641 DOI: 10.1038/s41593-022-01253-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The thalamus is the main gateway for sensory information from the periphery to the mammalian cerebral cortex. A major conundrum has been the discrepancy between the thalamus's central role as the primary feedforward projection system into the neocortex and the sparseness of thalamocortical synapses. Here we use new methods, combining genetic tools and scalable tissue expansion microscopy for whole-cell synaptic mapping, revealing the number, density and size of thalamic versus cortical excitatory synapses onto individual layer 2/3 (L2/3) pyramidal cells (PCs) of the mouse primary visual cortex. We find that thalamic inputs are not only sparse, but remarkably heterogeneous in number and density across individual dendrites and neurons. Most surprising, despite their sparseness, thalamic synapses onto L2/3 PCs are smaller than their cortical counterparts. Incorporating these findings into fine-scale, anatomically faithful biophysical models of L2/3 PCs reveals how individual neurons with sparse and weak thalamocortical synapses, embedded in small heterogeneous neuronal ensembles, may reliably 'read out' visually driven thalamic input.
Collapse
Affiliation(s)
- Aygul Balcioglu
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Gillani
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Doron
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Kendyll Burnell
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taeyun Ku
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Medical Engineering and Science, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Lee C, Lee BH, Jung H, Lee C, Sung Y, Kim H, Kim J, Shim JY, Kim JI, Choi DI, Park HY, Kaang BK. Hippocampal engram networks for fear memory recruit new synapses and modify pre-existing synapses in vivo. Curr Biol 2023; 33:507-516.e3. [PMID: 36638799 DOI: 10.1016/j.cub.2022.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
As basic units of neural networks, ensembles of synapses underlie cognitive functions such as learning and memory. These synaptic engrams show elevated synaptic density among engram cells following contextual fear memory formation. Subsequent analysis of the CA3-CA1 engram synapse revealed larger spine sizes, as the synaptic connectivity correlated with the memory strength. Here, we elucidate the synapse dynamics between CA3 and CA1 by tracking identical synapses at multiple time points by adapting two-photon microscopy and dual-eGRASP technique in vivo. After memory formation, synaptic connections between engram populations are enhanced in conjunction with synaptogenesis within the hippocampal network. However, extinction learning specifically correlated with the disappearance of CA3 engram to CA1 engram (E-E) synapses. We observed "newly formed" synapses near pre-existing synapses, which clustered CA3-CA1 engram synapses after fear memory formation. Overall, we conclude that dynamics at CA3 to CA1 E-E synapses are key sites for modification during fear memory states.
Collapse
Affiliation(s)
- Chaery Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyunsu Jung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
| | - Chiwoo Lee
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
| | - Yongmin Sung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jooyoung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jae Youn Shim
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji-Il Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Dong Il Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
32
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
34
|
Buchanan IM, Smith TM, Gerber AP, Seibt J. Are there roles for heterogeneous ribosomes during sleep in the rodent brain? Front Mol Biosci 2022; 9:1008921. [PMID: 36275625 PMCID: PMC9582285 DOI: 10.3389/fmolb.2022.1008921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.
Collapse
Affiliation(s)
- Isla M. Buchanan
- Integrated Master Programme in Biochemistry, University of Surrey, Guildford, United Kingdom
| | - Trevor M. Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| |
Collapse
|
35
|
Currin CB, Raimondo JV. Computational models reveal how chloride dynamics determine the optimal distribution of inhibitory synapses to minimise dendritic excitability. PLoS Comput Biol 2022; 18:e1010534. [PMID: 36149893 PMCID: PMC9534446 DOI: 10.1371/journal.pcbi.1010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/05/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Many neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses combines at an encircled branch junction. The extent of this inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This inhibitory accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising–but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to–but not at–a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- by loading that occurs when inhibitory synapses are co-located. Dendritic branches allow for a rich repertoire of computational capabilities for neurons within the brain. Inhibitory synaptic inputs, which utilise the neurotransmitter GABA, refine and enhance dendritic computations. They are traditionally viewed with regards to their inhibitory effect on action potential generation at the neuronal cell body. Here, we studied the local effects of inhibitory synapses on excitability in dendrites. We also considered the dynamic nature of inhibition that deteriorates the longer it is active due to intracellular chloride ion loading. The central goal of our investigation was to find the best locations for multiple inhibitory synapses to maximise their combined inhibitory effectiveness on nearby excitation in the dendritic tree. We found that the optimal distribution is when inhibitory synapses closely encircle a branch junction, without being co-located at the junction itself. This maximises how their inhibitory influence combines whilst minimising the deleterious effects of chloride loading.
Collapse
Affiliation(s)
- Christopher Brian Currin
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Amano R, Nakao M, Matsumiya K, Miwakeichi F. A computational model to explore how temporal stimulation patterns affect synapse plasticity. PLoS One 2022; 17:e0275059. [PMID: 36149886 PMCID: PMC9506666 DOI: 10.1371/journal.pone.0275059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Plasticity-related proteins (PRPs), which are synthesized in a synapse activation-dependent manner, are shared by multiple synapses to a limited spatial extent for a specific period. In addition, stimulated synapses can utilize shared PRPs through synaptic tagging and capture (STC). In particular, the phenomenon by which short-lived early long-term potentiation is transformed into long-lived late long-term potentiation using shared PRPs is called “late-associativity,” which is the underlying principle of “cluster plasticity.” We hypothesized that the competitive capture of PRPs by multiple synapses modulates late-associativity and affects the fate of each synapse in terms of whether it is integrated into a synapse cluster. We tested our hypothesis by developing a computational model to simulate STC, late-associativity, and the competitive capture of PRPs. The experimental results obtained using the model revealed that the number of competing synapses, timing of stimulation to each synapse, and basal PRP level in the dendritic compartment altered the effective temporal window of STC and influenced the conditions under which late-associativity occurs. Furthermore, it is suggested that the competitive capture of PRPs results in the selection of synapses to be integrated into a synapse cluster via late-associativity.
Collapse
Affiliation(s)
- Ryota Amano
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| | - Mitsuyuki Nakao
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | - Fumikazu Miwakeichi
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tachikawa-Shi, Japan
| |
Collapse
|
37
|
d'Aquin S, Szonyi A, Mahn M, Krabbe S, Gründemann J, Lüthi A. Compartmentalized dendritic plasticity during associative learning. Science 2022; 376:eabf7052. [PMID: 35420958 DOI: 10.1126/science.abf7052] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Experience-dependent changes in behavior are mediated by long-term functional modifications in brain circuits. Activity-dependent plasticity of synaptic input is a major underlying cellular process. Although we have a detailed understanding of synaptic and dendritic plasticity in vitro, little is known about the functional and plastic properties of active dendrites in behaving animals. Using deep brain two-photon Ca2+ imaging, we investigated how sensory responses in amygdala principal neurons develop upon classical fear conditioning, a form of associative learning. Fear conditioning induced differential plasticity in dendrites and somas regulated by compartment-specific inhibition. Our results indicate that learning-induced plasticity can be uncoupled between soma and dendrites, reflecting distinct synaptic and microcircuit-level mechanisms that increase the computational capacity of amygdala circuits.
Collapse
Affiliation(s)
- Simon d'Aquin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andras Szonyi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mathias Mahn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sabine Krabbe
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Gründemann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Otor Y, Achvat S, Cermak N, Benisty H, Abboud M, Barak O, Schiller Y, Poleg-Polsky A, Schiller J. Dynamic compartmental computations in tuft dendrites of layer 5 neurons during motor behavior. Science 2022; 376:267-275. [PMID: 35420959 DOI: 10.1126/science.abn1421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning and performance, yet their computational capabilities remain unclear. Structural-functional mapping of the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing different motor variable combinations within and between their two tuft hemi-trees. By contrast, late bifurcating and smaller nexus PTNs showed synchronous tuft activation. Dendritic structure and dynamic recruitment of the N-methyl-d-aspartate (NMDA)-spiking mechanism explained the differential compartmentalization patterns. Our findings support a morphologically dependent framework for motor computations, in which independent amplification units can be combinatorically recruited to represent different motor sequences within the same tree.
Collapse
Affiliation(s)
- Yara Otor
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Shay Achvat
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Nathan Cermak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Hadas Benisty
- Yale University School of Medicine; Bethany, CT, USA
| | - Maisan Abboud
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Omri Barak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Yitzhak Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics; University of Colorado School of Medicine, 12800 East 19th Avenue MS8307, Aurora, CO 8004, USA
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| |
Collapse
|
39
|
Larkum M. Are dendrites conceptually useful? Neuroscience 2022; 489:4-14. [DOI: 10.1016/j.neuroscience.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022]
|
40
|
Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc Natl Acad Sci U S A 2021; 118:2114856118. [PMID: 34873044 DOI: 10.1073/pnas.2114856118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.
Collapse
|
41
|
Gorman JC, Tufte OL, Miller AVR, DeBello WM, Peña JL, Fischer BJ. Diverse processing underlying frequency integration in midbrain neurons of barn owls. PLoS Comput Biol 2021; 17:e1009569. [PMID: 34762650 PMCID: PMC8610287 DOI: 10.1371/journal.pcbi.1009569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Emergent response properties of sensory neurons depend on circuit connectivity and somatodendritic processing. Neurons of the barn owl’s external nucleus of the inferior colliculus (ICx) display emergence of spatial selectivity. These neurons use interaural time difference (ITD) as a cue for the horizontal direction of sound sources. ITD is detected by upstream brainstem neurons with narrow frequency tuning, resulting in spatially ambiguous responses. This spatial ambiguity is resolved by ICx neurons integrating inputs over frequency, a relevant processing in sound localization across species. Previous models have predicted that ICx neurons function as point neurons that linearly integrate inputs across frequency. However, the complex dendritic trees and spines of ICx neurons raises the question of whether this prediction is accurate. Data from in vivo intracellular recordings of ICx neurons were used to address this question. Results revealed diverse frequency integration properties, where some ICx neurons showed responses consistent with the point neuron hypothesis and others with nonlinear dendritic integration. Modeling showed that varied connectivity patterns and forms of dendritic processing may underlie observed ICx neurons’ frequency integration processing. These results corroborate the ability of neurons with complex dendritic trees to implement diverse linear and nonlinear integration of synaptic inputs, of relevance for adaptive coding and learning, and supporting a fundamental mechanism in sound localization. Neurons at higher stages of sensory pathways often display selectivity for properties of sensory stimuli that result from computations performed within the nervous system. These emergent response properties can be produced by patterns of neural connectivity and processing that occur within individual cells. Here we investigated whether neural connectivity and single-neuron computation may contribute to the emergence of spatial selectivity in auditory neurons in the barn owl’s midbrain. We used data from in vivo intracellular recordings to test the hypothesis from previous modeling work that these cells function as point neurons that perform a linear sum of their inputs in their subthreshold responses. Results indicate that while some neurons show responses consistent with the point neuron hypothesis, others match predictions of nonlinear integration, indicating a diversity of frequency integration properties across neurons. Modeling further showed that varied connectivity patterns and forms of single-neuron computation may underlie observed responses. These results demonstrate that neurons with complex morphologies may implement diverse integration of synaptic inputs, relevant for adaptive coding and learning.
Collapse
Affiliation(s)
- Julia C. Gorman
- Department of Mathematics, Seattle University, Seattle, Washington, United States of America
| | - Oliver L. Tufte
- Department of Mathematics, Seattle University, Seattle, Washington, United States of America
| | - Anna V. R. Miller
- Department of Mathematics, Seattle University, Seattle, Washington, United States of America
| | - William M. DeBello
- Center for Neuroscience, University of California - Davis, Davis, California, United States of America
| | - José L. Peña
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Brian J. Fischer
- Department of Mathematics, Seattle University, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
42
|
Acharya J, Basu A, Legenstein R, Limbacher T, Poirazi P, Wu X. Dendritic Computing: Branching Deeper into Machine Learning. Neuroscience 2021; 489:275-289. [PMID: 34656706 DOI: 10.1016/j.neuroscience.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
In this paper, we discuss the nonlinear computational power provided by dendrites in biological and artificial neurons. We start by briefly presenting biological evidence about the type of dendritic nonlinearities, respective plasticity rules and their effect on biological learning as assessed by computational models. Four major computational implications are identified as improved expressivity, more efficient use of resources, utilizing internal learning signals, and enabling continual learning. We then discuss examples of how dendritic computations have been used to solve real-world classification problems with performance reported on well known data sets used in machine learning. The works are categorized according to the three primary methods of plasticity used-structural plasticity, weight plasticity, or plasticity of synaptic delays. Finally, we show the recent trend of confluence between concepts of deep learning and dendritic computations and highlight some future research directions.
Collapse
Affiliation(s)
| | - Arindam Basu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong
| | - Robert Legenstein
- Institute of Theoretical Computer Science, Graz University of Technology, Austria
| | - Thomas Limbacher
- Institute of Theoretical Computer Science, Graz University of Technology, Austria
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Greece
| | - Xundong Wu
- School of Computer Science, Hangzhou Dianzi University, China
| |
Collapse
|
43
|
Brandalise F, Carta S, Leone R, Helmchen F, Holtmaat A, Gerber U. Dendritic Branch-constrained N-Methyl-d-Aspartate Receptor-mediated Spikes Drive Synaptic Plasticity in Hippocampal CA3 Pyramidal Cells. Neuroscience 2021; 489:57-68. [PMID: 34634424 DOI: 10.1016/j.neuroscience.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
N-methyl-d-aspartate receptor-mediated ( spikes can be causally linked to the induction of synaptic long-term potentiation (LTP) in hippocampal and cortical pyramidal cells. However, it is unclear if they regulate plasticity at a local or global scale in the dendritic tree. Here, we used dendritic patch-clamp recordings and calcium imaging to investigate the integrative properties of single dendrites of hippocampal CA3 cells. We show that local hyperpolarization of a single dendritic segment prevents NMDA spikes, their associated calcium transients, as well as LTP in a branch-specific manner. This result provides direct, causal evidence that the single dendritic branch can operate as a functional unit in regulating CA3 pyramidal cell plasticity.
Collapse
Affiliation(s)
- Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland; Former affiliation(b).
| | - Stefano Carta
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roberta Leone
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | | |
Collapse
|
44
|
Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM. An Individual Patient's "Body" on Chips-How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Front Med (Lausanne) 2021; 8:728866. [PMID: 34589503 PMCID: PMC8473633 DOI: 10.3389/fmed.2021.728866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.
Collapse
Affiliation(s)
- Uwe Marx
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- TissUse GmbH, Berlin, Germany
| | | | - Rhiannon David
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
45
|
Pulikkottil VV, Somashekar BP, Bhalla US. Computation, wiring, and plasticity in synaptic clusters. Curr Opin Neurobiol 2021; 70:101-112. [PMID: 34509808 DOI: 10.1016/j.conb.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
Synaptic clusters on dendrites are extraordinarily compact computational building blocks. They contribute to key local computations through biophysical and biochemical signaling that utilizes convergence in space and time as an organizing principle. However, these computations can only arise in very special contexts. Dendritic cluster computations, their highly organized input connectivity, and the mechanisms for their formation are closely linked, yet these have not been analyzed as parts of a single process. Here, we examine these linkages. The sheer density of axonal and dendritic arborizations means that there are far more potential connections (close enough for a spine to reach an axon) than actual ones. We see how dendritic clusters draw upon electrical, chemical, and mechano-chemical signaling to implement the rules for formation of connections and subsequent computations. Crucially, the same mechanisms that underlie their functions also underlie their formation.
Collapse
Affiliation(s)
| | - Bhanu Priya Somashekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
46
|
Chavlis S, Poirazi P. Drawing inspiration from biological dendrites to empower artificial neural networks. Curr Opin Neurobiol 2021; 70:1-10. [PMID: 34087540 DOI: 10.1016/j.conb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
This article highlights specific features of biological neurons and their dendritic trees, whose adoption may help advance artificial neural networks used in various machine learning applications. Advancements could take the form of increased computational capabilities and/or reduced power consumption. Proposed features include dendritic anatomy, dendritic nonlinearities, and compartmentalized plasticity rules, all of which shape learning and information processing in biological networks. We discuss the computational benefits provided by these features in biological neurons and suggest ways to adopt them in artificial neurons in order to exploit the respective benefits in machine learning.
Collapse
Affiliation(s)
- Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.
| |
Collapse
|
47
|
Ma S, Zuo Y. Synaptic modifications in learning and memory - A dendritic spine story. Semin Cell Dev Biol 2021; 125:84-90. [PMID: 34020876 DOI: 10.1016/j.semcdb.2021.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Abstract
Synapses are specialized sites where neurons connect and communicate with each other. Activity-dependent modification of synaptic structure and function provides a mechanism for learning and memory. The advent of high-resolution time-lapse imaging in conjunction with fluorescent biosensors and actuators enables researchers to monitor and manipulate the structure and function of synapses both in vitro and in vivo. This review focuses on recent imaging studies on the synaptic modification underlying learning and memory.
Collapse
Affiliation(s)
- Shaorong Ma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
48
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
49
|
Luboeinski J, Tetzlaff C. Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks. Commun Biol 2021; 4:275. [PMID: 33658641 PMCID: PMC7977149 DOI: 10.1038/s42003-021-01778-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
The synaptic-tagging-and-capture (STC) hypothesis formulates that at each synapse the concurrence of a tag with protein synthesis yields the maintenance of changes induced by synaptic plasticity. This hypothesis provides a biological principle underlying the synaptic consolidation of memories that is not verified for recurrent neural circuits. We developed a theoretical model integrating the mechanisms underlying the STC hypothesis with calcium-based synaptic plasticity in a recurrent spiking neural network. In the model, calcium-based synaptic plasticity yields the formation of strongly interconnected cell assemblies encoding memories, followed by consolidation through the STC mechanisms. Furthermore, we show for the first time that STC mechanisms modify the storage of memories such that after several hours memory recall is significantly improved. We identify two contributing processes: a merely time-dependent passive improvement, and an active improvement during recall. The described characteristics can provide a new principle for storing information in biological and artificial neural circuits.
Collapse
Affiliation(s)
- Jannik Luboeinski
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| | - Christian Tetzlaff
- Department of Computational Neuroscience, III. Institute of Physics-Biophysics, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
50
|
Irwin LN, Irwin BA. Place and Environment in the Ongoing Evolution of Cognitive Neuroscience. J Cogn Neurosci 2020; 32:1837-1850. [PMID: 32662725 DOI: 10.1162/jocn_a_01607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cognitive science today increasingly is coming under the influence of embodied, embedded, extended, and enactive perspectives, superimposed on the more traditional cybernetic, computational assumptions of classical cognitive research. Neuroscience has contributed to a greatly enhanced understanding of brain function within the constraints of the traditional cognitive science approach, but interpretations of many of its findings can be enriched by the newer alternative perspectives. Here, we note in particular how these frameworks highlight the cognitive requirements of an animal situated within its particular environment, how the coevolution of an organism's biology and ecology shape its cognitive characteristics, and how the cognitive realm extends beyond the brain of the perceiving animal. We argue that these insights of the embodied cognition paradigm reveal the central role that "place" plays in the cognitive landscape and that cognitive scientists and philosophers alike can gain from paying heed to the importance of a concept of place. We conclude with a discussion of how this concept can be applied with respect to cognitive function, species comparisons, ecologically relevant experimental designs, and how the "hard problem" of consciousness might be approached, among its other implications.
Collapse
|