1
|
Utami KH, Morimoto S, Mitsukura Y, Okano H. The roles of intrinsically disordered proteins in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130772. [PMID: 39954969 DOI: 10.1016/j.bbagen.2025.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease share a common pathological hallmark: the accumulation of misfolded proteins, particularly involving intrinsically disordered proteins (IDPs) like TDP-43, FUS, Tau, α-synuclein, and Huntingtin. These proteins undergo pathological aggregation, forming toxic inclusions that disrupt cellular function. The dysregulation of proteostasis mechanisms, including the ubiquitin-proteasome system (UPS), ubiquitin-independent proteasome system (UIPS), autophagy, and molecular chaperones, exacerbates these proteinopathies by failing to clear misfolded proteins effectively. Emerging therapeutic strategies aim to restore proteostasis through proteasome activators, autophagy enhancers, and chaperone-based interventions to prevent the toxic accumulation of IDPs. Additionally, understanding liquid-liquid phase separation (LLPS) and its role in stress granule dynamics offers novel insights into how aberrant phase transitions contribute to neurodegeneration. By targeting the molecular pathways involved in IDP aggregation and proteostasis regulation, and better understanding the specificity of each component, research in this area will pave the way for innovative therapeutic approaches to combat these neurodegenerative diseases. This review discusses the molecular mechanisms underpinning IDP pathology, highlights recent advancements in drug discovery, and explores the potential of targeting proteostasis machinery to develop effective therapies.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Faculty of Science and Technology, Keio University, Kanagawa 223-0061, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Satoru Morimoto
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan.
| | - Yasue Mitsukura
- Faculty of Science and Technology, Keio University, Kanagawa 223-0061, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan; Laboratory of Marmoset Models of Neural Diseases, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 2022; 25:1134-1148. [PMID: 36042314 PMCID: PMC9448679 DOI: 10.1038/s41593-022-01140-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.
Collapse
Affiliation(s)
- Minee L Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Bhanu P Singh
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- School of Physics, University of Edinburgh, Edinburgh, UK
| | | | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Alexey V Berezhnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | | | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Weijia Zhang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - James R Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna I Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zeinab Shadman Zanjani
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Katie Morris
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Istituto di Biofisica, National Council of Research, Trento, Italy
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- The Francis Crick Institute, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
6
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
7
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
9
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|