1
|
Liu X, Zhang J, Liang Y, Chen X, Xu S, Lin S, Dai Y, Chen X, Zhou Y, Bai Y, Chen C. tiRNA-Gly-GCC-002 promotes epithelial-mesenchymal transition and fibrosis in lupus nephritis via FKBP5-mediated activation of Smad. Br J Pharmacol 2025; 182:616-632. [PMID: 39419630 DOI: 10.1111/bph.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Renal interstitial fibrosis is a frequent pathological manifestation of lupus nephritis (LN). tRNA halves (tiRNAs) are acquired from tRNA-derived small non-coding RNAs (sncRNAs) and are associated with fibrosis. Our previous study indicated enhanced tiRNA-Gly-GCC-002 (tiRNA002) levels in kidneys were positively related to LN-related fibrosis. However, the precise molecular mechanism remains unclear. EXPERIMENTAL APPROACH The mimic and agomiR of tiRNA002 were introduced into tubular epithelial cells (TECs) and MRL/lpr mice by transfection. The levels of gene and protein expressions were quantified using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and immunofluorescence assays. KEY RESULTS In TECs treated with LN serum, as well as in the kidneys of MRL/lpr mice, high levels of tiRNA002 directly influenced the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Furthermore, tiRNA002 overexpression promoted EMT in TECs and accelerated renal interstitial fibrosis in MRL/lpr mice via Smad signalling. The target gene of tiRNA002, FKBP prolyl isomerase 5 (FKBP5), improved Smad signalling by interacting with phosphorylated Smad2/3. Silencing FKBP5 alleviated LN serum- or tiRNA002-mimic-induced EMT in TECs. In addition, FKBP5 overexpression reversed the tiRNA002 knockdown-mediated reduction of EMT and ECM accumulation. CONCLUSIONS AND IMPLICATIONS These findings indicated that tiRNA002 is markedly increased in LN, which facilitates renal fibrosis by promoting EMT via FKBP5-mediated Smad signalling. Therefore, targeting tiRNA002 may be an innovative approach to treat renal interstitial fibrosis in LN.
Collapse
Affiliation(s)
- Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Shungang Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Sishi Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yuanting Dai
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Yuan J, Song Z, Liu J, Rahman KU, Zhou Q, Liu G, Deng Y, Wen H, Fan X, Fang N, Zhou Z, Song Q, Zhang G, Li P, Song Y. Transfer RNAs and transfer RNA-derived small RNAs in cerebrovascular diseases. Exp Neurol 2024; 382:114971. [PMID: 39326819 DOI: 10.1016/j.expneurol.2024.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
This article explores the important functions of transfer RNA and - transfer RNA derived small RNAs (tsRNAs) in cellular processes and disease pathogenesis, with a particular emphasis on their involvement in cerebrovascular disorders. It discusses the biogenesis and structure of tsRNAs, including types such as tRNA halves and tRNA-derived fragments, and their functional significance in gene regulation, stress response, and cell signaling pathways. The importance of tsRNAs in neurodegenerative diseases, cancer, and cardiovascular diseases has already been highlighted, while their role in cerebrovascular diseases is in early phase of exploration. This paper presents the latest advancements in the field of tsRNAs in cerebrovascular conditions, such as ischemic stroke, intracerebral hemorrhage, and moyamoya disease. Furthermore, revealing the aptitude of tsRNAs as biomarkers for the prediction of cerebrovascular diseases and as targets for therapeutic intervention. It provides insights into the role of tsRNAs in these conditions and proposes directions for future research.
Collapse
Affiliation(s)
- Jiajie Yuan
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Zibin Song
- Neurosurgery Center, Department of Functional Neurosurgery, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Liu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Khalil Ur Rahman
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Qixiong Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Guangjie Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yifeng Deng
- First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haotian Wen
- First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaonan Fan
- First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nanqi Fang
- First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaojun Zhou
- First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Guozhong Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China.
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China.
| | - Ye Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China; Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| |
Collapse
|
3
|
Chang X, Du M, Wei J, Zhang Y, Feng X, Deng B, Liu P, Wang Y. Serum tsncRNAs reveals novel potential therapeutic targets of Salvianolic Acid B on atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155994. [PMID: 39243751 DOI: 10.1016/j.phymed.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Min Du
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Jing Wei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
4
|
Wang M, Guo J, Chen W, Wang H, Hou X. Emerging roles of tRNA-derived small RNAs in injuries. PeerJ 2024; 12:e18348. [PMID: 39465146 PMCID: PMC11512806 DOI: 10.7717/peerj.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs, precisely cleaved from tRNA, functioning as regulatory molecules. The topic of tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are entering a new era. Here, we provide a fresh perspective on this topic. We systematically reviewed the classification, generation, and biological functions of tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic targets in various injuries, including lung injury, liver injury, renal injury, cardiac injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We also provided a fresh perspective on the association between stress-induced tsRNAs and organ injury from a clinical perspective.
Collapse
Affiliation(s)
- Mengjun Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junfeng Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Tian H, Gao S, Xu M, Yang M, Shen M, Liu J, Li G, Zhuang D, Hu Z, Wang C. tiRNA-Gly-GCC-001 in major depressive disorder: Promising diagnostic and therapeutic biomarker. Br J Pharmacol 2024; 181:1952-1972. [PMID: 38439581 DOI: 10.1111/bph.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE In major depressive disorder (MDD), exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment and predicting the treatment response. Currently, tRNA-derived small ribonucleic acids (tsRNAs) have been established as promising non-invasive biomarker candidates that may enable a more reliable diagnosis or monitoring of various diseases. Herein, we aimed to explore tsRNA expression together with functional activities in MDD development. EXPERIMENTAL APPROACH Serum samples were obtained from patients with MDD and healthy controls, and small RNA sequencing (RNA-Seq) was used to profile tsRNA expression. Dysregulated tsRNAs in MDD were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic utility of specific tsRNAs and the expression of these tsRNAs after antidepressant treatment were analysed. KEY RESULTS In total, 38 tsRNAs were significantly differentially expressed in MDD samples relative to healthy individuals (34 up-regulated and 4 down-regulated). qRT-PCR was used to validate the expression of six tsRNAs that were up-regulated in MDD (tiRNA-1:20-chrM.Ser-GCT, tiRNA-1:33-Gly-GCC-1, tRF-1:22-chrM.Ser-GCT, tRF-1:31-Ala-AGC-4-M6, tRF-1:31-Pro-TGG-2 and tRF-1:32-chrM.Gln-TTG). Interestingly, serum tiRNA-Gly-GCC-001 levels exhibited an area under the ROC curve of 0.844. Moreover, tiRNA-Gly-GCC-001 is predicted to suppress brain-derived neurotrophic factor (BDNF) expression. Furthermore, significant tiRNA-Gly-GCC-001 down-regulation was evident following an 8-week treatment course and served as a promising baseline predictor of patient response to antidepressant therapy. CONCLUSION AND IMPLICATIONS Our current work reports for the first time that tiRNA-Gly-GCC-001 is a promising MDD biomarker candidate that can predict patient responses to antidepressant therapy.
Collapse
Affiliation(s)
- Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shugui Gao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Miaomiao Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mei Yang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mengyuan Shen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Wang Q, Huang Q, Ying X, Shen J, Duan S. Unveiling the role of tRNA-derived small RNAs in MAPK signaling pathway: implications for cancer and beyond. Front Genet 2024; 15:1346852. [PMID: 38596214 PMCID: PMC11002130 DOI: 10.3389/fgene.2024.1346852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are novel small non-coding RNAs originating from mature or precursor tRNAs (pre-tRNA), typically spanning 14 to 30 nt. The Mitogen-activated protein kinases (MAPK) pathway orchestrates cellular responses, influencing proliferation, differentiation, apoptosis, and transformation. tsRNAs influence the expression of the MAPK signaling pathway by targeting specific proteins within the pathway. Presently, four MAPK-linked tsRNAs have implications in gastric cancer (GC) and high-grade serous ovarian cancer (HGSOC). Notably, tRF-Glu-TTC-027 and tRF-Val-CAC-016 modulate MAPK-related protein expression, encompassing p38, Myc, ERK, CyclinD1, CyclinB, and c-Myc, hindering GC progression via MAPK pathway inhibition. Moreover, tRF-24-V29K9UV3IU and tRF-03357 remain unexplored in specific mechanisms. KEGG analysis posits varied tsRNAs in MAPK pathway modulation for diverse non-cancer maladies. Notably, high tRF-36-F900BY4D84KRIME and tRF-23-87R8WP9IY expression relates to varicose vein (VV) risk. Elevated tiRNA-Gly-GCC-001, tRF-Gly-GCC-012, tRF-Gly-GCC-013, and tRF-Gly-GCC-016 target spinal cord injury (SCI)-related brain-derived neurotrophic factor (BDNF), influencing MAPK expression. tRF-Gly-CCC-039 associates with diabetes foot sustained healing, while tRF-5014a inhibits autophagy-linked ATG5 in diabetic cardiomyopathy (DCM). Additionally, tsRNA-14783 influences keloid formation by regulating M2 macrophage polarization. Upregulation of tRF-Arg-ACG-007 and downregulation of tRF-Ser-GCT-008 are associated with diabetes. tsRNA-04002 alleviates Intervertebral disk degeneration (IDD) by targeting PRKCA. tsRNA-21109 alleviates Systemic lupus erythematosus (SLE) by inhibiting macrophage M1 polarization. The upregulated tiNA-Gly-GCC-002 and the downregulated tRF-Ala-AGC-010, tRF-Gln-CTG-005 and tRF-Leu-AAG-001 may be involved in the pathogenesis of Lupus nephritis (LN) by affecting the expression of MAPK pathway. Downregulation of tsRNA-1018, tsRNA-3045b, tsRNA-5021a and tsRNA-1020 affected the expression of MAPK pathway, thereby improving Acute lung injury (ALI). This review comprehensively dissects tsRNA roles in MAPK signaling across cancers and other diseases, illuminating a novel avenue for translational medical exploration.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Ni Y, Wu A, Li J, Zhang W, Wang Y. Evaluation of the serum tRNA-derived fragment tRF-5022B as a potential biomarker for the diagnosis of osteoarthritis. J Orthop Surg Res 2023; 18:800. [PMID: 37880787 PMCID: PMC10601305 DOI: 10.1186/s13018-023-04273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease. It is common in middle-aged and elderly people and is one of the main causes of disability. Currently, the etiology of OA is unclear, and no specific biomarkers for the diagnosis of OA have been identified. Therefore, finding a highly sensitive biomarker is essential for a proper diagnosis.TRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs) are newly discovered classes of noncoding RNAs. tRF has been proven in several studies to have significant associations with tumor diagnosis, making it a promising biomarker in cancer research. However, the diagnostic utility of tRF in OA patients and the correlation between OA progression and trf differential expression have yet to be elaborated. The purpose of this research was to identify tRFs with differential expression in OA to assess their potential as OA biomarkers. To determine the tRF-5022B expression level in this research, real-time fluorescence quantitative PCR has been employed. Agarose gel electrophoresis, Sanger sequencing, and other investigations have been employed for evaluating tRF-5022B's molecular properties. Receiver operating characteristic curve analysis has been utilized for assessing the diagnostic effectiveness of the tRF-5022B. The findings demonstrated that tRF-5022B expression was considerably lower in OA serum. The Kellgren-Lawrence grading scale was shown to correspond with serum expression levels. The ROC curve confirmed that tRF-5022B serum expression levels might differentiate OA cases from healthy individuals and RA patients. According to the aforementioned findings, tRF-5022B may be employed as a novel biomarker for OA diagnosis due to its excellent diagnostic value.
Collapse
Affiliation(s)
- Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Anqi Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jianxin Li
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Zhao L, Peng Y, Su P. Expression profiles and functional analysis of tRNA-derived small RNAs in epicardial adipose tissue of patients with heart failure. Ann Med 2023; 55:2267981. [PMID: 37839439 PMCID: PMC10578101 DOI: 10.1080/07853890.2023.2267981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Heart failure is considered an epidemic disease in the modern world. Since it presents as a multifactorial, systemic disease, a comprehensive understanding of the underlying mechanism is essential. Epicardial adipose tissue (EAT) is increasingly recognized to be metabolically active and is able to secrete myriad bioactive molecules, including exosomes carrying tRNA-derived small RNAs (tsRNAs). Mounting evidence has suggested that these specific tsRNAs dynamically impact fundamental cellular processes, but no studies have focused on the influence of tsRNA in EAT on cardiac dysfunction. METHODS To investigate the regulatory mechanism of tsRNAs of EAT associated with HF, we collected EAT from HF (n = 5) patients and controls (n = 5) and used a combination of RNA sequencing, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and bioinformatics to screen the expression profiles of tsRNAs in HF. RESULTS We ultimately identified an expression profile of 343 tsRNAs in EAT. Of those, a total of 24 tsRNAs were significantly differentially expressed between HF and controls: 17 were upregulated and 7 were downregulated (fold change >1.5, p < 0.05). Four tsRNAs (tiRNA-Pro-TGG-001, tRF-Met-CAT-002, tRF-Tyr-GTA-010 and tRF-Tyr-GTA-011) were randomly selected and validated by qRT-PCR. Bioinformatics analyses revealed a dense interaction of target genes between tRF-Tyr-GTA-010 and tRF-Tyr-GTA-011. Based on functional analysis, these two tRFs might play a protective role by regulating sphingolipid and adrenergic signaling pathways by targeting genes mainly contributing to calcium ion transport. CONCLUSIONS Our study profiled tsRNA expression in EAT with HF and identified a comprehensive dimension of potential target genes and tsRNA-mRNA interactions.
Collapse
Affiliation(s)
- Lei Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Xu Y, Geng Y, Wang H, Zhang H, Qi J, Li F, Hu X, Chen Y, Si H, Li Y, Wang X, Xu H, Kong J, Cai Y, Wu A, Ni W, Xiao J, Zhou K. Cyclic helix B peptide alleviates proinflammatory cell death and improves functional recovery after traumatic spinal cord injury. Redox Biol 2023; 64:102767. [PMID: 37290302 DOI: 10.1016/j.redox.2023.102767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yi jishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
11
|
Zhou Y, Hong Q, Xu W, Chen W, Xie X, Zhuang D, Lai M, Fu D, Xu Z, Wang M, Zhou W, Liu H. Differential expression profiling of tRNA-Derived small RNAs and their potential roles in methamphetamine self-administered rats. Front Genet 2023; 14:1088498. [PMID: 36845381 PMCID: PMC9945332 DOI: 10.3389/fgene.2023.1088498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a novel class of short, non-coding RNAs that are closely associated with the pathogenesis of various diseases. Accumulating evidence has demonstrated their critical functional roles as regulatory factors in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. However, the underlying mechanisms by which tRFs & tiRNAs affect methamphetamine-induced pathophysiological processes are largely unknown. In this study, we used a combination of small RNA sequencing, quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), bioinformatics, and luciferase reporter assays to screen the expression profiles and identify the functional roles of tRFs and tiRNAs in the nucleus accumbens (NAc) of methamphetamine self-administration rat models. A total of 461 tRFs & tiRNAs were identified in the NAc of rats after 14 days of methamphetamine self-administration training. Of those, 132 tRFs & tiRNAs were significantly differentially expressed: 59 were significantly upregulated, whereas 73 were significantly downregulated in the rats with methamphetamine self-administration. Decreased expression levels of tiRNA-1-34-Lys-CTT-1 and tRF-1-32-Gly-GCC-2-M2, as well as increased expression levels of tRF-1-16-Ala-TGC-4 in the METH group compared with the saline control were validated by using RT‒PCR. Then, bioinformatic analysis was performed to analyse the possible biological functions of tRFs & tiRNAs in methamphetamine-induced pathogenesis. Furthermore, tRF-1-32-Gly-GCC-2-M2 was identified to target BDNF using the luciferase reporter assay. An altered tsRNA expression pattern was proven, and tRF-1-32-Gly-GCC-2-M2 was shown to be involved in methamphetamine-induced pathophysiologic processes by targeting BDNF. The current study provides new insights for future investigations to explore the mechanisms and therapeutic methods for methamphetamine addiction.
Collapse
Affiliation(s)
- Yun Zhou
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenjin Xu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Weisheng Chen
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiaohu Xie
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Miaojun Lai
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dan Fu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Zemin Xu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Majie Wang
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China,*Correspondence: Wenhua Zhou, ; Huifen Liu,
| | - Huifen Liu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China,*Correspondence: Wenhua Zhou, ; Huifen Liu,
| |
Collapse
|
12
|
CircRNA3616 knockdown attenuates inflammation and apoptosis in spinal cord injury by inhibiting TLR4/NF-κB activity via sponging miR-137. Mol Cell Biochem 2023; 478:329-341. [PMID: 35913538 DOI: 10.1007/s11010-022-04509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The present work focused on exploring the role of circRNA3616 in neuronal inflammation and apoptosis in spinal cord injury (SCI). METHODS The SCI mouse model and circRNA3616 knockdown SCI mouse model were established. This work focused on assessing the mouse locomotor function using Basso Mouse Scale (BMS) and BMS subscore. Hematoxylin-eosin (HE) staining and Tunel staining were conducted, while myeloperoxidase (MPO) activity was also detected on spinal cord tissues. We also knocked down circRNA3616 expression in NSC-34 cells. Meanwhile, the SCI cell model was established by oxygen glucose deprivation (OGD) in NSC-34 cells. Moreover, we conducted dual-luciferase reporter gene assay. Flow cytometry (FCM) was conducted to detect SCI cell apoptosis, whereas cell counting kit-8 (CCK-8) assay was performed to analyze cell viability. This study also implemented enzyme-linked immunosorbent assay to detect inflammatory factors in spinal cord tissues, serum, and cells. RESULTS CircRNA3616 knockdown reduced the damage, inflammatory response, apoptosis, and MPO activity in SCI mouse serum and spinal cord tissues. CircRNA3616 knockdown increased BMS and BMS subscore of SCI mice. CircRNA3616 up-regulated TLR4 expression by sponging miR-137. CircRNA3616 knockdown inhibited the TLR4, p-IkBα, p-p65/p65 protein expression, while promoting IkBα protein expression within SCI mouse spinal cord. TLR4 reversed circRNA3616 knockdown-induced inhibition on NF-κB pathway activity in SCI cells. CircRNA3616 knockdown attenuated neuronal cell inflammation and apoptosis via TLR4/NF-κB pathway after SCI. CONCLUSION CircRNA3616 silencing attenuates inflammation and apoptosis in SCI by inhibiting TLR4/NF-κB activity via sponging miR-137. CircRNA3616 is the possible anti-SCI therapeutic target.
Collapse
|
13
|
Qin C, Liu Y, Xu PP, Zhang X, Talifu Z, Liu JY, Jing YL, Bai F, Zhao LX, Yu Y, Gao F, Li JJ. Inhibition by rno-circRNA-013017 of the apoptosis of motor neurons in anterior horn and descending axonal degeneration in rats after traumatic spinal cord injury. Front Neurosci 2022; 16:1065897. [PMID: 36590290 PMCID: PMC9797719 DOI: 10.3389/fnins.2022.1065897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Spinal cord injury (SCI) often causes continuous neurological damage to clinical patients. Circular RNAs (circRNAs) are related to a lot of diseases, including SCI. We previously found five candidate circRNAs which were likely to regulate the secondary pathophysiological changes in rat model after traumatic SCI. Methods In this study, we first selected and overexpressed target circRNA in rats. We then explored its functional roles using various functional assays in a rat model after SCI. Results We found that rno-circRNA-013017-the selected target circRNA-reduced neuron apoptosis, preserved the survival and activity of motor neurons, and regulated apoptosis-related proteins at 3 days post-SCI using western blot, immunofluorescence and polymerase chain reaction. Additionally, we found that rno-circRNA-013017 inhibited descending axonal degeneration and preserved motor neurons and descending axons at 6 weeks post-SCI using immunofluorescence, biotin dextran amine diffusion tensor imaging. Finally, the overexpression of rno-circRNA-013017 promoted the locomotor function of rats after SCI using open-field test and gait analysis. Conclusion Focusing on the functions of rno-circRNA-013017, this study provides new options for future studies exploring therapeutic targets and molecular mechanisms for SCI.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Urology, Beijing Friendship Hospital, Beijing, China,School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jia-Yi Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Li-Xi Zhao
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Feng Gao,
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Jian-Jun Li,
| |
Collapse
|
14
|
Zhang G, Kang L, Li P, Ran Q, Chen X, Ji M, Guan H. Genome-wide repertoire of transfer RNA-derived fragments in a mouse model of age-related cataract. Curr Eye Res 2022; 47:1397-1404. [PMID: 35930684 DOI: 10.1080/02713683.2022.2110263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose To investigate the roles of tRNA-derived small RNAs (tsRNAs) containing transfer RNA-derived fragments (tRFs) and tRNA halves in age-related cataract (ARC). Methods: Lens capsule tissue from Emory mice at 3 months and 8 months of age were dissected for integrated tsRNA and gene transcriptome sequencing. Quantitative real-time PCR assay (qRT-PCR) was perform for validating sequencing results. Bioinformatics analysis was constructed to reveal the roles of tsRNAs. Results: A total of 422 DE tsRNAs were changed, in which 156 were elevated while 266 were declined in 8-month-old mice. Subsequently, the gene sequencing data exhibited 375 upregulated and 456 downregulated DE genes. Validation by qRT-PCR in 5 selected upregulated tRFs was consistent with tsRNAs sequencing results. Moreover, bioinformatics analysis identified 25 downregulated target genes of the 5 validated tRFs. Furthermore, GO analysis revealed that these target genes were mainly enriched in camera-type eye development, sensory organ development and so on. Conclusion: Our study provide a novel perspective for the role of tsRNAs in pathogenesis of ARC, and thus therapeutic potential targets for ARC.
Collapse
Affiliation(s)
- Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qiliang Ran
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. Differential Expression Profiles and Bioinformatics Analysis of tRNA-Derived Small RNAs in Muscle-Invasive Bladder Cancer in a Chinese Population. Genes (Basel) 2022; 13:genes13040601. [PMID: 35456407 PMCID: PMC9030102 DOI: 10.3390/genes13040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) leads to a large societal burden. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA (ncRNAs), have been identified. However, the expression patterns and functions of tsRNAs in MIBC have not yet been identified. Here, RNA sequencing, bioinformatics, and quantitative reverse transcription- polymerase chain reaction (qRT-PCR) were used to screen the expression profiles and predict the potential roles of tsRNAs in MIBC. Of 406 tsRNAs differentially expressed in MIBC tissues, 91 tsRNAs were significantly differentially expressed. Then, four candidate tsRNAs, tiRNA-1:34-Val-CAC-2, tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1, were selected. Next, a bioinformatics analysis showed the potential target genes and tsRNA–mRNA network. The most significant and meaningful terms of gene ontology were the positive regulation of the phosphate metabolic process, lamellipodium, and protein-cysteine S-acyltransferase activity in the biological process, cellular component, and molecular function, respectively. In addition, the top four pathways were predicted by the Kyoto Encyclopedia of Genes and Genomes database (KEGG). Finally, qRT-PCR demonstrated a similar expression pattern compared to sequencing data for the candidate tsRNAs. In short, we find differential expression profiles and predict that tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1 are very likely to engage in the pathophysiological process of MIBC via regulating the target genes in the key pathways.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-010-63138377
| |
Collapse
|
16
|
Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury. Int Immunopharmacol 2022; 107:108690. [PMID: 35299002 DOI: 10.1016/j.intimp.2022.108690] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alveolar macrophages (AMs) play a demonstrative role in acute lung injury (ALI). Exosomes act as signaling molecules to regulate cell-to-cell communication by releasing RNAs. Transfer RNA-derived fragments (tRFs) possess potential functions in multiple diseases through ferroptosis. The present study aims to reveal the role of AM-derived exosomal tRFs in ALI and to identify the relationship to ferroptosis. METHODS ALI mice model was established by lipopolysaccharide (LPS) induction. RNA sequencing was performed to identify the tRFs profile in bronchoalveolar lavage fluid (BALF) exosomes of ALI mice. After interfering with the expression of candidate tRFs in AMs or alveolar epithelial cells (MLE-12), the effect of oxidative stress and expression of ferroptosis-related proteins were detected. RESULTS Exosomes isolated from BALF of ALI mice were dominated by a macrophage immunophenotype. RNA-sequencing identified 4 up- and 10 down-regulated differentially expressed tRFs (DEtRFs), among which tRF-22-8BWS7K092 expression was significantly increased in LPS-induced macrophage-derived exosomes (LPS-exo). Hippo signaling pathway was the most significantly enriched KEGG pathways for DEtRFs. LPS-exo inhibited cell viability and the expression of GPX4 and FTH1, and enhanced oxidative stress in MLE-12 cells. Ferroptosis inhibitor reversed the inhibition of LPS-exo on cell viability and tRF-22-8BWS7K092 inhibitor rescued above effect of LPS-exo on MLE-12 cells. Besides, tRF-22-8BWS7K092 could activate Hippo signaling pathway by binding Wnt5B, inducing ferroptosis in MLE-12 cells. CONCLUSION BALF exosomes of ALI mice were mainly derived from AMs. AM-derived exosomal tRF-22-8BWS7K092 activates the Hippo signaling pathway to induce ferroptosis, thus contributing to the pathogenesis of ALI.
Collapse
|
17
|
Xu XJ, Yang MS, Zhang B, Ge QQ, Niu F, Dong JQ, Zhuang Y, Liu BY. Genome-wide interrogation of transfer RNA-derived small RNAs in a mouse model of traumatic brain injury. Neural Regen Res 2022; 17:386-394. [PMID: 34269214 PMCID: PMC8463968 DOI: 10.4103/1673-5374.314315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a recently established family of regulatory small non-coding RNAs that modulate diverse biological processes. Growing evidence indicates that tsRNAs are involved in neurological disorders and play a role in the pathogenesis of neurodegenerative disease. However, whether tsRNAs are involved in traumatic brain injury-induced secondary injury remains poorly understood. In this study, a mouse controlled cortical impact model of traumatic brain injury was established, and integrated tsRNA and messenger RNA (mRNA) transcriptome sequencing were used. The results revealed that 103 tsRNAs were differentially expressed in the mouse model of traumatic brain injury at 72 hours, of which 56 tsRNAs were upregulated and 47 tsRNAs were downregulated. Based on microRNA-like seed matching and Pearson correlation analysis, 57 differentially expressed tsRNA-mRNA interaction pairs were identified, including 29 tsRNAs and 26 mRNAs. Moreover, Gene Ontology annotation of target genes revealed that the significantly enriched terms were primarily associated with inflammation and synaptic function. Collectively, our findings suggest that tsRNAs may be associated with traumatic brain injury-induced secondary brain injury, and are thus a potential therapeutic target for traumatic brain injury. The study was approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 20190411) on April 11, 2019.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian-Qian Ge
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
18
|
Mesquita-Ribeiro R, Fort RS, Rathbone A, Farias J, Lucci C, James V, Sotelo-Silveira J, Duhagon MA, Dajas-Bailador F. Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves. RNA Biol 2021; 18:832-855. [PMID: 34882524 PMCID: PMC8782166 DOI: 10.1080/15476286.2021.2000792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurons have highlighted the needs for decentralized gene expression and specific RNA function in somato-dendritic and axonal compartments, as well as in intercellular communication via extracellular vesicles (EVs). Despite advances in miRNA biology, the identity and regulatory capacity of other small non-coding RNAs (sncRNAs) in neuronal models and local subdomains has been largely unexplored.We identified a highly complex and differentially localized content of sncRNAs in axons and EVs during early neuronal development of cortical primary neurons and in adult axons in vivo. This content goes far beyond miRNAs and includes most known sncRNAs and precisely processed fragments from tRNAs, sno/snRNAs, Y RNAs and vtRNAs. Although miRNAs are the major sncRNA biotype in whole-cell samples, their relative abundance is significantly decreased in axons and neuronal EVs, where specific tRNA fragments (tRFs and tRHs/tiRNAs) mainly derived from tRNAs Gly-GCC, Val-CAC and Val-AAC predominate. Notably, although 5'-tRHs compose the great majority of tRNA-derived fragments observed in vitro, a shift to 3'-tRNAs is observed in mature axons in vivo.The existence of these complex sncRNA populations that are specific to distinct neuronal subdomains and selectively incorporated into EVs, equip neurons with key molecular tools for spatiotemporal functional control and cell-to-cell communication.
Collapse
Affiliation(s)
| | - Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alex Rathbone
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Polo de Desarrollo Universitario "Espacio de Biología Vegetal del Noreste", Centro Universitario Regional Noreste, UdelaR, Uruguay
| | - Cristiano Lucci
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jose Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maria Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
19
|
Winek K, Soreq H, Meisel A. Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 2021; 158:1425-1438. [PMID: 33638173 PMCID: PMC8518971 DOI: 10.1111/jnc.15332] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Andreas Meisel
- Department of Neurology with Experimental NeurologyCenter for Stroke Research BerlinNeuroCure Clinical Research CenterCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
20
|
Zhu Y, Chen S, Ling Z, Winnicki A, Xu L, Xu S, Gong T, Jiang B, Huang G, Deng Y. Comprehensive Analysis of a tRNA-Derived Small RNA in Colorectal Cancer. Front Oncol 2021; 11:701440. [PMID: 34422655 PMCID: PMC8371552 DOI: 10.3389/fonc.2021.701440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer often presents as a highly variable disease with myriad forms that are at times difficult to detect in early screenings with sufficient accuracy, for which novel diagnostic methods are an attractive and valuable area of improvement. To improve colorectal cancer diagnosis and prognosis, new biomarkers that can be assembled into a diagnostic panel must be identified, and tRNA-derived small RNAs (tsRNAs) are a particularly interesting and increasingly visible new class of molecules to examine. In this study, small RNA-seq data were profiled for the expression of 104 human tsRNAs in tumor tissue and adjacent normal tissue samples, and a diagnostic model was built based on four differentially expressed tsRNAs: tRF-22-WB86Q3P92, tRF-22-WE8SPOX52, tRF-22-WE8S68L52, tRF-18-8R1546D2. Furthermore, the diagnostic model was validated by two independent validation datasets (AUC was 0.97 and 0.99), and a LASSO model was applied to develop a seven-tsRNA-based risk score model for colorectal cancer prognosis. Finally, a tsRNA-mRNA interaction network was established according to potential mRNA targets predicted by bioinformatic methods. In conclusion, the results suggest that abnormal expression of tsRNA in colorectal cancer may have a functional effect on tumor action and moreover, that some of the tsRNAs identified in this study with diagnostic and prognostic potential could be of clinical significance.
Collapse
Affiliation(s)
- Yong Zhu
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Zhougui Ling
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Andrew Winnicki
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Lilly Xu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Shaun Xu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
21
|
Abstract
tRNA-derived small RNA (tsRNA) is a novel class of non-coding RNA that is usually produced from tRNA following endonuclease cleavage which occurs under stress conditions. There are two types of tsRNAs: tRNA-derived fragments (tRFs) and stress-induced tRNA halves (tiRNAs), which differ in their cleavage position. Many studies have demonstrated that tsRNAs are involved in various physiological and pathological processes apart from cancer and gene expression. In this review, we briefly described the biogenesis, classification, and characteristics of tsRNAs and summarized the current research progress of tsRNAs in metabolic diseases, senescence, reproduction, stress, and organ injury, and finally put forward some problems to be solved.
Collapse
Affiliation(s)
- Qiyu Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Tingting Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
22
|
Differential Expression Profiles and Function Prediction of Transfer RNA-Derived Fragments in High-Grade Serous Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5594081. [PMID: 33860037 PMCID: PMC8028742 DOI: 10.1155/2021/5594081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Background The present study is aimed at providing systematic insight into the composition and expression of transfer RNA (tRNA) derivative transcription in high-grade serous ovarian cancer (HGSOC). Methods tRNA derivative expression profiles in three pairs of HGSOC and adjacent normal ovarian tissues were conducted by tRNA-derived small RNA fragment (tRF) and tRNA half (tiRNA) sequencing. The differentially expressed tRFs and tiRNAs between HGSOC and paired adjacent normal samples were screened. The targeted genes of differentially expressed tRFs and tiRNAs were screened. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) of target genes of tRFs and tiRNAs were analyzed. Results There are a total of 20 significantly upregulated and 15 significantly downregulated tRFs and tiRNAs between the cancer group and the paracarcinoma group. The upregulated tRFs and tiRNAs are mucin-type O-glycan biosynthesis, glycosphingolipid biosynthesis, the glucagon signaling pathway, the AMPK signaling pathway, maturity-onset diabetes of the young, glycosphingolipid biosynthesis, the insulin signaling pathway, insulin resistance, leukocyte transendothelial migration, starch, and sucrose metabolism. The downregulated tRFs and tiRNAs are other glycan degradation, vitamin digestion and absorption, fatty acid elongation, and biosynthesis of unsaturated fatty acids. Conclusions There are significantly expressed tRFs and tiRNAs in HGSOC tissues, and these may provide potential diagnostic biomarkers and therapeutic targets for HGSOC.
Collapse
|
23
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X, Tang G, Zhou H, Aung LHH, Li P, Wang J, Wang Z, Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021; 54:e12977. [PMID: 33507586 PMCID: PMC7941233 DOI: 10.1111/cpr.12977] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration.
Collapse
Affiliation(s)
- Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Vascular surgery, Qingdao Hiser Medical Center, Qingdao, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Zhou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109. [PMID: 32606362 PMCID: PMC7326991 DOI: 10.1038/s41392-020-00217-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are small regulatory RNAs processed from mature tRNAs or precursor tRNAs. tRFs and tiRNAs play biological roles through a variety of mechanisms by interacting with proteins or mRNA, inhibiting translation, and regulating gene expression, the cell cycle, and chromatin and epigenetic modifications. The establishment and application of research technologies are important in understanding the biological roles of tRFs and tiRNAs. To study the molecular mechanisms of tRFs and tiRNAs, researchers have used a variety of bioinformatics and molecular biology methods, such as microarray analysis, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR); Northern blotting; RNA sequencing (RNA-seq); cross-linking, ligation and sequencing of hybrids (CLASH); and photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). This paper summarizes the classification, action mechanisms, and roles of tRFs and tiRNAs in human diseases and the related signal transduction pathways, targeted therapies, databases, and research methods associated with them.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China.
| |
Collapse
|