1
|
Liu Z, Zhong S, Ho RCM, Qian X, Tang Y, Tian H, Zhang C, Li N, Zhao Y, Zhang Y, Liu H, Wu M, Zhan Y, Li M, Lv Z, Hao F, Tam W, Bingyuan JL, Pascual-Leone A. Transcranial Pulsed Current Stimulation and Social Functioning in Children With Autism: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e255776. [PMID: 40257798 PMCID: PMC12013354 DOI: 10.1001/jamanetworkopen.2025.5776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 04/22/2025] Open
Abstract
Importance Transcranial pulsed current stimulation (tPCS) may improve social functioning and sleep disorders in children with autism spectrum disorder (ASD). Prior trials have been limited by small sample sizes, single-center designs, and often a lack of sham controls. Objective To examine the safety and efficacy of tPCS in improving social functioning and sleep disorders in children with ASD. Design, Setting, and Participants This multicenter, double-blind, 2-armed, sham-controlled randomized clinical trial, conducted from May 1, 2022, through November 30, 2023, assessed children aged 3 to 14 years with ASD at 8 medical centers in China. Interventions Participants underwent daily 20-minute sessions of active tPCS (0.7 mA) or sham tPCS (brief 0.7 mA ramp-up and ramp-down) for 20 sessions over 4 weeks with anode over the right cerebellar hemisphere and cathode over the left dorsolateral prefrontal cortex (12.56-cm2-circular, 4-cm-diameter circular electrodes). Each day after tPCS, all participants received 1 hour of standard therapy. Main Outcomes and Measures Social functioning was assessed using the Autism Treatment Evaluation Checklist as the primary outcome. Secondary outcomes included the Autism Behavior Checklist and the Childhood Sleep Habits Questionnaire. Results A total of 312 participants (155 in the active group and 157 in the sham group; 248 [79.5%] boys; mean [SD] age, 5.1 [1.6] years; 276 [88.5%] aged 3-6 years and 36 [11.5%] aged 7-14 years) completed the trial. After 20 sessions, the mean Autism Treatment Evaluation Checklist total score improved by 4.13 points (5.8%) in the sham tPCS group and 7.17 points (10.7%) in the active tPCS group. Analysis of covariance showed significantly greater improvement in the active tPCS group (difference, -3.50; 95% CI, -5.56 to -1.43; P < .001). Both treatments were well tolerated. Conclusions and Relevance In this randomized clinical trial of prefrontal-cerebellar tPCS in children aged 3 to 14 years with ASD, 20 sessions over 4 weeks improved social functioning and sleep. These findings suggest that tPCS may serve as a viable nonpharmacologic alternative for ASD. Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2200059118.
Collapse
Affiliation(s)
- Zhenhuan Liu
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Sandra Zhong
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- AscenZion Neuromodulation Co Pte Ltd, Singapore
| | - Roger C. M. Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
- Division of Life Sciences (LIFS), Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Xuguang Qian
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yan Tang
- Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hui Tian
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Chuntao Zhang
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Nuo Li
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yong Zhao
- Department of Paediatrics, Nanhai Maternity and Children’s Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yuqiong Zhang
- Department of Paediatrics, Dongguan Maternal and Child Health Hospital, Dongguan, Guangdong, China
| | - Huituan Liu
- Department of Paediatrics, Dongguan Maternal and Child Health Hospital, Dongguan, Guangdong, China
| | - Meifeng Wu
- Department of Paediatrics, Guangzhou Angel Children Hospital, Guangzhou, Guangdong, China
| | - Yingjie Zhan
- Department of Paediatrics, Zhanjiang Maternal and Child Health Hospital, Zhanjiang, Guangdong, China
| | - Min Li
- Department of Paediatrics, Meixian District Hospital of Chinese Medicine, Meizhou, Guangdong, China
| | - Zhihai Lv
- Department of Paediatrics, Shenzhen Luogang Maternal and Child Health Hospital, Guangdong, China
| | - Fengyi Hao
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
- Sleep Medicine Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wilson Tam
- Alice Lee Centre for Nursing Studies, National University of Singapore, Singapore
| | - Jeremy Lin Bingyuan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Wang Y, Li Z, Ye Y, Li Y, Wei R, Gan K, Qian Y, Xu L, Kong Y, Guan L, Fang H, Jiao G, Ke X. HD-tDCS effects on social impairment in autism spectrum disorder with sensory processing abnormalities: a randomized controlled trial. Sci Rep 2025; 15:9772. [PMID: 40118999 PMCID: PMC11928555 DOI: 10.1038/s41598-025-93631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
This study examined the effects of high-definition transcranial direct current stimulation (HD-tDCS) on social impairment in children with autism spectrum disorder (ASD), focusing on those with and without sensory processing abnormalities. A randomized double-blind sham-controlled trial involved 72 children with ASD, divided into three groups based on sensory integration status. A post-hoc analysis of 51 children aged 4-8 years who received true HD-tDCS was conducted, categorizing them into hypo-tactile, hyper-tactile, and typical tactile sensitivity groups. Therapeutic efficacy was compared across these groups. (1) The randomized cntrolled Trial: The typical sensory integration group showed significant improvements in social awareness (t = 5.032, p < 0.000) and autistic mannerisms (t = 3.085, p = 0.004) compared to the sensory integration dysfunction group. (2)The result of the post-hoc analysis: The hypo-tactile and typical tactile sensitivity groups exhibited notable improvements in social awareness, cognition, communication, autistic mannerisms, and total SRS scores. In contrast, the hyper-tactile group only had a significant reduction in social communication (t = 2.385, p = 0.022) post-intervention. HD-tDCS effectively improved social impairment symptoms in children with ASD, particularly those with typical sensory integration and either typical or hypo-tactile responsiveness.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhijia Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China
| | - Yupei Ye
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ran Wei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Child Health Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu, China
| | - Kaiyan Gan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Brehme H, Utke J, Berger C, Kölch M, Buchmann J. Transcranial direct current stimulation (tDCS) in psychiatric disorders in early childhood (aged under 10 years): a systematic review. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-024-02635-z. [PMID: 39792266 DOI: 10.1007/s00787-024-02635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Transcranial direct current stimulation (tDCS) remains experimental for many psychiatric disorders in adults. Particularly in childhood, there is limited research on the evidence for the efficacy and mechanisms of action of tDCS on the developing brain. The objective of this review is to identify published experimental studies to examine the efficacy and mechanisms of tDCS in children with psychiatric or developmental disorders in early (prepubertal) childhood (aged under 10 years). Included Studies should meet the following criteria: (1) experimental studies (no reviews, no case reports), (2) studies published in international peer-reviewed journals, (3) written in English, (4) conducted on children under 10 under years of age, (5) at enrolment with a psychiatric or developmental disorder.Eight studies were identified that fulfilled the specified criteria. All studies investigated effect on children with autism-spectrum-disorder (ASD). Anodal tDCS, mainly targeting the left dorsolateral prefrontal cortex (dlPFC), showed positive effects on the reduction of ASD symptoms. There has also been evidence that these stimulations are feasible, have good tolerability and are safe. tDCS was found to be safe and partially effective, but a long-term effect of tDCS and changes in connectivity during tDCS in autism has not been proven. Other developmental or psychiatric diseases were not investigated. This results in a lack of knowledge regarding the reactivity of the brain during the prepubertal period, which is a critical phase in the pathogenesis of neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), ASD, Tourette's syndrome or dyslexia.
Collapse
Affiliation(s)
- Hannes Brehme
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany.
| | - Josefin Utke
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany
| | - Michael Kölch
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany
| | - Johannes Buchmann
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
| |
Collapse
|
4
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Gallop L, Westwood SJ, Lewis Y, Campbell IC, Schmidt U. Effects of transcranial direct current stimulation in children and young people with psychiatric disorders: a systematic review. Eur Child Adolesc Psychiatry 2024; 33:3003-3023. [PMID: 36764973 PMCID: PMC11424672 DOI: 10.1007/s00787-023-02157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Transcranial direct current stimulation (tDCS) has demonstrated benefits in adults with various psychiatric disorders, but its clinical utility in children and young people (CYP) remains unclear. This PRISMA systematic review used published and ongoing studies to examine the effects of tDCS on disorder-specific symptoms, mood and neurocognition in CYP with psychiatric disorders. We searched Medline via PubMed, Embase, PsychINFO via OVID, and Clinicaltrials.gov up to December 2022. Eligible studies involved multiple session (i.e., treatment) tDCS in CYP (≤ 25 years old) with psychiatric disorders. Two independent raters assessed the eligibility of studies and extracted data using a custom-built form. Of 33 eligible studies (participant N = 517), the majority (n = 27) reported an improvement in at least one outcome measure of disorder-specific symptoms. Few studies (n = 13) examined tDCS effects on mood and/or neurocognition, but findings were mainly positive. Overall, tDCS was well tolerated with minimal side effects. Of 11 eligible ongoing studies, many are sham-controlled RCTs (n = 9) with better blinding techniques and a larger estimated participant enrolment (M = 79.7; range 15-172) than published studies. Although encouraging, the evidence to date is insufficient to firmly conclude that tDCS can improve clinical symptoms, mood, or cognition in CYP with psychiatric disorders. Ongoing studies appear of improved methodological quality; however, future studies should broaden outcome measures to more comprehensively assess the effects of tDCS and develop dosage guidance (i.e., treatment regimens).
Collapse
Affiliation(s)
- Lucy Gallop
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK.
| | - Samuel J Westwood
- Department of Psychology, School of Social Science, University of Westminster, London, W1W 6UW, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AB, UK
| | - Yael Lewis
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
- Hadarim Eating Disorder Unit, Shalvata Mental Health Centre, Hod Hasharon, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iain C Campbell
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Ratsapbhayakul T, Keeratitanont K, Chonprai C, Auvichayapat N, Suphakunpinyo C, Patjanasoontorn N, Tiamkao S, Tunkamnerdthai O, Punjaruk W, Auvichayapat P. Anodal transcranial direct-current stimulation and non-verbal intelligence in autism spectrum disorder: A randomized controlled trial. Dev Med Child Neurol 2024; 66:1244-1254. [PMID: 38308445 DOI: 10.1111/dmcn.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
AIM To understand the impact of anodal transcranial direct-current stimulation (tDCS) on non-verbal intelligence in high-functioning young adults with autism spectrum disorder (ASD). METHOD Thirty individuals with ASD were randomly divided into three groups receiving 2 mA, 20 minutes daily anodal tDCS for 10 sessions. Group A received 10 sham tDCS sessions, group B five real followed by five sham sessions, and group C received 10 real tDCS sessions. The total score of non-verbal intelligence was measured using the Test of Nonverbal Intelligence, Fourth Edition. The left dorsolateral prefrontal cortex (LDLPFC) was targeted using the International 10-20 electroencephalography system, and concurrent cognitive training was avoided. RESULTS Group C demonstrated a mean difference of 4.10 (95% confidence interval 1.41-6.79; p = 0.005) in Test of Nonverbal Intelligence scores compared with group A, with an effect size of 0.47. No significant differences were observed between groups A and B (p = 0.296), or between groups B and C (p = 0.140). INTERPRETATION Ten sessions of anodal tDCS to the LDLPFC led to improved non-verbal intelligence among individuals with ASD. These results emphasize the potential of tDCS as a discrete method for boosting cognitive abilities in the high-functioning population with ASD. Future studies with larger groups of participants and extended observation periods are necessary to validate these findings.
Collapse
Affiliation(s)
- Tinnaphat Ratsapbhayakul
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Keattichai Keeratitanont
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Radiology and Nuclear Medicine, Faculty of Medicine Burapha University, Chonburi, Thailand
| | - Chanatiporn Chonprai
- Division of Child Psychiatry, Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Division of Child Psychiatry, Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsak Tiamkao
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orathai Tunkamnerdthai
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Punjaruk
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Chan MMY, Choi CXT, Tsoi TCW, Shea CKS, Yiu KWK, Han YMY. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul 2023; 16:1604-1616. [PMID: 37918630 DOI: 10.1016/j.brs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Few treatment options are available for targeting core symptoms of autism spectrum disorder (ASD). The development of treatments that target common neural circuit dysfunctions caused by known genetic defects, namely, disruption of the excitation/inhibition (E/I) balance, is promising. Transcranial direct current stimulation (tDCS) is capable of modulating the E/I balance in healthy individuals, yet its clinical and neurobiological effects in ASD remain elusive. OBJECTIVE This double-blind, randomized, sham-controlled trial investigated the effects of multisession cathodal prefrontal tDCS coupled with online cognitive remediation on social functioning, information processing efficiency and the E/I balance in ASD patients aged 14-21 years. METHODS Sixty individuals were randomly assigned to receive either active or sham tDCS (10 sessions in total, 20 min/session, stimulation intensity: 1.5 mA, cathode: F3, anode: Fp2, size of electrodes: 25 cm2) combined with 20 min of online cognitive remediation. Social functioning, information processing efficiency during cognitive tasks, and theta- and gamma-band E/I balance were measured one day before and after the treatment. RESULTS Compared to sham tDCS, active cathodal tDCS was effective in enhancing overall social functioning [F(1, 58) = 6.79, p = .012, ηp2 = 0.105, 90% CI: (0.013, 0.234)] and information processing efficiency during cognitive tasks [F(1, 58) = 10.07, p = .002, ηp2 = 0.148, 90% CI: (0.034, 0.284)] in these individuals. Electroencephalography data showed that this cathodal tDCS protocol was effective in reducing the theta-band E/I ratio of the cortical midline structures [F(1, 58) = 4.65, p = .035, ηp2 = 0.074, 90% CI: (0.010, 0.150)] and that this reduction significantly predicted information processing efficiency enhancement (b = -2.546, 95% BCa CI: [-4.979, -0.113], p = .041). CONCLUSION Our results support the use of multisession cathodal tDCS over the left dorsolateral prefrontal cortex combined with online cognitive remediation for reducing the elevated theta-band E/I ratio in sociocognitive information processing circuits in ASD patients, resulting in more adaptive regulation of global brain dynamics that is associated with enhanced information processing efficiency after the intervention.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Klaire W K Yiu
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Wang Y, Wang F, Kong Y, Gao T, Zhu Q, Han L, Sun B, Guan L, Zhang Z, Qian Y, Xu L, Li Y, Fang H, Jiao G, Ke X. High definition transcranial direct current stimulation of the Cz improves social dysfunction in children with autism spectrum disorder: A randomized, sham, controlled study. Autism Res 2023; 16:2035-2048. [PMID: 37695276 DOI: 10.1002/aur.3018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The purpose of this study was to determine the effect of the Cz of high-definition 5-channel tDCS (HD-tDCS) on social function in 4-12 years-old children with autism spectrum disorder (ASD). This study was a randomized, double-blind, pseudo-controlled trial in which 45 ASD children were recruited and divided into three groups with sex, age, and rehabilitation treatment as control variables. Each group of 15 children with ASD was randomly administered active HD-tDCS with the Cz as the central anode, active HD-tDCS with the left dorsolateral prefrontal cortex (F3) as the central anode, and sham HD-tDCS with the Cz as the central anode with 14 daily sessions in 3 weeks. The Social Responsiveness Scale Chinese Version (SRS-Chinese Version) was compared 1 week after stimulation with values recorded 1 week prior to stimulation. At the end of treatment, both the anodal Cz and anodal left DLFPC tDCS decreased the measures of SRS-Chinese Version. The total score of SRS-Chinese Version decreased by 13.08%, social cognition decreased by 18.33%, and social communication decreased by 10.79%, which were significantly improved over the Cz central anode active stimulation group, especially in children with young age, and middle and low function. There was no significant change in the total score and subscale score of SRS-Chinese Version over the Cz central anode sham stimulation group. In the F3 central anode active stimulation group, the total score of SRS-Chinese Version decreased by 13%, autistic behavior decreased by 19.39%, and social communication decreased by 14.39%, which were all significantly improved. However, there was no significant difference in effect between the Cz and left DLPFC stimulation conditions. HD-tDCS of the Cz central anode may be an effective treatment for social dysfunction in children with ASD.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tianshu Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyao Zhu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Han
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Zhang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Xiao L, Huo X, Wang Y, Li W, Li M, Wang C, Wang F, Sun T. A bibliometric analysis of global research status and trends in neuromodulation techniques in the treatment of autism spectrum disorder. BMC Psychiatry 2023; 23:183. [PMID: 36941549 PMCID: PMC10026211 DOI: 10.1186/s12888-023-04666-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease which has risen to become the main cause of childhood disability, placing a heavy burden on families and society. To date, the treatment of patients with ASD remains a complicated problem, for which neuromodulation techniques are a promising solution. This study analyzed the global research situation of neuromodulation techniques in the treatment of ASD from 1992 to 2022, aiming to explore the global research status and frontier trends in this field. METHODS The Web of Science (WoS) was searched for literature related to neuromodulation techniques for ASD from 1992 to October 2022. A knowledge atlas to analyze collaboration among countries, institutions, authors, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and burst keywords was constructed using Rstudio software, CiteSpace, and VOSviewer. RESULTS In total, 392 publications related to the treatment of ASD using neuromodulation techniques were included. Despite some fluctuations, the number of publications in this field has shown a growing trend in recent years. The United States and Deakin University are the leading country and institution in this field, respectively. The greatest contributing authors are Peter G Enticott, Manuel F Casanova, and Paul B Fitzgerald et al. The most prolific and cited journal is Brain Stimulation and the most commonly co-cited journal is The Journal of Autism and Developmental Disorders. The most frequently cited article was that of Simone Rossi (Safety, ethical considerations, and application guidelines for the use of transverse magnetic stimulation in clinical practice and research, 2009). "Obsessive-compulsive disorder," "transcranial direct current stimulation," "working memory," "double blind" and "adolescent" were identified as hotspots and frontier trends of neuromodulation techniques in the treatment of ASD. CONCLUSION The application of neuromodulation techniques for ASD has attracted the attention of researchers worldwide. Restoring the social ability and improving the comorbid symptoms in autistic children and adults have always been the focus of research. Neuromodulation techniques have demonstrated significant advantages and effects on these issues. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are new therapeutic methods introduced in recent years, and are also directions for further exploration.
Collapse
Affiliation(s)
- Lifei Xiao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Chaofan Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China.
| |
Collapse
|
11
|
Kang J, Fan X, Zhong Y, Casanova MF, Sokhadze EM, Li X, Niu Z, Geng X. Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study. Bioengineering (Basel) 2023; 10:98. [PMID: 36671670 PMCID: PMC9855011 DOI: 10.3390/bioengineering10010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder that affects several behavioral domains of neurodevelopment. Transcranial direct current stimulation (tDCS) is a new method that modulates motor and cognitive function and may have potential applications in ASD treatment. To identify its potential effects on ASD, differences in electroencephalogram (EEG) microstates were compared between children with typical development (n = 26) and those with ASD (n = 26). Furthermore, children with ASD were divided into a tDCS (experimental) and sham stimulation (control) group, and EEG microstates and Autism Behavior Checklist (ABC) scores before and after tDCS were compared. Microstates A, B, and D differed significantly between children with TD and those with ASD. In the experimental group, the scores of microstates A and C and ABC before tDCS differed from those after tDCS. Conversely, in the control group, neither the EEG microstates nor the ABC scores before the treatment period (sham stimulation) differed from those after the treatment period. This study indicates that tDCS may become a viable treatment for ASD.
Collapse
Affiliation(s)
- Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding 071000, China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Yiwen Zhong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Manuel F. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Estate M. Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Campus, Greenville Health System, Greenville, SC 29605, USA
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Zikang Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100859, China
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Griff JR, Langlie J, Bencie NB, Cromar ZJ, Mittal J, Memis I, Wallace S, Marcillo AE, Mittal R, Eshraghi AA. Recent advancements in noninvasive brain modulation for individuals with autism spectrum disorder. Neural Regen Res 2022; 18:1191-1195. [PMID: 36453393 PMCID: PMC9838164 DOI: 10.4103/1673-5374.360163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology. Individuals with autism spectrum disorder show deficits in a variety of areas including cognition, memory, attention, emotion recognition, and social skills. With no definitive treatment or cure, the main interventions for individuals with autism spectrum disorder are based on behavioral modulations. Recently, noninvasive brain modulation techniques including repetitive transcranial magnetic stimulation, intermittent theta burst stimulation, continuous theta burst stimulation, and transcranial direct current stimulation have been studied for their therapeutic properties of modifying neuroplasticity, particularly in individuals with autism spectrum disorder. Preliminary evidence from small cohort studies, pilot studies, and clinical trials suggests that the various noninvasive brain stimulation techniques have therapeutic benefits for treating both behavioral and cognitive manifestations of autism spectrum disorder. However, little data is available for quantifying the clinical significance of these findings as well as the long-term outcomes of individuals with autism spectrum disorder who underwent transcranial stimulation. The objective of this review is to highlight the most recent advancements in the application of noninvasive brain modulation technology in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Jessica R. Griff
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jake Langlie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B. Bencie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zachary J. Cromar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Idil Memis
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven Wallace
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander E. Marcillo
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Adrien A. Eshraghi, .
| |
Collapse
|
13
|
Auvichayapat P, Intayot K, Udomchat C, Suphakunpinyo C, Patjanasoontorn N, Keeratitanont K, Tunkamnerdthai O, Jensen MP, Humbert AT, Auvichayapat N. Long-term effects of transcranial direct current stimulation in the treatment of autism spectrum disorder: A randomized controlled trial. Dev Med Child Neurol 2022; 65:811-820. [PMID: 36394093 DOI: 10.1111/dmcn.15457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
AIM To compare the efficacy of 0, 5, and 20 sessions of transcranial direct current stimulation (tDCS) for reducing symptoms of autism spectrum disorder (ASD). METHOD Thirty-six male children with ASD (mean age 2 years 3 months, SD 4 months, age range 1 years 6 months-2 years 11 months) were balanced and stratified by age, sex, and baseline severity of ASD, to: (1) a control group that received 20 sessions of sham tDCS; (2) a 5-session tDCS group (5-tDCS) that received 5 sessions of active tDCS followed by 15 sessions of sham tDCS; and (3) a 20-session tDCS group (20-tDCS) that received 20 sessions of active tDCS. All groups participated in the special school activity of Khon Kaen Special Education Center, Thailand. The primary outcome was autism severity as measured by the Childhood Autism Severity Scale. RESULTS The 5-tDCS and 20-tDCS groups evidenced greater reductions in autism severity than the control group at days 5 and 14, and months 6 and 12. There were no significant differences in the outcome between the 5- and 20-tDCS groups at any time point. Within-group analysis showed clinically meaningful improvements starting at month 6 for the participants in the control group, and clinically meaningful improvements starting on day 5 in both active tDCS groups, all of which were maintained to month 12. INTERPRETATION The 5- and 20-session tDCS seems to reduce autism severity faster than sham tDCS. These effects maintained at least for 1 year.
Collapse
Affiliation(s)
- Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Krittiya Intayot
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chavisa Udomchat
- Khon Kaen Special Education Center Region 9, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Division of Child Psychiatry, Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Keattichai Keeratitanont
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Radiology, Faculty of Medicine, Burapha University, Thailand
| | - Orathai Tunkamnerdthai
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Mark P Jensen
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Humbert
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Khon Kaen Special Education Center Region 9, Khon Kaen, Thailand
| |
Collapse
|
14
|
Keeratitanont K, Theerakulpisut D, Auvichayapat N, Suphakunpinyo C, Patjanasoontorn N, Tiamkao S, Tepmongkol S, Khiewvan B, Raruenrom Y, Srisuruk P, Paholpak S, Auvichayapat P. Brain laterality evaluated by F-18 fluorodeoxyglucose positron emission computed tomography in autism spectrum disorders. Front Mol Neurosci 2022; 15:901016. [PMID: 36034502 PMCID: PMC9399910 DOI: 10.3389/fnmol.2022.901016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Background and rationale Autism spectrum disorder (ASD) is a neuropsychiatric disorder that has no curative treatment. Little is known about the brain laterality in patients with ASD. F-18 fluorodeoxyglucose positron emission computed tomography (F-18 FDG PET/CT) is a neuroimaging technique that is suitable for ASD owing to its ability to detect whole brain functional abnormalities in a short time and is feasible in ASD patients. The purpose of this study was to evaluate brain laterality using F-18 FDG PET/CT in patients with high-functioning ASD. Materials and methods This case-control study recruited eight ASD patients who met the DSM-5 criteria, the recorded data of eight controls matched for age, sex, and handedness were also enrolled. The resting state of brain glucose metabolism in the regions of interest (ROIs) was analyzed using the Q.Brain software. Brain glucose metabolism and laterality index in each ROI of ASD patients were compared with those of the controls. The pattern of brain metabolism was analyzed using visual analysis and is reported in the data description. Results The ASD group’s overall brain glucose metabolism was lower than that of the control group in both the left and right hemispheres, with mean differences of 1.54 and 1.21, respectively. We found statistically lower mean glucose metabolism for ASD patients than controls in the left prefrontal lateral (Z = 1.96, p = 0.049). The left laterality index was found in nine ROIs for ASD and 11 ROIs for the control. The left laterality index in the ASD group was significantly lower than that in the control group in the prefrontal lateral (Z = 2.52, p = 0.012), precuneus (Z = 2.10, p = 0.036), and parietal inferior (Z = 1.96, p = 0.049) regions. Conclusion Individuals with ASD have lower brain glucose metabolism than control. In addition, the number of ROIs for left laterality index in the ASD group was lower than control. Left laterality defects may be one of the causes of ASD. This knowledge can be useful in the treatment of ASD by increasing the left-brain metabolism. This trial was registered in the Thai Clinical Trials Registry (TCTR20210705005).
Collapse
Affiliation(s)
- Keattichai Keeratitanont
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Daris Theerakulpisut
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsak Tiamkao
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yutapong Raruenrom
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyawan Srisuruk
- Department of Educational Psychology and Counseling, Faculty of Education, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Suchat Paholpak
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Paradee Auvichayapat,
| |
Collapse
|
15
|
Zhao X, Zhu S, Cao Y, Cheng P, Lin Y, Sun Z, Li Y, Jiang W, Du Y. Regional homogeneity of adolescents with high-functioning autism spectrum disorder and its association with symptom severity. Brain Behav 2022; 12:e2693. [PMID: 35816591 PMCID: PMC9392530 DOI: 10.1002/brb3.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have revealed abnormal regional homogeneity (ReHo) in individuals with autism spectrum disorder (ASD); however, there is little consistency across the findings within these studies, partly due to small sample size and great heterogeneity among participants between studies. Additionally, few studies have explored the association between ReHo aberrance and clinical symptoms in individuals with ASD. METHODS Forty-eight adolescents with high-functioning ASD and 63 group-matched typically developing (TD) controls received functional magnetic resonance imaging at rest. Group-level analysis was performed to detect differences in ReHo between ASD and TD. Evaluation of symptom severity in individuals with ASD was based on the Autism Behavior Checklist (ABC). Voxel-wise correlation analysis was undergone to examine the correlations between the symptom severity and ReHo map in individuals with ASD within brain areas with ReHo abnormalities. RESULTS Compared with the TD controls, individuals with ASD exhibited increased ReHo in the bilateral anterior cingulate cortex, left caudate, right posterior cerebellum (cerebellar tonsil), and bilateral brainstem and decreased ReHo in the left precentral gyrus, left inferior parietal lobule, bilateral postcentral gyrus, and right anterior cerebellum (culmen). The correlation analysis indicated that the ReHo value in the brainstem was negatively associated with the ABC total scores and the scores of Relating factor, respectively. CONCLUSIONS Our findings indicated that widespread ReHo abnormalities occurred in ASD, shedding light on the underlying neurobiology of pathogenesis and symptomatology of ASD.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyi Zhu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Cao
- Department of Psychiatry, Suzhou Guangji Hospital, Suzhou, China
| | - Peipei Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiong Lin
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixin Sun
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Jiang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yasong Du
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Auvichayapat N, Auvichayapat P. Transcranial Direct Current Stimulation in Treatment of Child Neuropsychiatric Disorders: Ethical Considerations. Front Hum Neurosci 2022; 16:842013. [PMID: 35874159 PMCID: PMC9304992 DOI: 10.3389/fnhum.2022.842013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive electrical stimulation performed using low electric currents passing through two electrodes. The provided current passes from the anode to the cathode and induces electric fields in the surface neurons. It then modulates synaptic plasticity and finally changes cortical excitability or improves clinical outcomes, which outlast after a duration of stimulation. Meta-analyses have supported the beneficial effects of tDCS treatments in child neuropsychiatric disorders. However, the study of vulnerable children remains controversial and is a great deal for ethical considerations. Because the developing brain has some important physiological differences from the matured brain, specifically less γ-aminobutyric acid (GABA)ergic inhibition and more myelination, the opportunity to modify neurological disorders to be close to the normal level in childhood after tDCS is likely to be higher than in adults. In contrast, these physiological differences may result in unexpected excitability in children's brains and were criticized to have an unsafe effect, specifically seizures, which is a serious adverse events. As mentioned above, using tDCS in children appears to be a double-edged sword and should be ethically considered prior to wide use. Assessing between benefits of tDCS treatment within the golden period of brain development and the risk of seizure provocation is important. Thus, this perspective article is aimed to exhibit broad concepts about the developing brain, tDCS in children, pathophysiology of neuropsychiatric disorders and tDCS beneficence, tDCS safety and tolerability in children, and missing good opportunities or taking risks in tDCS.
Collapse
Affiliation(s)
- Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Khon Kaen University, Khon Kaen, Thailand
- Division of Pediatric Neurology, Department of Pediatrics, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Paradee Auvichayapat
| |
Collapse
|
17
|
Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review. Acta Neuropsychiatr 2021; 33:242-253. [PMID: 33926587 DOI: 10.1017/neu.2021.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites. METHODS The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders. RESULTS The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels. CONCLUSIONS There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.
Collapse
|
18
|
Prillinger K, Radev ST, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L. Repeated Sessions of Transcranial Direct Current Stimulation on Adolescents With Autism Spectrum Disorder: Study Protocol for a Randomized, Double-Blind, and Sham-Controlled Clinical Trial. Front Psychiatry 2021; 12:680525. [PMID: 34526918 PMCID: PMC8435587 DOI: 10.3389/fpsyt.2021.680525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Social-emotional difficulties are a core symptom of autism spectrum disorder (ASD). Accordingly, individuals with ASD have problems with social cognition such as recognizing emotions from other peoples' faces. Various results from functional magnetic resonance imaging and electroencephalography studies as well as eye-tracking data reveal a neurophysiological basis of these deficits by linking them to abnormal brain activity. Thus, an intervention targeting the neural origin of ASD impairments seems warranted. A safe method able to influence neural activity is transcranial direct current stimulation (tDCS). This non-invasive brain stimulation method has already demonstrated promising results in several neuropsychiatric disorders in adults and children. The aim of this project is to investigate the effects of tDCS on ASD symptoms and their neural correlates in children and adolescents with ASD. Method: This study is designed as a double-blind, randomized, and sham-controlled trial with a target sample size of 20 male participants (aged 12-17 years) diagnosed with ASD. Before randomization, the participants will be stratified into comorbid depression, comorbid ADHS/conduct disorder, or no-comorbidity groups. The intervention phase comprises 10 sessions of anodal or sham tDCS applied over the left prefrontal cortex within 2 consecutive weeks. To engage the targeted brain regions, participants will perform a social cognition training during the stimulation. TDCS-induced effects on ASD symptoms and involved neural circuits will be investigated through psychological, neurophysiological, imaging, and behavioral data at pre- and post-measurements. Tolerability will be evaluated using a standardized questionnaire. Follow-up assessments 1 and 6 months after the intervention will examine long-lasting effects. Discussion: The results of this study will provide insights into the changeability of social impairments in ASD by investigating social and emotional abilities on different modalities following repeated sessions of anodal tDCS with an intra-simulation training. Furthermore, this trial will elucidate the tolerability and the potential of tDCS as a new treatment approach for ASD in adolescents. Clinical Trial Registration: The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS00017505) on 02/07/2019.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Stefan T. Radev
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul L. Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Wang R, Hu B, Sun C, Geng D, Lin J, Li Y. Metabolic abnormality in acute stroke-like lesion and its relationship with focal cerebral blood flow in patients with MELAS: Evidence from proton MR spectroscopy and arterial spin labeling. Mitochondrion 2021; 59:276-282. [PMID: 34186261 DOI: 10.1016/j.mito.2021.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Our purpose is to detect the metabolic alterations in acute stroke-like lesions (SLLs) and further investigate the correlations between metabolic concentrations and focal cerebral blood flow in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) using proton MR spectroscopy (1H-MRS) and arterial spin labeling (ASL). A total of 23 patients with MELAS at acute stage of stroke-like episodes (SLEs) and 20 normal controls (NC) were recruited in this study, respectively. All subjects underwent conventional MRI and1H-MRS. In addition, ASL was performed in each patient. The measurements of creatine (Cr), choline (Cho), N-acetyl aspartate (NAA), lactate (Lac), glutamine/glutamate (Glx) levels and the ratios of Cho/Cr, NAA/Cr, Lac/Cr and Glx/Cr in acute SLLs for MELAS patients and left parietal and occipital lobes for NC were measured using LC-model software. Furthermore, in MELAS group, the associations between relative cerebral blood flow (rCBF) and metabolite concentrations in acute SLLs were also assessed. In MELAS group, acute SLLs were identified with metabolic abnormalities and increased rCBF. Specifically, compared with controls, MELAS patients exhibited significantly higher Lac, Cho levels and Lac/Cr, Cho/Cr ratios, and lower NAA, Glx levels and NAA/Cr and Glx/Cr ratios. Moreover, for MELAS patients, Lac concentration in acute SLLs was positively correlated with focal rCBF. This study exhibited the neural injury with increasing lactate and cerebral blood flow in the acute SLEs. It might shed light on the underlying biochemical mechanism of mitochondrial cytopathy and angiopathy in MELAS.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Bin Hu
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuxin Li
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China.
| |
Collapse
|
20
|
Papariello A, Taylor D, Soderstrom K, Litwa K. CB 1 antagonism increases excitatory synaptogenesis in a cortical spheroid model of fetal brain development. Sci Rep 2021; 11:9356. [PMID: 33931678 PMCID: PMC8087674 DOI: 10.1038/s41598-021-88750-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a complex role in the development of neural circuitry during fetal brain development. The cannabinoid receptor type 1 (CB1) controls synaptic strength at both excitatory and inhibitory synapses and thus contributes to the balance of excitatory and inhibitory signaling. Imbalances in the ratio of excitatory to inhibitory synapses have been implicated in various neuropsychiatric disorders associated with dysregulated central nervous system development including autism spectrum disorder, epilepsy, and schizophrenia. The role of CB1 in human brain development has been difficult to study but advances in induced pluripotent stem cell technology have allowed us to model the fetal brain environment. Cortical spheroids resemble the cortex of the dorsal telencephalon during mid-fetal gestation and possess functional synapses, spontaneous activity, an astrocyte population, and pseudo-laminar organization. We first characterized the ECS using STORM microscopy and observed synaptic localization of components similar to that which is observed in the fetal brain. Next, using the CB1-selective antagonist SR141716A, we observed an increase in excitatory, and to a lesser extent, inhibitory synaptogenesis as measured by confocal image analysis. Further, CB1 antagonism increased the variability of spontaneous activity within developing neural networks, as measured by microelectrode array. Overall, we have established that cortical spheroids express ECS components and are thus a useful model for exploring endocannabinoid mediation of childhood neuropsychiatric disease.
Collapse
Affiliation(s)
- Alexis Papariello
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - David Taylor
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|