1
|
Chayanopparat S, Banyatcharoen P, Jitprapaikulsan J, Uawithya E, Apiraksattayakul N, Viarasilpa V. Efficacy and safety of rituximab in anti-MuSK myasthenia Gravis: a systematic review and meta-analysis. Sci Rep 2025; 15:7219. [PMID: 40021769 PMCID: PMC11871026 DOI: 10.1038/s41598-025-90937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
This systematic review and meta-analysis evaluated the effectiveness and safety of rituximab in patients with myasthenia gravis harboring antibodies to muscle-specific kinase (anti-MuSK). Four databases were searched from inception to December 23, 2023. We included adult patients (aged ≥ 18 years) who were diagnosed with anti-MuSK myasthenia gravis and who received rituximab. The outcomes assessed were the proportions of patients who achieved minimal manifestations or better and those who achieved complete stable remission or pharmacologic remission, according to the Myasthenia Gravis Foundation of America Postintervention Status (MGFA-PIS) scale at the last follow-up. Additional outcomes were mean glucocorticoid dose reduction and severe adverse events. Twelve studies with 111 participants were included. Overall, 82% (95% CI, 71‒91%; I2 = 30.12%, P = 0.15) of patients achieved MGFA-PIS minimal manifestations or better, and 56% (95% CI, 45‒67%; I2 = 0.00%, P = 0.60) achieved MGFA-PIS complete stable remission or pharmacologic remission. The mean reduction in the glucocorticoid dose was 17.15 mg (95% CI, 11.77‒22.53; I2 = 32.40%, P = 0.19). Only one patient developed osteomyelitis during rituximab treatment. This study demonstrated that rituximab is a safe and effective treatment for anti-MuSK myasthenia gravis, helping patients achieve minimal manifestations, complete stable remission, or pharmacologic remission with minimal serious adverse events.
Collapse
Affiliation(s)
| | | | - Jiraporn Jitprapaikulsan
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekdanai Uawithya
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natnasak Apiraksattayakul
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vasinee Viarasilpa
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Wanglang Road, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Xie C, Zhang HL, Yuan J, Zhang Y, Liu YC, Xu Q, Chen LR. Sirt6, Deubiquitinated and Stabilised by USP9X, Takes Essential Actions on the Pathogenesis of Experimental Autoimmune Myasthenia Gravis by Regulating CD4 + T Cells. Clin Exp Pharmacol Physiol 2025; 52:e70018. [PMID: 39756480 DOI: 10.1111/1440-1681.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Myasthenia gravis (MG) presents with symptoms that significantly affect patients' daily lives. Long-term MG therapies may lead to substantial side effects, predominantly due to prolonged immune suppression. Sirt6, which plays a vital role in maintaining cellular homeostasis and is recognised for its involvement in cytokine production in immune cells, has not yet been explored in relation to MG. PBMCs and CD4+ T cells were isolated from blood samples. RT-qPCR, western blot and ELISA were used to assess the expression of target genes and proteins. Flow cytometry was used to identify the subsets of T helper cells. Co-IP was conducted to investigate the interaction between USP9X and Sirt6. Finally, the experimental autoimmune myasthenia gravis (EAMG) model was established. In MG patients, Sirt6 levels were downregulated compared to healthy controls. Sirt6 overexpression led to a reduction in Th1 and Th17 cell populations while augmenting Treg cells in PBMCs. USP9X interacted with Sirt6, leading to its deubiquitination and stabilisation. Elevated Sirt6 levels subsequently mitigated symptoms in the EAMG model. The stabilisation of Sirt6, mediated by USP9X, has been found to relieve symptoms of EAMG by influencing the subtypes of T helper cells. This highlights the promising potential of Sirt6 as a viable therapeutic target in the treatment of MG.
Collapse
Affiliation(s)
- Chen Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurology, Xiangya Hospital Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurology, Nanchang, Jiangxi, China
| | - Hong-Lian Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurology, Xiangya Hospital Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurology, Nanchang, Jiangxi, China
| | - Jun Yuan
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Ye Zhang
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang-Chun Liu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Li-Ru Chen
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Jacob S. Treating myasthenia gravis beyond the eye clinic. Eye (Lond) 2024; 38:2422-2436. [PMID: 38789789 PMCID: PMC11306738 DOI: 10.1038/s41433-024-03133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Myasthenia gravis (MG) is one of the most well characterised autoimmune disorders affecting the neuromuscular junction with autoantibodies targeting the acetylcholine receptor (AChR) complex. The vast majority of patients present with ocular symptoms including double vision and ptosis, but may progress on to develop generalised fatiguable muscle weakness. Severe involvement of the bulbar muscles can lead to dysphagia, dysarthria and breathing difficulties which can progress to myasthenic crisis needing ventilatory support. Given the predominant ocular onset of the disease, it is important that ophthalmologists are aware of the differential diagnosis, investigations and management including evolving therapies. When the disease remains localised to the extraocular muscles (ocular MG) IgG1 and IgG3 antibodies against the AChR (including clustered AChR) are present in nearly 50% of patients. In generalised MG this is seen in nearly 90% patients. Other antibodies include those against muscle specific tyrosine kinase (MuSK) and lipoprotein receptor related protein 4 (LRP4). Even though decremental response on repetitive nerve stimulation is the most well recognised neurophysiological abnormality, single fibre electromyogram (SFEMG) in experienced hands is the most sensitive test which helps in the diagnosis. Initial treatment should be using cholinesterase inhibitors and then proceeding to immunosuppression using corticosteroids and steroid sparing drugs. Patients requiring bulbar muscle support may need rescue therapies including plasma exchange and intravenous immunoglobulin (IVIg). Newer therapeutic targets include those against the B lymphocytes, complement system, neonatal Fc receptors (FcRn) and various other elements of the immune system.
Collapse
Affiliation(s)
- Saiju Jacob
- University Hospitals Birmingham, Birmingham, UK.
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Motte J, Sgodzai M, Schneider-Gold C, Steckel N, Mika T, Hegelmaier T, Borie D, Haghikia A, Mougiakakos D, Schroers R, Gold R. Treatment of concomitant myasthenia gravis and Lambert-Eaton myasthenic syndrome with autologous CD19-targeted CAR T cells. Neuron 2024; 112:1757-1763.e2. [PMID: 38697115 DOI: 10.1016/j.neuron.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) are autoimmune disorders affecting neuromuscular transmission. Their combined occurrence is rare, and treatment remains challenging. Two women diagnosed with concomitant MG/LEMS experienced severe, increasing disease activity despite multiple immunotherapies. Anti-CD19 chimeric antigen receptor (CAR) T cells have shown promise for treating autoimmune diseases. This report details the safe application of anti-CD19 CAR T cells for treating concomitant MG/LEMS. After CAR T cell therapy, both patients experienced rapid clinical recovery and regained full mobility. Deep B cell depletion and normalization of acetylcholine receptor and voltage-gated calcium channel N-type autoantibody levels paralleled major neurological responses. Within 2 months, both patients returned to everyday life, from wheelchair dependency to bicycling and mountain hiking, and remain stable at 6 and 4 months post-CAR T cell infusion, respectively. This report highlights the potential for anti-CD19 CAR T cells to achieve profound clinical effects in the treatment of neuroimmunological diseases.
Collapse
Affiliation(s)
- Jeremias Motte
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Melissa Sgodzai
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany
| | | | - Nina Steckel
- Department of Hematology and Oncology, Ruhr-University Bochum, Knappschaftskrankenhaus, 44892 Bochum, Germany
| | - Thomas Mika
- Department of Hematology and Oncology, Ruhr-University Bochum, Knappschaftskrankenhaus, 44892 Bochum, Germany
| | - Tobias Hegelmaier
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Roland Schroers
- Department of Hematology and Oncology, Ruhr-University Bochum, Knappschaftskrankenhaus, 44892 Bochum, Germany.
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany.
| |
Collapse
|
5
|
Nemeth C, Banik NL, Haque A. Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases. Int J Mol Sci 2024; 25:3520. [PMID: 38542497 PMCID: PMC10970763 DOI: 10.3390/ijms25063520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 02/01/2025] Open
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
Collapse
Affiliation(s)
- Colin Nemeth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Chen BH, Lin ZY, Zeng XX, Jiang YH, Geng F. LRP4-related signalling pathways and their regulatory role in neurological diseases. Brain Res 2024; 1825:148705. [PMID: 38065285 DOI: 10.1016/j.brainres.2023.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.
Collapse
Affiliation(s)
- Bai-Hui Chen
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Yu Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xue Zeng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
7
|
Hayashi M. Pathophysiology of Childhood-Onset Myasthenia: Abnormalities of Neuromuscular Junction and Autoimmunity and Its Background. PATHOPHYSIOLOGY 2023; 30:599-617. [PMID: 38133144 PMCID: PMC10747330 DOI: 10.3390/pathophysiology30040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The pathophysiology of myasthenia gravis (MG) has been largely elucidated over the past half century, and treatment methods have advanced. However, the number of cases of childhood-onset MG is smaller than that of adult MG, and the treatment of childhood-onset MG has continued to be based on research in the adult field. Research on pathophysiology and treatment methods that account for the unique growth and development of children is now desired. According to an epidemiological survey conducted by the Ministry of Health, Labour and Welfare of Japan, the number of patients with MG by age of onset in Japan is high in early childhood. In recent years, MG has been reported from many countries around the world, but the pattern of the number of patients by age of onset differs between East Asia and Western Europe, confirming that the Japanese pattern is common in East Asia. Furthermore, there are racial differences in autoimmune MG and congenital myasthenic syndromes according to immunogenetic background, and their pathophysiology and relationships are gradually becoming clear. In addition, treatment options are also recognized in different regions of the world. In this review article, I will present recent findings focusing on the differences in pathophysiology.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Pediatrics, Uwajima City Hospital, Uwajima 798-8510, Japan
| |
Collapse
|
8
|
Lei X, Xu H, Wang Y, Gao H, Zhao D, Zhang J, Zhu Z, Zuo K, Liu Y, Li X, Zhang N. Integrating Network Pharmacology and Component Analysis to Study the Potential Mechanisms of Qi-Fu-Yin Decoction in Treating Alzheimer's Disease. Drug Des Devel Ther 2023; 17:2841-2858. [PMID: 37727255 PMCID: PMC10506672 DOI: 10.2147/dddt.s402624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose To elucidate the potential mechanisms of QFY for the treatment of Alzheimer's Disease (AD), and explore the effective substances of QFY. Materials and Methods UPLC-LTQ-Orbitrap-MS was used to identify the chemical constituents of the serum samples and the cerebrospinal fluid samples of rats after QFY administration. Network pharmacology was used to predict potential targets and pathways of QFY against AD. The AD mice model was established by subcutaneous injection of D-gal for 8 consecutive weeks. New object recognition (NOR) and Morris water maze test (MWM) were used to evaluate the learning and memory abilities of mice. Moreover, the levels of TNF-α, IL-1β, and IL-18 in the brain hippocampus of mice were determined by ELISA. The expression of Bax, Bcl-2, Caspase-1, PSD95, SYP, ICAM-1 and MCP-1 proteins in the hippocampus was detected by Western blotting. Furthermore, qRT-PCR was used to detect the gene expressions of PSD95, SYP, M1 and M2 polarization markers of microglia, including iNOS, CD16, ARG-1, and IL-10 in the hippocampus. Results A total of 51 prototype compounds were detected in rat serum and 15 prototype components were identified in rat cerebrospinal fluid. Behavioral experiments revealed that QFY significantly increased the recognition index, decreased the escape latency, increased the platform crossing times and increased the residence time in the target quadrant. QFY also could alleviate the ultrastructural pathological changes in the hippocampus of AD mice. Meanwhile, QFY treatment suppressed the expression of inflammatory factors, such as TNF-α, IL-1β, and IL-18. QFY improved the synaptic plasticity of the hippocampus in D-gal model mice by significantly increasing the expression of proteins and mRNAs of PSD95 and SYP. Conclusion QFY could effectively improve the learning and memory impairment of D-gal-induced AD mice by inhibiting the excessive activation of microglia, enhancing the expression of M2 microglia, inhibiting the increase of inflammatory factors, cell adhesion factors and chemokines, anti-apoptosis, and improving synaptic plasticity.
Collapse
Affiliation(s)
- Xia Lei
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, People’s Republic of China
| | - Hongdan Xu
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, 214000, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Hainan Gao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Deping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Jinfeng Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ziyue Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Kun Zuo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
9
|
Rose N, Holdermann S, Callegari I, Kim H, Fruh I, Kappos L, Kuhle J, Müller M, Sanderson NSR, Derfuss T. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Acta Neuropathol 2022; 144:1005-1025. [PMID: 36074148 PMCID: PMC9547806 DOI: 10.1007/s00401-022-02493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Myasthenia gravis is an autoimmune disorder defined by muscle weakness and fatigability associated with antibodies against proteins of the neuromuscular junction (NMJ). The most common autoantibody target is the acetylcholine receptor (AChR). Three mechanisms have been postulated by which autoantibodies might interfere with neurotransmission: direct antagonism of the receptor, complement-mediated destruction of the postsynaptic membrane, and enhanced internalization of the receptor. It is very likely that more than one of these mechanisms act in parallel. Dissecting the mechanisms of autoantibody-mediated pathology requires patient-derived, monoclonal antibodies. Using membrane antigen capture activated cell sorting (MACACS), we isolated AChR-specific B cells from patients with myasthenia gravis, and produced six recombinant antibodies. All AChR-specific antibodies were hypermutated, including isotypes IgG1, IgG3, and IgG4, and recognized different subunits of the AChR. Despite clear binding, none of the individual antibodies showed significant antagonism of the AChR measured in an in vitro neuromuscular synapse model, or AChR-dependent complement activation, and they did not induce myasthenic signs in vivo. However, combinations of antibodies induced strong complement activation in vitro, and severe weakness in a passive transfer myasthenia gravis rat model, associated with NMJ destruction and complement activation in muscle. The strongest complement activation was mediated by combinations of antibodies targeting disparate subunits of the AChR, and such combinations also induced the formation of large clusters of AChR on the surface of live cells in vitro. We propose that synergy between antibodies of different epitope specificities is a fundamental feature of this disease, and possibly a general feature of complement-mediated autoimmune diseases. The importance of synergistic interaction between antibodies targeting different subunits of the receptor can explain the well-known discrepancy between serum anti-AChR titers and clinical severity, and has implications for therapeutic strategies currently under investigation.
Collapse
Affiliation(s)
- Natalie Rose
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Holdermann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Ilaria Callegari
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Hyein Kim
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Ludwig Kappos
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland.
| | - Tobias Derfuss
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Sánchez-Tejerina D, Sotoca J, Llaurado A, López-Diego V, Juntas-Morales R, Salvado M. New Targeted Agents in Myasthenia Gravis and Future Therapeutic Strategies. J Clin Med 2022; 11:6394. [PMID: 36362622 PMCID: PMC9658349 DOI: 10.3390/jcm11216394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease for which multiple immunomodulatory therapies are available. Nevertheless, MG has a significant impact on patient quality of life. In recent years, experts' main efforts have focused on optimizing treatment strategies, since disease burden is considerably affected by their safety and tolerability profiles, especially in patients with refractory phenotypes. This article aims to offer neurologists caring for MG patients an overview of the most innovative targeted drugs specifically designed for this disease and summarizes the recent literature and more recent evidence on agents targeting B cells and plasmablasts, complement inhibitors, and neonatal fragment crystallizable receptor (FcRn) antagonists. Positive clinical trial results have been reported, and other studies are ongoing. Finally, we briefly discuss how the introduction of these novel targeted immunological therapies in a changing management paradigm would affect not only clinical outcomes, disease burden, safety, and tolerability, but also health spending in a condition that is increasingly managed based on a patient-centred model.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Salvado
- Clinic of Neuromuscular Disorders and Rare Diseases, Neurology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, European Reference Network for Neuromuscular and Rare Diseases EURO-NMD, 08035 Barcelona, Spain
| |
Collapse
|
11
|
He X, Zhou S, Ji Y, Zhang Y, Lv J, Quan S, Zhang J, Zhao X, Cui W, Li W, Liu P, Zhang L, Shen T, Fang H, Yang J, Zhang Y, Cui X, Zhang Q, Gao F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front Immunol 2022; 13:916098. [PMID: 36311763 PMCID: PMC9601310 DOI: 10.3389/fimmu.2022.916098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by autoimmune damage to the postsynaptic membrane of the neuromuscular junction (NMJ) with impaired postsynaptic acetylcholine receptor (AChR) aggregation. Low-density lipoprotein receptor-related protein 4 (LRP4) plays an important role in AChR aggregation at endplate membranes via the Agrin–LRP4–muscle-specific receptor tyrosine kinase (MuSK) cascade. Sorting nexin 17 (SNX17) regulates the degradation and recycling of various internalized membrane proteins. However, whether SNX17 regulates LRP4 remains unclear. Therefore, we examined the regulatory effects of SNX17 on LRP4 and its influence on AChR aggregation in MG. We selected C2C12 myotubes and induced LRP4 internalization via stimulation with anti-LRP4 antibody and confirmed intracellular interaction between SNX17 and LRP4. SNX17 knockdown and overexpression confirmed that SNX17 promoted MuSK phosphorylation and AChR aggregation by increasing cell surface LRP4 expression. By establishing experimental autoimmune MG (EAMG) mouse models, we identified that SNX17 upregulation improved fragmentation of the AChR structure at the NMJ and alleviated leg weakness in EAMG mice. Thus, these results reveal that SNX17 may be a novel target for future MG therapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxian Zhou
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ying Ji
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weike Cui
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Linyuan Zhang
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Shen
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hua Fang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junhong Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Gao,
| |
Collapse
|
12
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
13
|
Schneider-Gold C, Gilhus NE. Advances and challenges in the treatment of myasthenia gravis. Ther Adv Neurol Disord 2022; 14:17562864211065406. [PMID: 34987614 PMCID: PMC8721395 DOI: 10.1177/17562864211065406] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease with fluctuating muscle weakness and fatigability. Standard immunomodulatory treatment may fail to achieve sufficient improvement with minimal symptom expression or remission of myasthenic symptoms, despite adequate dosing and duration of treatment. Treatment-resistant MG poses a challenge for both patients and treating neurologists and requires new therapeutic approaches. The spectrum of upcoming immunotherapies that more specifically address distinct targets of the main immunological players in MG pathogenesis includes T-cell directed monoclonal antibodies that block the intracellular cascade associated with T-cell activation, monoclonal antibodies directed against key B-cell molecules, as well as monoclonal antibodies against the fragment crystallizable neonatal receptor (FcRn), cytokines and transmigration molecules, and also drugs that inhibit distinct elements of the complement system activated by the pathogenic MG antibodies. The review gives an overview on new drugs being evaluated in still ongoing or recently finished controlled clinical trials and drugs of potential benefit in MG due to their mechanisms of action and positive effects in other autoimmune disorders. Also, the challenges associated with the new therapeutic options are discussed briefly.
Collapse
Affiliation(s)
- Christiane Schneider-Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University of Bochum, Gudrunstrasse 56, Bochum D-44791, Germany
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, NorwayDepartment of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Myasthenia Gravis-An Analysis of Multimodal Evoked Potentials. Brain Sci 2021; 11:brainsci11081057. [PMID: 34439676 PMCID: PMC8392656 DOI: 10.3390/brainsci11081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The aim of this study is a comprehensive analysis of the parameters of exogenous evoked potentials (visual, brainstem auditory, and somatosensory) in patients with myasthenia gravis (MG), a prototype of both neuromuscular junction disease and autoimmune disease. The study also seeks to isolate electrophysiological changes that may indicate disorders within the central and/or peripheral nervous system. METHODS A total of forty-two consecutive patients with myasthenia gravis (24 women, 18 men) were included in the study. All of the patients underwent EP examination. MR images were also analyzed. RESULTS In the group of MG patients, the latency of P100 (113.9 ± 13.9; p < 0.0001) VEP, wave III (3.92 ± 0.29; p = 0.015), wave V (5.93 ± 0.32; <0.0001), interlatency III-V (2.00 ± 0.12; p < 0.0001), interlatency I-V (4.20 ± 0.28; p < 0.001) BAEP, and all components of SEP (N9, P10, N13, P16, N20, P22) were significantly longer. Mean wave I and V amplitude BAEP were relatively lower. CONCLUSIONS The results of the study suggest the presence of disturbances in the bioelectric activities of the central and peripheral nervous system in MG patients.
Collapse
|
15
|
Evoli A, Spagni G, Monte G, Damato V. Heterogeneity in myasthenia gravis: considerations for disease management. Expert Rev Clin Immunol 2021; 17:761-771. [PMID: 34043932 DOI: 10.1080/1744666x.2021.1936500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myasthenia gravis is a rare disease of the neuromuscular junction and a prototype of B cell-driven immunopathology. Pathogenic antibodies target post-synaptic transmembrane proteins, most commonly the nicotinic acetylcholine receptor and the muscle-specific tyrosine kinase, inducing end-plate alterations and neuromuscular transmission impairment. Several clinical subtypes are distinct on the basis of associated antibodies, age at symptom onset, thymus pathology, genetic factors, and weakness distribution. These subtypes have distinct pathogenesis that can account for different responses to treatment. Conventional therapy is based on the use of symptomatic agents, steroids, immunosuppressants and thymectomy. Of late, biologics have emerged as effective therapeutic options.Areas covered: In this review, we will discuss the management of myasthenia gravis in relation to its phenotypic and biological heterogeneity, in the light of recent advances in the disease immunopathology, new diagnostic tools, and results of clinical trialsExpert opinion: Clinical management is shaped on serological subtype, and patient age at onset, lifestyle and comorbidities, balancing therapeutic needs and safety. Although reliable biomarkers predictive of clinical and biologic outcome are still lacking, recent developments promise a more effective and safe treatment. Disease subtyping according to serological testing and immunopathology is crucial to the appropriateness of clinical management.
Collapse
Affiliation(s)
- Amelia Evoli
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gabriele Monte
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Benitez JC, Besse B. Narrative review of immunotherapy in thymic malignancies. Transl Lung Cancer Res 2021; 10:3001-3013. [PMID: 34295693 PMCID: PMC8264314 DOI: 10.21037/tlcr-20-1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Thymomas and thymic carcinomas (TCs) (also known as Thymic Epithelial Tumors or TETs) are rare cancers and the most frequent masses of the anterior mediastinum. These tumors appear in the epithelial component of the thymus, a primary lymphoid organ, and they have reported a high risk of auto-immunity due to a unique biology. Indeed, up to 30% of patients with TETs could present an autoimmune disorder (AID), the most frequent being Myasthenia Gravis (MG). Moreover, AIDs have been reported not only at tumor diagnosis but before and during the follow-up. These tumors have a lack of specific therapeutic targets for metastatic setting. Immune checkpoint inhibitors (ICI) may defeat cancer cells' capacity to evade the immune system and proliferate. The long-term benefit of ICIs in the metastatic setting in several tumors, such as melanoma or non-small cell lung cancer (NSCLC), let to evaluate ICI approaches in TETs. The high rate of AIDs and distribution of autoimmune events among TET's histological subtypes may have an influence on the decision regarding a treatment based on ICI due to the increased risk of toxicity. We summarize the current evidence for the efficacy of ICI in thymoma and TC and discuss several unresolved challenges and concerns for the use of this agents in TETs.
Collapse
Affiliation(s)
| | - Benjamin Besse
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.,Université Paris-Saclay, Orsay, France
| |
Collapse
|
17
|
Bukharaeva E, Khuzakhmetova V, Dmitrieva S, Tsentsevitsky A. Adrenoceptors Modulate Cholinergic Synaptic Transmission at the Neuromuscular Junction. Int J Mol Sci 2021; 22:ijms22094611. [PMID: 33924758 PMCID: PMC8124642 DOI: 10.3390/ijms22094611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Adrenoceptor activators and blockers are widely used clinically for the treatment of cardiovascular and pulmonary disorders. More recently, adrenergic agents have also been used to treat neurodegenerative diseases. Recent studies indicate a location of sympathetic varicosities in close proximity to neuromuscular junctions. The pressing question is whether there could be any effects of endo- or exogenous catecholamines on cholinergic neuromuscular transmission. It was shown that the pharmacological stimulation of adrenoceptors, as well as sympathectomy, can affect both acetylcholine release from motor nerve terminals and the functioning of postsynaptic acetylcholine receptors. In this review, we discuss the recent data regarding the effects of adrenergic drugs on neurotransmission at the neuromuscular junction. The elucidation of the molecular mechanisms by which the clinically relevant adrenomimetics and adrenoblockers regulate quantal acetylcholine release from the presynaptic nerve terminals and postsynaptic sensitivity may help in the design of highly effective and well-tolerated sympathomimetics for treating a number of neurodegenerative diseases accompanied by synaptic defects.
Collapse
|
18
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
Fan Z, Li Z, Shen F, Zhang X, Lei L, Su S, Lu Y, Di L, Wang M, Xu M, Da Y. Favorable Effects of Tacrolimus Monotherapy on Myasthenia Gravis Patients. Front Neurol 2020; 11:594152. [PMID: 33193063 PMCID: PMC7652845 DOI: 10.3389/fneur.2020.594152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose: Tacrolimus (TAC) has been proven to be a rapid-acting, steroid-sparing agent for myasthenia gravis (MG) therapy. However, evidence related to the effectiveness of TAC alone is rare. Therefore, this study was performed to investigate the effect of TAC monotherapy in MG patients. Methods: Forty-four MG patients who received TAC monotherapy were retrospectively analyzed. A mixed effect model was used to analyze improvements in MG-specific activities of daily living scale (MG-ADL), quantitative MG score (QMG) and MG-ADL subscores. Kaplan-Meier analysis was used to estimate the cumulative probability of minimal manifestations (MM) or better. Adverse events (AEs) were recorded for safety analyses. Results: Of the patients receiving TAC monotherapy, MG-ADL scores were remarkably improved at 3, 6 and 12 months compared with scores at baseline (mean difference and 95% CIs: −3.29 [−4.94, −1.64], −3.97 [−5.67, −2.27], and −4.67 [−6.48, −2.85], respectively). QMG scores significantly decreased at 6 and 12 months, with mean differences and 95% CIs of −4.67(−6.88, −2.45) and −5.77 (−7.55, −4.00), respectively. Estimated median period to achieve “MM or better” was 5.0 (95% CIs, 2.8, 7.2) months. Ocular MG (OMG) and generalized MG (GMG) showed similar therapeutic effects in cumulative probabilities of “MM or better” (P-value = 0.764). A better response was observed in MG-ADL subscores for ptosis and bulbar symptoms. AEs occurred in 37.5% of patients and were generally mild and reversible. Conclusions: TAC monotherapy is a promising option to rapidly alleviate all symptoms of MG, especially for ptosis and bulbar symptoms.
Collapse
Affiliation(s)
- Zhirong Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zunbo Li
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, China
| | - Faxiu Shen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueping Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Lei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|