1
|
Archavlis E, Palombi D, Konstantinidis D, Carvi Y Nievas M, Trobisch P, Stoyanova II. Pathophysiologic Mechanisms of Severe Spinal Cord Injury and Neuroplasticity Following Decompressive Laminectomy and Expansive Duraplasty: A Systematic Review. Neurol Int 2025; 17:57. [PMID: 40278428 DOI: 10.3390/neurolint17040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Severe spinal cord injury (SCI) represents a debilitating condition with long-term physical and socioeconomic impacts. Understanding the pathophysiology of SCI and therapeutic interventions such as decompressive laminectomy and expansive duraplasty is crucial for optimizing patient outcomes. OBJECTIVE This systematic review explores the pathophysiology of SCI and evaluates evidence linking decompressive laminectomy and duraplasty to improved neuroplasticity and recovery. METHODS A comprehensive search was conducted in PubMed, Web of Science, and Cochrane Library for studies on decompressive surgery in SCI. Inclusion criteria were original articles investigating pathophysiology, neuroplasticity mechanisms, or surgical outcomes. Data on pathophysiological changes, molecular markers, and functional outcomes were extracted. RESULTS From 1240 initial articles, 43 studies were included, encompassing both animal models and human clinical data. Findings highlighted the role of inflammatory cascades, blood-spinal cord barrier disruption, and neurotrophic factor modulation in recovery. Decompressive duraplasty was associated with improved intrathecal pressure (ITP) management and neuroplasticity markers, such as BDNF and GAP-43. CONCLUSIONS This review underscores the therapeutic potential of decompressive laminectomy and duraplasty in SCI. While evidence suggests benefits in promoting neuroplasticity, further research is needed to elucidate molecular mechanisms and refine interventions.
Collapse
Affiliation(s)
- Eleftherios Archavlis
- Interdisciplinary Spine Center and Department of Neurosurgery, Elisabethen Hospital, 60487 Frankfurt, Germany
- School of Health, IU University of Applied Sciences, 53604 Bad Honnef, Germany
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| | - Davide Palombi
- Neurosurgery Section, Department of Neuroscience, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00136 Rom, Italy
| | - Dimitrios Konstantinidis
- Interdisciplinary Spine Center and Department of Neurosurgery, Elisabethen Hospital, 60487 Frankfurt, Germany
| | - Mario Carvi Y Nievas
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| | - Per Trobisch
- Department of Spine Surgery, Eifelklinik St. Brigida, 52152 Simmerath, Germany
| | - Irina I Stoyanova
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| |
Collapse
|
2
|
Stachowski NJ, Wheel JH, Singh S, Atoche SJ, Yao L, Garcia-Ramirez DL, Giszter SF, Dougherty KJ. Activity of spinal RORβ neurons is related to functional improvements following combination treatment after complete SCI. Proc Natl Acad Sci U S A 2025; 122:e2406333122. [PMID: 40198697 PMCID: PMC12012501 DOI: 10.1073/pnas.2406333122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Various strategies targeting spinal locomotor circuitry have been associated with functional improvements after spinal cord injury (SCI). However, the neuronal populations mediating beneficial effects remain largely unknown. Using a combination therapy in a mouse model of complete SCI, we show that virally delivered brain-derived neurotrophic factor (BDNF) (AAV-BDNF) activates hindlimb stepping and causes hyperreflexia, whereas submotor threshold epidural stimulation (ES) reduces BDNF-induced hyperreflexia. Given their role in gating proprioceptive afferents and as a potential convergence point of BDNF and ES, we hypothesized that an enhanced excitability of inhibitory RORβ neurons would be associated with locomotor improvements. Ex vivo spinal slice recordings from mice with a range of locomotor and hyperreflexia scores revealed that the excitability of RORβ neurons was related to functional outcome post-SCI. Mice with poor locomotor function after SCI had less excitable RORβ neurons, but the excitability of RORβ neurons was similar between the uninjured and "best stepping" SCI groups. Further, chemogenetic activation of RORβ neurons reduced BDNF-induced hyperreflexia and improved stepping, similar to ES. Our findings identify inhibitory RORβ neurons as a target population to limit hyperreflexia and enhance locomotor function after SCI.
Collapse
Affiliation(s)
- Nicholas J. Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Jaimena H. Wheel
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Shayna Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sebastian J. Atoche
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lihua Yao
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - D. Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Simon F. Giszter
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Kimberly J. Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
3
|
Kim H, Soedirdjo S, Chung YC, Gray K, Fernandes SR, Dhaher YY. Grid-based transcutaneous spinal cord stimulation: probing neuromodulatory effect in spinal flexion reflex circuits. J Neural Eng 2025; 22:026046. [PMID: 40153866 PMCID: PMC11974257 DOI: 10.1088/1741-2552/adc6bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/04/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Objective.Non-invasive spinal stimulation has the potential to modulate spinal excitability. This study explored the modulatory capacity of sub-motor grid-based transcutaneous spinal cord stimulation (tSCS) applied to the lumbar spinal cord in neurologically intact participants. Our objective was to examine the effect of grid spinal stimulation on polysynaptic reflex pathways involving motoneurons and interneurons likely activated by Aβ/δfiber-mediated cutaneous afferents.Approach.Stimulation was delivered using two grid electrode montages, generating a net electric field in transverse or diagonal directions. We administered tSCS with the center of the grid aligned with the T10-T11 spinous process. Participants were seated for the 20 min stimulation duration. At 30 min after the cessation of spinal stimulation, we examined neuromodulatory effects on spinal circuit excitability in the tibialis anterior muscle by employing the classical flexion reflex paradigms. Additionally, we evaluated spinal motoneuron excitability using theH-reflex paradigm in the soleus muscle to explore the differential effects of tSCS on the polysynaptic versus monosynaptic reflex pathway and to test the spatial extent of the grid stimulation.Main results.Our findings indicated significant neuromodulatory effects on the flexion reflex, resulting in a net inhibitory effect, regardless of the grid electrode montages. Our data further indicated that the flexion reflex duration was significantly shortened only by the diagonal montage.Significance.Our results suggest that grid-based tSCS may specifically modulate spinal activities associated with polysynaptic flexion reflex pathways, with the potential for grid-specific targeted neuromodulation.
Collapse
Affiliation(s)
- Hyungtaek Kim
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
| | - Subaryani Soedirdjo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Kathryn Gray
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Sofia Rita Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| |
Collapse
|
4
|
Lo YT, Lam JL, Jiang L, Lam WL, Edgerton VR, Liu CY. Cervical spinal cord stimulation for treatment of upper limb paralysis: a narrative review. J Hand Surg Eur Vol 2025:17531934241307515. [PMID: 39932700 DOI: 10.1177/17531934241307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Recent advances in cervical spinal cord stimulation (SCS) have demonstrated improved efficacy as a therapeutic intervention for restoring hand functions in individuals with spinal cord injuries or stroke. Accumulating evidence consistently shows that cervical SCS yields significant improvements in grip force, proximal arm strength and muscle activation, with both immediate and sustained effects. This review synthesizes the evidence that electrical stimulations modulate the spinal and supraspinal organization of uninjured descending motor tracts, primarily the residual corticospinal tract, reticulospinal tract and propriospinal network of neurons, as well as increasing the sensitivity of spinal interneurons at the stimulated segments to these inputs. Additionally, we examine contemporary strategies aimed at achieving more precise patterned stimulations, including intraspinal microstimulation, ventral cord stimulation and closed-loop neuromodulation, and discuss the potential benefits of incorporating cervical SCS into a multimodal treatment paradigm.Level of evidence: V.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore
- Department of Neurosurgery, Singapore General Hospital, Singapore
| | - Jordan Lw Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Lei Jiang
- Department of Orthopaedic Surgery, Division of Spine Surgery, Singapore General Hospital, Singapore
| | - Wee Leon Lam
- Department of Hand Surgery, Singapore General Hospital, Singapore
| | - Victor R Edgerton
- Rancho Research Institute, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
- Neurorestoration Center, University of Southern California, Los Angeles, California, United States
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
| | - Charles Y Liu
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
- Department of Neurosurgery, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
| |
Collapse
|
5
|
Chen YC, Huang XL, Cheng HY, Wu CC, Wu MY, Yan LC, Chen SY, Tsai ST, Lin SZ. Role of Epidural Electrode Stimulation in Three Patients with Incomplete AIS D Spinal Cord Injury. Biomedicines 2025; 13:155. [PMID: 39857740 PMCID: PMC11762847 DOI: 10.3390/biomedicines13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: To determine whether epidural electrical stimulation (EES) improves sensory recovery and walking function in patients with chronic spinal cord injury (SCI) with a grade on the American Spinal Cord Injury Association impairment scale (AIS) of C or D at the cervical level. Methods: Three individuals with cervical-level chronic AIS D SCI were enrolled in the study. The mean injury duration and age were 4.8 ± 4.5 (range: 1.5-10) and 56.7 ± 9 years, respectively. The participants received personalized electrical stimulation for 36 weeks and were evaluated for their SCI characteristics, the result of an AIS assessment according to the lower extremity sensorimotor scale, their muscle activity, and preoperative walking ability parameters, initially as well as at weeks 8 and 36 of the EES intervention. Results: Participants receiving EES significantly increased the muscle activity in most lower limb muscles. Regarding the AIS assessment of the lower extremities, one participant fully regained a light touch sensation, while two fully recovered their pinprick sensation (AIS sensory scores increased from 14 to 28). One participant achieved a full motor score, whereas the others' scores increased by 19 and 7 points. Compared with preoperative gait parameters, two participants showed improvements in their walking speed and cadence. Walking symmetry, an important parameter for assessing walking function, improved by 68.7%, 88%, and 77% in the three participants, significantly improving the symmetry index (p = 0.003). Conclusions: Thus, EES may be an effective strategy for sensory impairment recovery, as well as muscular activity and strength improvement. These findings may facilitate stable walking in subjects with chronic incomplete SCI, but larger clinical trials are warranted. Clinical trial: NCT05433064.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- Department of Medical Informatics, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Xiang-Ling Huang
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Hung-Yu Cheng
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Ciou-Chan Wu
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Ming-Yung Wu
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
| | - Lian-Cing Yan
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
| | - Shin-Yuan Chen
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Sheng-Tzung Tsai
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
- Department of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| | - Shinn-Zong Lin
- Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan; (Y.-C.C.); (S.-Z.L.)
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan
| |
Collapse
|
6
|
Pryyma Y, Yakovenko S. Damage explains function in spiking neural networks representing central pattern generator. J Neural Eng 2024; 21:066030. [PMID: 39626354 DOI: 10.1088/1741-2552/ad9a00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Objective.Complex biological systems have evolved to control movement dynamics despite noisy and unpredictable inputs and processing delays that necessitate forward predictions. The staple example in vertebrates is the locomotor control emerging from interactions between multiple systems-from passive dynamics of inverted pendulum governing body motion to coupled neural oscillators that integrate predictive forward and sensory feedback signals. These neural dynamic computations are expressed in the rhythmogenic spinal network known as the central pattern generator (CPG). While a system of ordinary differential equations constituting a rate model can accurately reproduce flexor-extensor modulation patterns aligned with experimental data from cats, the equivalent computations performed by thousands of neurons in vertebrates or even in silicon are poorly understood.Approach.We developed a locomotor CPG model expressed as a spiking neural network (SNN) to test how damage affects the distributed computations of a well-defined neural circuit with known dynamics. The SNN-CPG model accurately recreated the input-output relationship of the rate model, describing the modulation of gait phase characteristics.Main Results.The degradation of distributed computation within elements of the SNN-CPG model was further analyzed with progressive simulated lesions. Circuits trained to express flexor or extensor function, with otherwise identical structural organization, were differently affected by lesions mimicking results in experimental observations. The increasing external drive was shown to overcome structural damage and restore function after progressive lesions.Significance.These model results provide theoretical insights into the network dynamics of locomotor control and introduce the concept of degraded computations with applications for restorative technologies.
Collapse
Affiliation(s)
- Yuriy Pryyma
- Faculty of Applied Science, Ukrainian Catholic University, Lviv, Ukraine
| | - Sergiy Yakovenko
- Exercise Physiology, Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States of America
- Department of Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
7
|
Neřoldová M, Stuchlík A. Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders. Physiol Res 2024; 73:S449-S470. [PMID: 38957949 PMCID: PMC11412350 DOI: 10.33549/physiolres.935401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Collapse
Affiliation(s)
- M Neřoldová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| | | |
Collapse
|
8
|
Moreno Romero GN, Twyman AR, Bandres MF, McPherson JG. Unintentionally intentional: unintended effects of spinal stimulation as a platform for multi-modal neurorehabilitation after spinal cord injury. Bioelectron Med 2024; 10:12. [PMID: 38745334 PMCID: PMC11094943 DOI: 10.1186/s42234-024-00144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Electrical stimulation of spinal neurons has emerged as a valuable tool to enhance rehabilitation after spinal cord injury. In separate parameterizations, it has shown promise for improving voluntary movement, reducing symptoms of autonomic dysreflexia, improving functions mediated by muscles of the pelvic floor (e.g., bowel, bladder, and sexual function), reducing spasms and spasticity, and decreasing neuropathic pain, among others. This diverse set of actions is related both to the density of sensorimotor neural networks in the spinal cord and to the intrinsic ability of electrical stimulation to modulate neural transmission in multiple spinal networks simultaneously. It also suggests that certain spinal stimulation parameterizations may be capable of providing multi-modal therapeutic benefits, which would directly address the complex, multi-faceted rehabilitation goals of people living with spinal cord injury. This review is intended to identify and characterize reports of spinal stimulation-based therapies specifically designed to provide multi-modal benefits and those that report relevant unintended effects of spinal stimulation paradigms parameterized to enhance a single consequence of spinal cord injury.
Collapse
Affiliation(s)
- Gerson N Moreno Romero
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avery R Twyman
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria F Bandres
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Graves McPherson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Kanakis AK, Benetos IS, Evangelopoulos DS, Vlamis J, Vasiliadis ES, Kotroni A, Pneumaticos SG. Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review. Cureus 2024; 16:e61436. [PMID: 38947571 PMCID: PMC11214755 DOI: 10.7759/cureus.61436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Spinal cord injury (SCI) often leads to devastating motor impairments, significantly affecting the quality of life of affected individuals. Over the last decades, spinal cord electrical stimulation seems to have encouraging effects on the motor recovery of impacted patients. This review aimed to identify clinical trials focused on motor function recovery through the application of epidural electrical stimulation, transcutaneous electrical stimulation, and functional electrical stimulation. Several clinical trials met these criteria, focusing on the impact of the aforementioned interventions on walking, standing, swimming, trunk stability, and upper extremity functionality, particularly grasp. After a thorough PubMed online database research, 37 clinical trials were included in this review, with a total of 192 patients. Many of them appeared to have an improvement in function, either clinically assessed or recorded through electromyography. This review outlines the various ways electrical stimulation techniques can aid in the motor recovery of SCI patients. It stresses the ongoing need for medical research to refine these techniques and ultimately enhance rehabilitation results in clinical settings.
Collapse
Affiliation(s)
- Asterios K Kanakis
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Ioannis S Benetos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | | | - John Vlamis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Elias S Vasiliadis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Aikaterini Kotroni
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Spyros G Pneumaticos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| |
Collapse
|
10
|
Wan KR, Ng ZYV, Wee SK, Fatimah M, Lui W, Phua MW, So QYR, Maszczyk TK, Premchand B, Saffari SE, Ker RXJ, Ng WH. Recovery of Volitional Motor Control and Overground Walking in Participants With Chronic Clinically Motor Complete Spinal Cord Injury: Restoration of Rehabilitative Function With Epidural Spinal Stimulation (RESTORES) Trial-A Preliminary Study. J Neurotrauma 2024; 41:1146-1162. [PMID: 38115642 DOI: 10.1089/neu.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Spinal cord injury (SCI) is damage to any part of the spinal cord resulting in paralysis, bowel and/or bladder incontinence, and loss of sensation and other bodily functions. Current treatments for chronic SCI are focused on managing symptoms and preventing further damage to the spinal cord with limited neuro-restorative interventions. Recent research and independent clinical trials of spinal cord stimulation (SCS) or intensive neuro-rehabilitation including neuro-robotics in participants with SCI have suggested potential malleability of the neuronal networks for neurological recovery. We hypothesize that epidural electrical stimulation (EES) delivered via SCS in conjunction with mental imagery practice and robotic neuro-rehabilitation can synergistically improve volitional motor function below the level of injury in participants with chronic clinically motor-complete SCI. In our pilot clinical RESTORES trial (RESToration Of Rehabilitative function with Epidural spinal Stimulation), we investigate the feasibility of this combined multi-modal approach in restoring volitional motor control and achieving independent overground locomotion in participants with chronic motor complete thoracic SCI. Secondary aims are to assess the safety of this combination therapy including the off-label SCS usage as well as improving functional outcome measures. To our knowledge, this is the first clinical trial that investigates the combined impact of this multi-modal EES and rehabilitation strategy in participants with chronic motor complete SCI. Two participants with chronic motor-complete thoracic SCI were recruited for this pilot trial. Both participants have successfully regained volitional motor control below their level of SCI injury and achieved independent overground walking within a month of post-operative stimulation and rehabilitation. There were no adverse events noted in our trial and there was an improvement in post-operative truncal stability score. Results from this pilot study demonstrates the feasibility of combining EES, mental imagery practice and robotic rehabilitation in improving volitional motor control below level of SCI injury and restoring independent overground walking for participants with chronic motor-complete SCI. Our team believes that this provides very exciting promise in a field currently devoid of disease-modifying therapies.
Collapse
Affiliation(s)
- Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zhi Yan Valerie Ng
- Department of Rehabilitation Medicine, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Seng Kwee Wee
- Department of Rehabilitation Medicine, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Singapore Institute of Technology, Singapore
| | - Misbaah Fatimah
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Wenli Lui
- Department of Rehabilitation Medicine, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Min Wee Phua
- Department of Rehabilitation Medicine, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Qi Yue Rosa So
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
| | - Tomasz Karol Maszczyk
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Brian Premchand
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
| | - Seyed Ehsan Saffari
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Rui Xin Justin Ker
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
11
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
12
|
Bernaerts L, Roelant E, Lecomte F, Moens M, Van Buyten JP, Billet B, Bryon B, Puylaert M, Turgay T, Malone M, Theys T, Van Zundert J, Berquin A, Crombez E, De Coster O, Vangeneugden J, Ly HG, Louagie M, Hans GH. Large-scale real-world data on a multidisciplinary approach to spinal cord stimulation for persistent spinal pain syndromes: first evaluation of the Neuro-Pain ® nationwide screening and follow-up interactive register. Front Neurosci 2024; 18:1322105. [PMID: 38586192 PMCID: PMC10996860 DOI: 10.3389/fnins.2024.1322105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Spinal cord stimulation is a common treatment option for neuropathic pain conditions. Despite its extensive use and multiple technological evolutions, long term efficacy of spinal cord stimulation is debated. Most studies on spinal cord stimulation include a rather limited number of patients and/or follow-ups over a limited period. Therefore, there is an urgent need for real-world, long-term data. Methods In 2018, the Belgian government initiated a nationwide secure platform for the follow-up of all new and existing spinal cord stimulation therapies. This is a unique approach used worldwide. Four years after the start of centralized recording, the first global extraction of data was performed. Results Herein, we present the findings, detailing the different steps in the centralized procedure, as well as the observed patient and treatment characteristics. Furthermore, we identified dropouts during the screening process, the reasons behind discontinuation, and the evolution of key indicators during the trial period. In addition, we obtained the first insights into the evolution of the clinical impact of permanent implants on the overall functioning and quality of life of patients in the long-term. Discussion Although these findings are the results of the first data extraction, some interesting conclusions can be drawn. The long-term outcomes of neuromodulation are complex and subject to many variables. Future data extraction will allow us to identify these confounding factors and the early predictors of success. In addition, we will propose further optimization of the current process.
Collapse
Affiliation(s)
- Lisa Bernaerts
- Multidisciplinary Pain Center, Antwerp University Hospital, Antwerp, Belgium
| | - Ella Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Frederic Lecomte
- National Institute for Health and Disability Insurance, Brussels, Belgium
| | - Maarten Moens
- Department of Neurosurgery, University Hospital Brussels, Brussels, Belgium
| | | | - Bart Billet
- Multidisciplinary Pain Center, AZ Delta, Roeselare, Belgium
| | - Bart Bryon
- Multidisciplinary Pain Center, AZ Turnhout, Turnhout, Belgium
| | - Martine Puylaert
- Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Tuna Turgay
- Multidisciplinary Pain Center, Hôpital Erasme, ULB, Brussels, Belgium
| | - Maureen Malone
- Multidisciplinary Pain Center, AZ Klina, Brasschaat, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Van Zundert
- Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Anne Berquin
- Department of Physical and Rehabilitation Medicine, Cliniques Universitaires UCL, St. Luc, Brussels, Belgium
| | - Erwin Crombez
- Multidisciplinary Pain Center, Ghent University Hospital, Ghent, Belgium
| | | | | | - Huynh Giao Ly
- National Institute for Health and Disability Insurance, Brussels, Belgium
| | - Marleen Louagie
- National Institute for Health and Disability Insurance, Brussels, Belgium
| | - Guy Henri Hans
- Multidisciplinary Pain Center, Antwerp University Hospital, Antwerp, Belgium
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
13
|
Omofuma I, Carrera R, King-Ori J, Agrawal SK. The effect of transcutaneous spinal cord stimulation on the balance and neurophysiological characteristics of young healthy adults. WEARABLE TECHNOLOGIES 2024; 5:e3. [PMID: 38486863 PMCID: PMC10936317 DOI: 10.1017/wtc.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 03/17/2024]
Abstract
Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects' balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects' post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.
Collapse
Affiliation(s)
- Isirame Omofuma
- Mechanical Engineering Department, Columbia University, New York, NY, USA
| | - Robert Carrera
- Mechanical Engineering Department, Columbia University, New York, NY, USA
| | | | - Sunil K Agrawal
- Mechanical Engineering Department, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
15
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
16
|
Pradat PF, Hayon D, Blancho S, Neveu P, Khamaysa M, Guerout N. Advances in Spinal Cord Neuromodulation: The Integration of Neuroengineering, Computational Approaches, and Innovative Conceptual Frameworks. J Pers Med 2023; 13:993. [PMID: 37373982 DOI: 10.3390/jpm13060993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Spinal cord stimulation (SCS) is an approved treatment for intractable pain and has recently emerged as a promising area of research for restoring function after spinal cord lesion. This review will focus on the historical evolution of this transition and the path that remains to be taken for these methods to be rigorously evaluated for application in clinical practice. New developments in SCS are being driven by advances in the understanding of spinal cord lesions at the molecular, cellular, and neuronal levels, as well as the understanding of compensatory mechanisms. Advances in neuroengineering and the computational neurosciences have enabled the development of new conceptual SCS strategies, such as spatiotemporal neuromodulation, which allows spatially selective stimulation at precise time points during anticipated movement. It has also become increasingly clear that these methods are only effective when combined with intensive rehabilitation techniques, such as new task-oriented methods and robotic aids. The emergence of innovative approaches to spinal cord neuromodulation has sparked significant enthusiasm among patients and in the media. Non-invasive methods are perceived to offer improved safety, patient acceptance, and cost-effectiveness. There is an immediate need for well-designed clinical trials involving consumer or advocacy groups to evaluate and compare the effectiveness of various treatment modalities, assess safety considerations, and establish outcome priorities.
Collapse
Affiliation(s)
- Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75013 Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, 75013 Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry BT47 6SB, UK
- Institut Pour la Recherche Sur la Moelle Epiniere et l'Encéphale (IRME), 25 Rue Duranton, 75015 Paris, France
| | - David Hayon
- Clinique Saint-Roch, Service d'Anesthésie, 56 Rue de Lille, 59223 Roncq, France
| | - Sophie Blancho
- Institut Pour la Recherche Sur la Moelle Epiniere et l'Encéphale (IRME), 25 Rue Duranton, 75015 Paris, France
| | - Pauline Neveu
- Saints Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR8003, 75006 Paris, France
| | - Mohammed Khamaysa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75013 Paris, France
| | - Nicolas Guerout
- Saints Pères Paris Institute for the Neurosciences, Université Paris Cité, CNRS UMR8003, 75006 Paris, France
| |
Collapse
|
17
|
Singh RE, Ahmadi A, Parr AM, Samadani U, Krassioukov AV, Netoff TI, Darrow DP. Epidural stimulation restores muscle synergies by modulating neural drives in participants with sensorimotor complete spinal cord injuries. J Neuroeng Rehabil 2023; 20:59. [PMID: 37138361 PMCID: PMC10155428 DOI: 10.1186/s12984-023-01164-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Multiple studies have corroborated the restoration of volitional motor control after motor-complete spinal cord injury (SCI) through the use of epidural spinal cord stimulation (eSCS), but rigorous quantitative descriptions of muscle coordination have been lacking. Six participants with chronic, motor and sensory complete SCI underwent a brain motor control assessment (BMCA) consisting of a set of structured motor tasks with and without eSCS. We investigated how muscle activity complexity and muscle synergies changed with and without stimulation. We performed this analysis to better characterize the impact of stimulation on neuromuscular control. We also recorded data from nine healthy participants as controls. Competition exists between the task origin and neural origin hypotheses underlying muscle synergies. The ability to restore motor control with eSCS in participants with motor and sensory complete SCI allows us to test whether changes in muscle synergies reflect a neural basis in the same task. Muscle activity complexity was computed with Higuchi Fractal Dimensional (HFD) analysis, and muscle synergies were estimated using non-negative matrix factorization (NNMF) in six participants with American Spinal Injury Association (ASIA) Impairment Score (AIS) A. We found that the complexity of muscle activity was immediately reduced by eSCS in the SCI participants. We also found that over the follow-up sessions, the muscle synergy structure of the SCI participants became more defined, and the number of synergies decreased over time, indicating improved coordination between muscle groups. Lastly, we found that the muscle synergies were restored with eSCS, supporting the neural hypothesis of muscle synergies. We conclude that eSCS restores muscle movements and muscle synergies that are distinct from those of healthy, able-bodied controls.
Collapse
Affiliation(s)
- Rajat Emanuel Singh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Kinesiology, Northwestern College, Orange, IA, USA
| | - Aliya Ahmadi
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Uzma Samadani
- Department of Bioinformatics & Computational Biology, UMN, Minneapolis, MN, USA
- Minneapolis Veteran Affairs Medical Center, Minneapolis, MN, USA
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, UBC, British Columbia , BC, Canada
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David P Darrow
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA.
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Huang KW, Azim E. Neurons that promote recovery from paralysis identified. Nature 2022; 611:452-453. [DOI: 10.1038/d41586-022-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Eisdorfer JT, Sobotka-Briner H, Schramfield S, Moukarzel G, Chen J, Campion TJ, Smit R, Rauscher BC, Lemay MA, Smith GM, Spence AJ. Chemogenetic modulation of sensory afferents induces locomotor changes and plasticity after spinal cord injury. Front Mol Neurosci 2022; 15:872634. [PMID: 36090254 PMCID: PMC9461563 DOI: 10.3389/fnmol.2022.872634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Neuromodulatory therapies for spinal cord injury (SCI) such as electrical epidural stimulation (EES) are increasingly effective at improving patient outcomes. These improvements are thought to be due, at least in part, to plasticity in neuronal circuits. Precisely which circuits are influenced and which afferent classes are most effective in stimulating change remain important open questions. Genetic tools, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), support targeted and reversible neuromodulation as well as histological characterization of manipulated neurons. We therefore transduced and activated lumbar large diameter peripheral afferents with excitatory (hM3Dq) DREADDs, in a manner analogous to EES, in a rat hemisection model, to begin to trace plasticity and observe concomitant locomotor changes. Chronic DREADDs activation, coupled with thrice weekly treadmill training, was observed to increase afferent fluorescent labeling within motor pools and Clarke's column when compared to control animals. This plasticity may underlie kinematic differences that we observed across stages of recovery, including an increased and less variable hindquarters height in DREADDs animals, shorter step durations, a more flexed ankle joint early in recovery, a less variable ankle joint angle in swing phase, but a more variable hip joint angle. Withdrawal of DREADDs agonist, clozapine-N-oxide (CNO) left these kinematic differences largely unaffected; suggesting that DREADDs activation is not necessary for them later in recovery. However, we observed an intermittent “buckling” phenomenon in DREADDs animals without CNO activation, that did not occur with CNO re-administration. Future studies could use more refined genetic targeted of specific afferent classes, and utilize muscle recordings to find where afferent modulation is most influential in altering motor output.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Hannah Sobotka-Briner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Susan Schramfield
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - George Moukarzel
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Jie Chen
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Thomas J. Campion
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rupert Smit
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bradley C. Rauscher
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Michel A. Lemay
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - George M. Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Andrew J. Spence
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
- *Correspondence: Andrew J. Spence
| |
Collapse
|
21
|
Chen M, Chen Z, Xiao X, Zhou L, Fu R, Jiang X, Pang M, Xia J. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury. IBRO Neurosci Rep 2022; 14:185-194. [PMID: 36824667 PMCID: PMC9941655 DOI: 10.1016/j.ibneur.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Collapse
Key Words
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- BDNF, brain-derived neurotrophic factor
- BMIs, brain-machine interfaces
- CPG, central pattern generator
- CST, corticospinal tract
- Corticospinal motor circuitry
- DBS, deep brain stimulation
- ESS, epidural spinal stimulation
- MEPs, motor-evoked potentials
- NHPs, non-human primates
- NMDARs, N-methyl-d-aspartate receptors
- Neuromodulation
- Neuroplasticity
- PSNs, propriospinal neurons
- Rehabilitation
- SCI, spinal cord injury
- STDP, spike timing-dependent plasticity
- Silent synapses
- Spinal cord injury
- TBS, theta burst stimulation
- TMS, transcranial magnetic stimulation
- TrkB, tropomyosin-related kinase B
- cTBS, continuous TBS
- iTBS, intermittent TBS
- mTOR, mammalian target of rapamycin
- rTMS, repetitive TMS
- tDCS, transcranial direct current stimulation
- tcSCS, transcutaneous spinal cord stimulation
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Xian Jiang
- Institute of Neurological and Psychiatric Disorder, Shenzhen Bay laboratory, Shenzhen, Guangdong 518000, China
| | - Mao Pang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong 510630, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong 510970, China,Corresponding author.
| |
Collapse
|
22
|
Mesquida-Veny F, Martínez-Torres S, Del Río JA, Hervera A. Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Mol Med 2022; 28:97. [PMID: 35978278 PMCID: PMC9387030 DOI: 10.1186/s10020-022-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00524-2.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Torres
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain. .,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Mansour NM, Peña Pino I, Freeman D, Carrabre K, Venkatesh S, Darrow D, Samadani U, Parr AM. Advances in Epidural Spinal Cord Stimulation to Restore Function after Spinal Cord Injury: History and Systematic Review. J Neurotrauma 2022; 39:1015-1029. [PMID: 35403432 DOI: 10.1089/neu.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Collapse
Affiliation(s)
- Nadine M Mansour
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, VA Healthcare System, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Gadot R, Smith DN, Prablek M, Grochmal JK, Fuentes A, Ropper AE. Established and Emerging Therapies in Acute Spinal Cord Injury. Neurospine 2022; 19:283-296. [PMID: 35793931 PMCID: PMC9260540 DOI: 10.14245/ns.2244176.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Acute spinal cord injury (SCI) is devastating for patients and their caretakers and has an annual incidence of 20–50 per million people. Following initial assessment with appropriate physical examination and imaging, patients who are deemed surgical candidates should undergo decompression with stabilization. Earlier intervention can improve neurological recovery in the post-operative period while allowing earlier mobilization. Optimized medical management is paramount to improve outcomes. Emerging strategies for managing SCI in the acute period stem from an evolving understanding of the pathophysiology of the injury. General areas of focus include ischemia prevention, reduction of secondary injury due to inflammation, modulation of the cytotoxic and immune response, and promotion of cellular regeneration. In this article, we review established, emerging, and novel experimental therapies. Continued translational research on these methods will improve the feasibility of bench-to-bedside innovations in treating patients with acute SCI.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - David N. Smith
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Marc Prablek
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Joey K. Grochmal
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Fuentes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alexander E. Ropper
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Corresponding Author Alexander E. Ropper Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St. Suite 9A, Houston, TX, USA
| |
Collapse
|
25
|
Bye EA, Héroux ME, Boswell-Ruys CL, Perez MA, Purcell M, Taylor J, Lee BB, McCaughey EJ, Butler JE, Gandevia SC. Transcutaneous spinal cord stimulation combined with locomotor training to improve walking ability in people with chronic spinal cord injury: study protocol for an international multi-centred double-blinded randomised sham-controlled trial (eWALK). Spinal Cord 2022; 60:491-497. [PMID: 35013547 DOI: 10.1038/s41393-021-00734-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN An international multi-centred, double-blinded, randomised sham-controlled trial (eWALK). OBJECTIVE To determine the effect of 12 weeks of transcutaneous spinal stimulation (TSS) combined with locomotor training on walking ability in people with spinal cord injury (SCI). SETTING Dedicated SCI research centres in Australia, Spain, USA and Scotland. METHODS Fifty community-dwelling individuals with chronic SCI will be recruited. Participants will be eligible if they have bilateral motor levels between T1 and T11, a reproducible lower limb muscle contraction in at least one muscle group, and a Walking Index for SCI II (WISCI II) between 1 and 6. Eligible participants will be randomised to one of two groups, either the active stimulation group or the sham stimulation group. Participants allocated to the stimulation group will receive TSS combined with locomotor training for three 30-min sessions a week for 12 weeks. The locomotor sessions will include walking on a treadmill and overground. Participants allocated to the sham stimulation group will receive the same locomotor training combined with sham stimulation. The primary outcome will be walking ability with stimulation using the WISCI II. Secondary outcomes will record sensation, strength, spasticity, bowel function and quality of life. TRIAL REGISTRATION ANZCTR.org.au identifier ACTRN12620001241921.
Collapse
Affiliation(s)
- Elizabeth A Bye
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Martin E Héroux
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Monica A Perez
- Shirley Ryan Ability Lab, Northwestern University, Hine VA Hospital, Chicago, USA
| | - Mariel Purcell
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, G51 4TF, Scotland
| | - Julian Taylor
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, 45071, Spain
- Harris Manchester College, University of Oxford, Oxford, OX1 3TD, UK
| | - Bonsan B Lee
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Euan J McCaughey
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, G51 4TF, Scotland
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
26
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
27
|
Estrada V, Oldenburg E, Popa O, Muller HW. Mapping the long rocky road to effective spinal cord injury therapy - A meta-review of pre-clinical and clinical research. J Neurotrauma 2022; 39:591-612. [PMID: 35196894 DOI: 10.1089/neu.2021.0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a rare condition, which even after decades of research, to date still presents an incurable condition with a complex symptomatology. SCI can result in paralysis, pain, loss of sensation, bladder and sexual dysfunction, and muscle degeneration to name but a few. The large number of publications makes it difficult to keep track of current progress in the field and of the many treatment options, which have been suggested and are being proposed with increasing frequency. Scientific databases with user-oriented search options will offer possible solutions, but they are still mostly in the development phase. In this meta-analysis, we summarize and narrow down SCI therapeutic approaches applied in pre-clinical and clinical research. Statistical analyses of treatment clusters - assorted after counting annual publication numbers in PubMed and ClinicalTrials.gov databases - were performed to allow the comparison of research foci and of their translation efficacy into clinical therapy. Using the example of SCI research, our findings demonstrate the challenges that come with the accelerating research progress - an issue, which many research fields are faced with today. The analyses point out similarities and differences in the prioritization of SCI research in pre-clinical versus clinical therapy strategies. Moreover, the results demonstrate the rapidly growing importance of modern (bio-)engineering technologies.
Collapse
Affiliation(s)
- Veronica Estrada
- Heinrich Heine University Düsseldorf, 9170, Neurology, Molecular Neurobiology Laboratory, Düsseldorf, Germany;
| | - Ellen Oldenburg
- Heinrich Heine University Düsseldorf, 9170, Institute of Quantitative and Theoretical Biology, Düsseldorf, Germany;
| | - Ovidiu Popa
- Heinrich Heine University Düsseldorf, 9170, Institute of Quantitative and Theoretical Biology, Düsseldorf, Germany;
| | - Hans W Muller
- Heinrich Heine University Düsseldorf, 9170, Neurology, Düsseldorf, Germany;
| |
Collapse
|
28
|
Wang TY, Park C, Zhang H, Rahimpour S, Murphy KR, Goodwin CR, Karikari IO, Than KD, Shaffrey CI, Foster N, Abd-El-Barr MM. Management of Acute Traumatic Spinal Cord Injury: A Review of the Literature. Front Surg 2021; 8:698736. [PMID: 34966774 PMCID: PMC8710452 DOI: 10.3389/fsurg.2021.698736] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022] Open
Abstract
Traumatic spinal cord injury (TSCI) is a debilitating disease that poses significant functional and economic burden on both the individual and societal levels. Prognosis is dependent on the extent of the spinal injury and the severity of neurological dysfunction. If not treated rapidly, patients with TSCI can suffer further secondary damage and experience escalating disability and complications. It is important to quickly assess the patient to identify the location and severity of injury to make a decision to pursue a surgical and/or conservative management. However, there are many conditions that factor into the management of TSCI patients, ranging from the initial presentation of the patient to long-term care for optimal recovery. Here, we provide a comprehensive review of the etiologies of spinal cord injury and the complications that may arise, and present an algorithm to aid in the management of TSCI.
Collapse
Affiliation(s)
- Timothy Y Wang
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Christine Park
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Hanci Zhang
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Shervin Rahimpour
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Kelly R Murphy
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - C Rory Goodwin
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Isaac O Karikari
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Khoi D Than
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Christopher I Shaffrey
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| | - Norah Foster
- Premier Orthopedics, Centerville, OH, United States
| | - Muhammad M Abd-El-Barr
- Department of Neurological Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
29
|
Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021; 15:749465. [PMID: 34720867 PMCID: PMC8551759 DOI: 10.3389/fnins.2021.749465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is a major disability that results in motor and sensory impairment and extensive complications for the affected individuals which not only affect the quality of life of the patients but also result in a heavy burden for their families and the health care system. Although there are few clinically effective treatments for SCI, research over the past few decades has resulted in several novel treatment strategies which are related to neuromodulation. Neuromodulation-the use of neuromodulators, electrical stimulation or optogenetics to modulate neuronal activity-can substantially promote the recovery of sensorimotor function after SCI. Recent studies have shown that neuromodulation, in combination with other technologies, can allow paralyzed patients to carry out intentional, controlled movement, and promote sensory recovery. Although such treatments hold promise for completely overcoming SCI, the mechanisms by which neuromodulation has this effect have been difficult to determine. Here we review recent progress relative to electrical neuromodulation and optogenetics neuromodulation. We also examine potential mechanisms by which these methods may restore sensorimotor function. We then highlight the strengths of these approaches and remaining challenges with respect to its application.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaping Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Jankowska E, Hammar I. The plasticity of nerve fibers: the prolonged effects of polarization of afferent fibers. J Neurophysiol 2021; 126:1568-1591. [PMID: 34525323 DOI: 10.1152/jn.00718.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The review surveys various aspects of the plasticity of nerve fibers, in particular the prolonged increase in their excitability evoked by polarization, focusing on a long-lasting increase in the excitability of myelinated afferent fibers traversing the dorsal columns of the spinal cord. We review the evidence that increased axonal excitability 1) follows epidurally applied direct current (DC) as well as relatively short (5 or 10 ms) current pulses and synaptically evoked intrinsic field potentials; 2) critically depends on the polarization of branching regions of afferent fibers at the sites where they bifurcate and give off axon collaterals entering the spinal gray matter in conjunction with actions of extrasynaptic GABAA membrane receptors; and 3) shares the feature of being activity-independent with the short-lasting effects of polarization of peripheral nerve fibers. A comparison between the polarization evoked sustained increase in the excitability of dorsal column fibers and spinal motoneurons (plateau potentials) indicates the possibility that they are mediated by partly similar membrane channels (including noninactivating type L Cav++ 1.3 but not Na+ channels) and partly different mechanisms. We finally consider under which conditions transspinally applied DC (tsDCS) might reproduce the effects of epidural polarization on dorsal column fibers and the possible advantages of increased excitability of afferent fibers for the rehabilitation of motor and sensory functions after spinal cord injuries.NEW & NOTEWORTHY This review supplements previous reviews of properties of nerve fibers by surveying recent experimental evidence for their long-term plasticity. It also extends recent descriptions of spinal effects of DC by reviewing effects of polarization of afferent nerve fibers within the dorsal columns, the mechanisms most likely underlying the long-lasting increase in their excitability and possible clinical implications.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
McHugh C, Taylor C, Mockler D, Fleming N. Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review. NeuroRehabilitation 2021; 49:1-22. [PMID: 33967072 DOI: 10.3233/nre-210093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epidural spinal cord stimulation (ESCS) emerged as a technology for eliciting motor function in the 1990's and was subsequently employed therapeutically in the population with spinal cord injury (SCI). Despite a considerable number of ESCS studies, a comprehensive systematic review of ESCS remains unpublished. OBJECTIVE The current review of the existing literature evaluated the efficacy of ESCS for improving motor function in individuals with SCI. METHODS A search for ESCS studies was performed using the following databases: Medline (Ovid), Web of Science and Embase. Furthermore, to maximize results, an inverse manual search of references cited by identified articles was also performed. Studies published between January 1995 and June 2020 were included. The search was constructed around the following key terms: Spinal cord stimulation, SCI and motor response generation. RESULTS A total of 3435 articles were initially screened, of which 18 met the inclusion criteria. The total sample comprised of 24 participants with SCI. All studies reported some measure of improvement in motor activity with ESCS, with 17 reporting altered EMG responses. Functional improvements were reported in stepping (n = 11) or muscle force (n = 4). Only 5 studies assessed ASIA scale pre- and post-intervention, documenting improved classification in 4 of 11 participants. Appraisal using the modified Downs and Black quality checklist determined that reviewed studies were of poor quality. Due to heterogeneity of outcome measures utilized in studies reviewed, a meta-analysis of data was not possible. CONCLUSION While the basic science is encouraging, the therapeutic efficacy of ESCS remains inconclusive.
Collapse
Affiliation(s)
- Conor McHugh
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Clare Taylor
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James's Hospital, Dublin, Ireland
| | - Neil Fleming
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
33
|
Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurg Clin N Am 2021; 32:407-417. [PMID: 34053728 DOI: 10.1016/j.nec.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As neural bypass interfacing, neuromodulation, and neurorehabilitation continue to evolve, there is growing recognition that combination therapies may achieve superior results. This article briefly introduces these broad areas of active research and lays out some of the current evidence for their use for patients with spinal cord injury.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA.
| | - Aditya Vedantam
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA
| |
Collapse
|