1
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
2
|
Zhang Z, Wang H, Tao B, Shi X, Chen G, Ma H, Peng R, Zhang J. Attenuation of Blood-Brain Barrier Disruption in Traumatic Brain Injury via Inhibition of NKCC1 Cotransporter: Insights into the NF-κB/NLRP3 Signaling Pathway. J Neurotrauma 2025; 42:814-831. [PMID: 39879999 DOI: 10.1089/neu.2023.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Following traumatic brain injury (TBI), inhibition of the Na+-K+-Cl- cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI. The TBI model was induced in C57BL/6 mice through a controlled cortical impact device, and an in vitro BBB model was established using Transwell chambers. Western blot (WB) analysis was used to evaluate NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor-kappaB (NF-κB) pathway proteins. Flow cytometry and transendothelial electrical resistance (TEER) were employed to assess endothelial cell apoptosis levels and BBB integrity. ELISA was utilized to measure cytokines interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9). Immunofluorescence techniques were used to evaluate protein levels and the nuclear translocation of the rela (p65) subunit. The Evans blue dye leakage assay and the brain wet-dry weight method were utilized to assess BBB integrity and brain swelling. Inhibition of NKCC1 reduced the level of NLRP3 inflammasome and the secretion of IL-1β and MMP-9 in microglia. Additionally, NKCC1 inhibition suppressed the activation of the NF-κB signaling pathway, which in turn decreased the level of NLRP3 inflammasome. The presence of NLRP3 inflammasome in BV2 cells led to compromised BBB integrity within an inflammatory milieu. Following TBI, an upregulation of NLRP3 inflammasome was observed in microglia, astrocytes, vascular endothelial cells, and neurons. Furthermore, inhibiting NKCC1 resulted in a decrease in the positive rate of NLRP3 inflammasome in microglia and the levels of inflammatory cytokines IL-1β and MMP-9 after TBI, which correlated with BBB damage and the development of cerebral edema. These findings demonstrate that the suppression of the NKCC1 cotransporter protein alleviates BBB disruption through the NF-κB/NLRP3 signaling pathway following TBI.
Collapse
Affiliation(s)
- Zehan Zhang
- Department of Neurosurgery, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Bingyan Tao
- Department of Neurosurgery, 961th Hospital of Joint Logistics Support Force, Qiqihaer, China
| | - Xudong Shi
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guilin Chen
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hengchao Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Wu M, He X, Gong Y, Wang C, Huang Y, Gao F, Dang B. Enriched environment may improve secondary brain injury after traumatic brain injury by regulating the TLR2/NF-κB signaling pathway. J Cent Nerv Syst Dis 2024; 16:11795735241301568. [PMID: 39574429 PMCID: PMC11580055 DOI: 10.1177/11795735241301568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Background Traumatic brain injury (TBI) can cause damage to the blood-brain barrier, resulting in neuroinflammatory reactions and brain edema that seriously affect the recovery of neurological function. We hypothesize that an enriched environment (EE) regulates the TLR2/NF-κB signaling pathway and thereby modulates the integrity of the blood-brain barrier to achieve neuroprotective effects. Objective This study evaluated the expression of toll-like receptor (TLR)-2 after TBI in a rat model, with the aim of determining whether TLR2/NF-κB improves secondary brain injury by inhibiting the release of inflammatory factors and reducing brain edema. Methods We established a TBI model using Sprague-Dawley rats and implemented EE intervention or TLR2 siRNA to reduce TLR2. Western-blot analysis, real-time PCR, immunofluorescence staining, ELISA, TUNEL and FJC staining, wet-dry methods, rotarod testing, and neurological scoring were then applied for analysis. Results Our results revealed that TLR2 was activated after TBI in rats and that EE or silencing of TLR2 with TLR2 siRNA reduced the level of inflammation, significantly alleviating brain edema, neuronal apoptosis, and degeneration. TBI exacerbated brain edema and nerve damage caused by TLR2/NF-κB signaling, and EE appeared to regulate neuroinflammation and brain edema by reducing TLR2. Conclusions Inhibition of TLR2 with EE might constitute a successful approach in the management of TBI.
Collapse
Affiliation(s)
- Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chaoyu Wang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
4
|
Rump K, Adamzik M. Aquaporins in sepsis- an update. Front Immunol 2024; 15:1495206. [PMID: 39544938 PMCID: PMC11560437 DOI: 10.3389/fimmu.2024.1495206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Aquaporins (AQPs), a family of membrane proteins that facilitate the transport of water and small solutes, have garnered increasing attention for their role in sepsis, not only in fluid balance but also in immune modulation and metabolic regulation. Sepsis, characterized by an excessive and dysregulated immune response to infection, leads to widespread organ dysfunction and significant mortality. This review focuses on the emerging roles of aquaporins in immune metabolism and their potential as therapeutic targets in sepsis, with particular attention to the modulation of inflammatory responses and organ protection. Additionally, it explores the diverse roles of aquaporins across various organ systems, highlighting their contributions to renal function, pulmonary gas exchange, cardiac protection, and gastrointestinal barrier integrity in the context of sepsis. Recent studies suggest that AQPs, particularly aquaglyceroporins like AQP3, AQP7, AQP9, and AQP10, play pivotal roles in immune cell metabolism and offer new therapeutic avenues for sepsis treatment. In the context of sepsis, immune cells undergo metabolic shifts to meet the heightened energy demands of the inflammatory response. A key adaptation is the shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, where pyruvate is converted to lactate, enabling faster ATP production. AQPs, particularly aquaglyceroporins, may facilitate this process by transporting glycerol, a substrate that fuels glycolysis. AQP3, for example, enhances glucose metabolism by transporting glycerol and complementing glucose uptake via GLUT1, while also regulating O-GlcNAcylation, a post-translational modification that boosts glycolytic flux. AQP7 could further contributes to immune cell energy production by influencing lipid metabolism and promoting glycolysis through p38 signaling. These mechanisms could be crucial for maintaining the energy supply needed for an effective immune response during sepsis. Beyond metabolism, AQPs also regulate key immune functions. AQP9, highly expressed in septic patients, is essential for neutrophil migration and activation, both of which are critical for controlling infection. AQP3, on the other hand, modulates inflammation through the Toll-like receptor 4 (TLR4) pathway, while AQP1 plays a role in immune responses by activating the PI3K pathway, promoting macrophage polarization, and protecting against lipopolysaccharide (LPS)-induced acute kidney injury (AKI). These insights into the immunoregulatory roles of AQPs suggest their potential as therapeutic targets to modulate inflammation in sepsis. Therapeutically, AQPs present promising targets for reducing organ damage and improving survival in sepsis. For instance, inhibition of AQP9 with compounds like HTS13286 or RG100204 has been shown to reduce inflammation and improve survival by modulating NF-κB signaling and decreasing oxidative stress in animal models. AQP5 inhibition with methazolamide and furosemide has demonstrated efficacy in reducing immune cell migration and lung injury, suggesting its potential in treating acute lung injury (ALI) in sepsis. Additionally, the regulation of AQP1 through non-coding RNAs (lncRNAs and miRNAs) may offer new strategies to mitigate organ damage and inflammatory responses. Moreover, AQPs have emerged as potential biomarkers for sepsis progression and outcomes. Altered expression of AQPs, such as AQP1, AQP3, and AQP5, correlates with sepsis severity, and polymorphisms in AQP5 have been linked to better survival rates and improved outcomes in sepsis-related acute respiratory distress syndrome (ARDS). This suggests that AQP expression could be used to stratify patients and tailor treatments based on individual AQP profiles. In conclusion, AQPs play a multifaceted role in the pathophysiology of sepsis, extending beyond fluid balance to crucial involvement in immune metabolism and inflammation. Targeting AQPs offers novel therapeutic strategies to mitigate sepsis-induced organ damage and improve patient survival. Continued research into the metabolic and immune functions of AQPs will be essential for developing targeted therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie Intensivmedizin und Schmerztherapie Universitätsklinikum Knappschaftskrankenhaus Bochum, University Clinic of Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
5
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
6
|
Wang C, Huang Y, Gong Y, Wu M, Jiang L, Dang B. Tetramethylpyrazine protects mitochondrial function by up-regulation of TFAM and inhibition of neuronal apoptosis in a rat model of surgical brain injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:352-359. [PMID: 38333750 PMCID: PMC10849202 DOI: 10.22038/ijbms.2023.72947.15862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 02/10/2024]
Abstract
Objectives Mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage and mutation is widely accepted as one of the pathological processes of neurodegenerative diseases. As an mtDNA binding protein, mitochondrial transcription factor A (TFAM) maintains the integrity of mtDNA through transcription, replication, nucleoid formation, damage perception, and DNA repair. In recent works, the overexpression of TFAM increased the mtDNA copy count, promoted mitochondrial function, and improved the neurological dysfunction of neurodegenerative diseases. The role of TFAM in neurodegenerative diseases has been well explained. However, the role of TFAM after surgical brain injury (SBI) has not been studied. In this work, we aimed to study the role of TFAM in the brain after SBI and its mechanism of action. Materials and Methods One hour after the occurrence of SBI, tetramethylpyrazine (TMP) was injected into the abdominal cavity of rats, and the brain was collected 48 hr later for testing. The evaluation included neurobehavioral function test, brain water content measurement, immunofluorescence, western blot, TUNEL staining, FJC staining, ROS test, and ATP test. Results After SBI, the content of TFAM on the ipsilateral side increased and reached a peak at about 48 hr. After intraperitoneal injection of TMP in rats, 48 hr after SBI, the concentration of TFAM, Bcl-2, and adenosine triphosphate (ATP) increased; the content of caspase-3, reactive oxygen species (ROS), and cerebral edema decreased; and the nerve function significantly improved. Conclusion TMP inhibited cell apoptosis after SBI in rats by up-regulating TFAM and protecting brain tissues.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- These authors contributed eqully to this work
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- These authors contributed eqully to this work
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lei Jiang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
7
|
Tang J, Wu M, Shen J, Jiang L, Chen L, Dang B. Possible role of Sox11 in a rat model of surgical brain injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:888-894. [PMID: 38800035 PMCID: PMC11127080 DOI: 10.22038/ijbms.2024.71455.15537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 05/29/2024]
Abstract
Objectives Sox11, one of the SoxC family members, is an important transcription factor during neural development and neurogenesis. However, there is no report about its function in neural apoptosis. This research aims to examine the function of Sox11 in surgical brain injury (SBI). Materials and Methods We used 90 Sprague-Dawley rats to develop the SBI models and the siRNA of Sox11 to study the roles of Sox11. Western blot, real-time PCR, immunofluorescence, neuron apoptosis and necrosis, brain edema, and neurological score were determined. Results The gene and protein amount of Sox11, compared with the Sham group, were increased after SBI, which reached a peak at 12 hr. In addition, following the application of siRNAs, the amount of Sox11 protein was significantly less than that in the SBI group. On the other hand, neuronal apoptosis, necrosis, and brain edema were significantly increased, while neurological scores were decreased. Conclusion These findings demonstrate the role of Sox11 following nerve injury induced by SBI. Inhibition of Sox11 with siRNA may lead to neuronal injury and cell death, aggravating secondary brain injury after SBI.
Collapse
Affiliation(s)
- Jiafeng Tang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
- These authors contributed equally to this work
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
- These authors contributed equally to this work
| | - Jinchao Shen
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lei Jiang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lifen Chen
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
8
|
Wu M, Wang C, Gong Y, Huang Y, Jiang L, Zhang M, Gao R, Dang B. Potential mechanism of TMEM2/CD44 in endoplasmic reticulum stress‑induced neuronal apoptosis in a rat model of traumatic brain injury. Int J Mol Med 2023; 52:119. [PMID: 37888730 PMCID: PMC10635692 DOI: 10.3892/ijmm.2023.5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Traumatic brain injury (TBI) can lead to the disruption of endoplasmic reticulum (ER) homeostasis in neurons and induce ER stress. Transmembrane protein 2 (TMEM2) may regulate ER stress through the p38/ERK signaling pathway, independent of the classic unfolded protein response (UPR) pathway. The present study examined the expression of TMEM2 following TBI in a rat model, in an aim to determine whether the mitogen‑activated protein kinase (MAPK) signaling pathway is controlled by TMEM2/CD44 to mitigate secondary brain injury. For this purpose, 89 Sprague‑Dawley rats were used to establish the model of TBI, and TMEM2 siRNA was used to silence TMEM2. Western blot analysis, immunofluorescence, TUNEL assay and Fluoro‑Jade C staining, the wet‑dry method and behavioral scoring were used for analyses. The results revealed that TMEM2 was activated following TBI in rats. The silencing of TMEM2 resulted in a significant increase in the levels of p38 and ERK (components of MAPK signaling), while brain edema, neuronal apoptosis and degeneration were significantly aggravated. TBI increased TMEM2/CD44‑aggravated brain edema and neurological impairment, possibly by regulating ERK and p38 signaling. TMEM2/CD44 may thus be a target for the prevention and control of TBI.
Collapse
Affiliation(s)
- Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Chaoyu Wang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Lei Jiang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Min Zhang
- Department of Preventive Treatment, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| | - Rong Gao
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu 215600, P.R. China
| |
Collapse
|
9
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
10
|
Shen J, Qian M, Wu M, Tang J, Gong Y, Li J, Ji J, Dang B. Rosiglitazone inhibits acyl-CoA synthetase long-chain family number 4 and improves secondary brain injury in a rat model of surgical brain injury. Clin Exp Pharmacol Physiol 2023; 50:927-935. [PMID: 37675456 DOI: 10.1111/1440-1681.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
Ferroptosis is a recently discovered non-apoptotic form of cellular death. Acyl-CoA synthetase long-chain family number 4 (ACSL4) is necessary for iron-dependent cellular death, and reactive oxygen species (ROS) produced by ACSL4 are the executioners of ferroptosis. Rosiglitazone improves ferroptosis by inhibiting ACSL4. There is no research indicating whether ACSL4 plays a role in cell death after surgical brain injury (SBI). This study aimed to investigate the role of ACSL4 in SBI via the ferroptosis pathway. Ninety male Sprague-Dawley rats were examined using a model of SBI. Subsequently, the inhibitory effect of rosiglitazone on ACSL4 was assessed via western blot, real-time polymerase chain reaction (PCR), immunofluorescence, fluoro-jade C staining, Perl's staining, ROS assay, and neurological scoring. The results showed that compared with the Sham group, the protein levels of ACSL4 and transferrin were significantly increased after SBI. Administration of rosiglitazone significantly reduced neuronal necrosis, iron deposition, brain water content and ROS in brain tissue and ameliorated neurological deficits at 48 h after SBI, which was concomitant with decreased transferrin expression. These findings demonstrate that SBI-induced upregulation of ACSL4 may be partly mediated by the ferroptosis pathway, which can be reversed by rosiglitazone administration.
Collapse
Affiliation(s)
- Jinchao Shen
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Min Qian
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Muyao Wu
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Jiafeng Tang
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yating Gong
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Jie Li
- Departments of Intensive Care Unit, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.77 Changan Southern Road, Jiangsu Province, China
| | - Jinfen Ji
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Baoqi Dang
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| |
Collapse
|
11
|
Gu HP, Wu XF, Gong YT, Mu-Yao Wu, Shi MY, Sun YM, Dang BQ, Chen G. RGFP966 exerts neuroprotective effect via HDAC3/Nrf2 pathway after surgical brain injury in rats. Heliyon 2023; 9:e18160. [PMID: 37539293 PMCID: PMC10395478 DOI: 10.1016/j.heliyon.2023.e18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/29/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) restores chromatin nucleosomes to a transcriptional repression state, thereby inhibiting gene expression. Studies have found that HDAC3 expression is upregulated in a variety of pathological states of the central nervous system and related to its neurotoxicity. However, the role of HDAC3 in surgical brain injury (SBI) has not been thoroughly explored. OBJECTIVE To observe the role of HDAC3 in SBI and the outcome of SBI after its suppression. METHODS Rat SBI model was used, and intraperitoneal injection of RGFP966 (HDAC3 specific inhibitor) was used to detect the changes of HDAC3 expression and neuronal apoptosis indexes in the surrounding cortex of SBI rats, and the cerebral edema and neurological outcome of rats were observed. RESULTS The expression of HDAC3 in the peripheral cortex of SBI rats was increased, and RGFP966 inhibited the upregulation of HDAC3 and saved the nerve cells around the damaged area. In addition, RGFP966 increased the expression of anti-oxidative stress proteins such as heme oxygenase-1 (HO-1) and superoxide dismutase 2 (SOD2). At the same time, the expression of apoptotic marker protein cleaved-caspase-3 (cle-caspase-3) was decreased, while the expression level of apoptotic protective marker protein B-cell lymphoma 2 (Bcl-2) was increased. In addition, this research demonstrated that in the RGFP966 rat SBI model, the expression level of antioxidant modifier nuclear factor-erythroid 2-related factor 2 (Nrf2) was increased. CONCLUSION RGFP966 might activate HDAC3/Nrf2 signaling pathway by inhibiting HDAC3, regulated oxidative stress and nerve cell apoptosis induced by SBI in rat SBI model, reduced brain edema, and had a protective effect on nerve injury. It might be a potential target of SBI pathology.
Collapse
Affiliation(s)
- Hai-Ping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiao-Feng Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-Ting Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Mu-Yao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Meng-Ying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Ya-ming Sun
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Bao-Qi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
13
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
14
|
Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B, Chen G. Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull 2022; 183:116-126. [PMID: 35247489 DOI: 10.1016/j.brainresbull.2022.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China; Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhe Ren
- Department of Infectious Diseases, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Min Qian
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Salman MM, Kitchen P, Yool AJ, Bill RM. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci 2022; 43:30-42. [PMID: 34863533 DOI: 10.1016/j.tips.2021.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Aquaporins facilitate the passive transport of water, solutes, or ions across biological membranes. They are implicated in diverse pathologies including brain edema following stroke or trauma, epilepsy, cancer cell migration and tumor angiogenesis, metabolic disorders, and inflammation. Despite this, there is no aquaporin-targeted drug in the clinic and aquaporins have been perceived to be intrinsically non-druggable targets. Here we challenge this idea, as viable routes to inhibition of aquaporin function have recently been identified, including targeting their regulation or their roles as channels for unexpected substrates. Identifying new drug development frameworks for conditions associated with disrupted water and solute homeostasis will meet the urgent, unmet clinical need of millions of patients for whom no pharmacological interventions are available.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience Discovery, University of Oxford, Oxford OX1 3PT, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Andrea J Yool
- University of Adelaide, School of Biomedicine, Adelaide, South Australia 5005, Australia.
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
16
|
Wan Y, Wang J, Yang B, Huang C, Tang X, Yi H, Liu Y, Wang S. Effects and mechanisms of CTRP3 overexpression in secondary brain injury following intracerebral hemorrhage in rats. Exp Ther Med 2021; 23:35. [PMID: 34849150 PMCID: PMC8613529 DOI: 10.3892/etm.2021.10957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
C1q/TNF-related protein-3 (CTRP3) is a novel adipokine that serves an important role in oxidative stress, anti-apoptosis, anti-inflammation and immune regulation. The aim of the present study was to investigate the protective role of CTRP3 against intracerebral hemorrhage (ICH)-induced brain injury. A model of autologous arterial blood-induced ICH was constructed in rats. Intracerebral infusion of a lentivirus carrying the CTRP3 gene was used to induce CTRP3 overexpression in the brain. The effects and mechanisms of CTRP3 overexpression on brain injury were investigated by detecting brain edema, blood-brain barrier (BBB) integrity, neurological function and inflammatory-associated factors 3 days after ICH. The present results demonstrated that CTRP3 overexpression ameliorated ICH-induced neurological dysfunction, decreased brain edema, maintained BBB integrity and attenuated inflammation. The protective effect of CTRP3 overexpression was associated with increased activation of silent information regulator 1 (SIRT1). In conclusion, the present study demonstrated that CTRP3 overexpression protected against ICH-induced brain injury in rats, potentially via activating the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Wan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Bo Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Xiaoqin Tang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Hong Yi
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Yun Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| | - Shaohua Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China.,Medical Experiment Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuang 646000, P.R. China
| |
Collapse
|
17
|
Bazard P, Pineros J, Frisina RD, Bauer MA, Acosta AA, Paganella LR, Borakiewicz D, Thivierge M, Mannering FL, Zhu X, Ding B. Cochlear Inflammaging in Relation to Ion Channels and Mitochondrial Functions. Cells 2021; 10:2761. [PMID: 34685743 PMCID: PMC8534887 DOI: 10.3390/cells10102761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
The slow accumulation of inflammatory biomarker levels in the body-also known as inflammaging-has been linked to a myriad of age-related diseases. Some of these include neurodegenerative conditions such as Parkinson's disease, obesity, type II diabetes, cardiovascular disease, and many others. Though a direct correlation has not been established, research connecting age-related hearing loss (ARHL)-the number one communication disorder and one of the most prevalent neurodegenerative diseases of our aged population-and inflammaging has gained interest. Research, thus far, has found that inflammatory markers, such as IL-6 and white blood cells, are associated with ARHL in humans and animals. Moreover, studies investigating ion channels and mitochondrial involvement have shown promising relationships between their functions and inflammaging in the cochlea. In this review, we summarize key findings in inflammaging within the auditory system, the involvement of ion channels and mitochondrial functions, and lastly discuss potential treatment options focusing on controlling inflammation as we age.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren R. Paganella
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Dominika Borakiewicz
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Freyda L. Mannering
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
18
|
Ji MJ, Ryu HJ, Hong JH. Synovial Fluid of Patient With Rheumatoid Arthritis Enhanced Osmotic Sensitivity Through the Cytotoxic Edema Module in Synoviocytes. Front Cell Dev Biol 2021; 9:700879. [PMID: 34532317 PMCID: PMC8438158 DOI: 10.3389/fcell.2021.700879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the synovial membrane ultimately leading to permanent damage in the affected joints. For this study, synovial fluids from 16 patients diagnosed with either RA or osteoarthritis (OA) were used to examine volume regulation and cooperative water channels, both of which are involved in the cytotoxic edema identified in RA-fibroblast-like synoviocytes (FLS). The osmolarity and inflammatory cytokine interleukin (IL)-6 of synovial fluids from RA patients were mildly enhanced compared to that from OA patients. RA-FLS demonstrated the enhanced property of regulatory volume increase in response to IL-6 and synovial fluids from RA patients. Although there was no difference in the protein expression of the volume-associated protein sodium–potassium–chloride cotransporter1 (NKCC1), its activity was increased by treatment with IL-6. Membrane localization of NKCC1 was also increased by IL-6 treatment. Additionally, both the protein and membrane expressions of aquaporin-1 were increased in RA-FLS by IL-6 stimulation. The IL-6-mediated enhanced osmotic sensitivity of RA-FLS likely involves NKCC1 and aquaporin-1, which mainly constitute the volume-associated ion transporter and water channel elements. These results suggest that RA-FLS provide enhanced electrolytes and concomitant water movement through NKCC1 and aquaporin-1, thereby inducing cellular swelling ultimately resulting in cytotoxic edema. Attenuation of cytotoxic edema and verification of its related mechanism will provide novel therapeutic approaches to RA treatment within the scope of cytotoxic edema.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
19
|
Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R, Dang BQ, Chen G. Inhibition of the p‑SPAK/p‑NKCC1 signaling pathway protects the blood‑brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol Med Rep 2021; 24:717. [PMID: 34396440 DOI: 10.3892/mmr.2021.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Surgical brain injury (SBI) can disrupt the function of the blood‑brain barrier (BBB), leading to brain edema and neurological dysfunction. Thus, protecting the BBB and mitigating cerebral edema are key factors in improving the neurological function and prognosis of patients with SBI. The inhibition of WNK lysine deficient protein kinase/STE20/SPS1‑related proline/alanine‑rich kinase (SPAK) signaling ameliorates cerebral edema, and this signaling pathway regulates the phosphorylation of the downstream Na+‑K+‑Cl‑ cotransporter 1 (NKCC1). Therefore, the purpose of the present study was to investigate the role of SPAK in SBI‑induced cerebral edema and to determine whether the SPAK/NKCC1 signaling pathway was involved in SBI via regulating phosphorylation. An SBI model was established in male Sprague‑Dawley rats, and the effects of SPAK on the regulation of the NKCC1 signaling pathway on BBB permeability and nerve cell apoptosis by western blotting analysis, immunofluorescence staining, TUNEL staining, Fluoro‑Jade C staining, and brain edema and nervous system scores. The results demonstrated that, compared with those in the sham group, phosphorylated (p)‑SPAK and p‑NKCC1 protein expression levels were significantly increased in the SBI model group. After inhibiting p‑SPAK, the expression level of p‑NKCC1, neuronal apoptosis and BBB permeability were significantly reduced in SBI model rats. Taken together, these findings suggested that SBI‑induced increases in p‑SPAK and p‑NKCC1 expression exacerbated post‑traumatic neural and BBB damage, which may be mediated via the ion‑transport‑induced regulation of cell edema.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Mengying Shi
- Department of Anesthesiology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Bao-Qi Dang
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|