1
|
Xiao H, Wu J, Huang L, Ma Y, Wu L, Lin Y, Ye Z, Tan X, Tang X, Tong W, Dai M, Wang Y, Sheng X, Chai R, Zhang S. Conditional Overexpression of Serpine2 Promotes Hair Cell Regeneration from Lgr5+ Progenitors in the Neonatal Mouse Cochlea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412653. [PMID: 40091489 DOI: 10.1002/advs.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Neonatal cochlear Lgr5+ progenitors retain limited hair cells (HCs) regenerative capacity, but the regulatory network remains incompletely defined. Serpin family E member 2 (Serpine2) is shown to participate in regulating proliferation and differentiation of cochlear Lgr5+ progenitors in the previous in vitro study. Here, the expression pattern and in vivo roles of Serpine2 in HC regeneration are explored by transgenic mice. It is found that Serpine2 is expressed in the mouse cochlea after birth with a downward trend as the mice age. In addition, Serpine2 conditional overexpression in vivo in Lgr5+ progenitors of neonatal mice cochlea results in an increased number of ectopic HCs in a dose-dependent manner. Serpine2 knockdown ex vivo and in vivo can inhibit HC regeneration. EdU assay and lineage tracing assay demonstrate these ectopic HCs likely originate from Lgr5+ progenitors through direct transdifferentiation rather than through mitotic regeneration. Moreover, single-nucleus RNA sequencing analysis and mRNA level validation reveal that conditionally overexpressed Serpine2 likely induces HC regeneration via inhibiting sonic hedgehog (SHH) signal pathway and inducing Atoh1 and Pou4f3 transcription factor. In brief, these data indicate that Serpine2 plays a pivotal role in HC regeneration from Lgr5+ progenitors in the neonatal mouse cochlea, and this suggests a new avenue for future research into HC regeneration.
Collapse
Affiliation(s)
- Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Jiheng Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lixuan Huang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ying Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xia Sheng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
2
|
Kim YJ, Jeong IH, Ha JH, Kim YS, Sung S, Jang JH, Choung YH. The Suppression of Ubiquitin C-Terminal Hydrolase L1 Promotes the Transdifferentiation of Auditory Supporting Cells into Hair Cells by Regulating the mTOR Pathway. Cells 2024; 13:737. [PMID: 38727276 PMCID: PMC11083094 DOI: 10.3390/cells13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - In Hye Jeong
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Jung Ho Ha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.J.K.); (J.H.H.); (Y.S.K.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; (I.H.J.); (S.S.)
| |
Collapse
|
3
|
Smith-Cortinez N, Hendriksen FGJ, Ramekers D, Stokroos RJ, Versnel H, Straatman LV. Long-term survival of LGR5 expressing supporting cells after severe ototoxic trauma in the adult mouse cochlea. Front Cell Neurosci 2023; 17:1236894. [PMID: 37692553 PMCID: PMC10483136 DOI: 10.3389/fncel.2023.1236894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a tissue resident stem cell marker, which it is expressed in supporting cells (SCs) in the organ of Corti in the mammalian inner ear. These LGR5+ SCs can be used as an endogenous source of progenitor cells for regeneration of hair cells (HCs) to treat hearing loss and deafness. We have recently reported that LGR5+ SCs survive 1 week after ototoxic trauma. Here, we evaluated Lgr5 expression in the adult cochlea and long-term survival of LGR5+ SCs following severe hearing loss. Methods Lgr5GFP transgenic mice and wild type mice aged postnatal day 30 (P30) and P200 were used. P30 animals were deafened with a single dose of furosemide and kanamycin. Seven and 28 days after deafening, auditory brainstem responses (ABRs) were recorded. Cochleas were harvested to characterize mature HCs and LGR5+ SCs by immunofluorescence microscopy and quantitative reverse transcription PCR (q-RT-PCR). Results There were no significant age-related changes in Lgr5 expression when comparing normal-hearing (NH) mice aged P200 with P30. Seven and 28 days after ototoxic trauma, there was severe outer HC loss and LGR5 was expressed in the third row of Deiters' cells and in inner pillar cells. Seven days after induction of ototoxic trauma there was an up-regulation of the mRNA expression of Lgr5 compared to the NH condition; 28 days after ototoxic trauma Lgr5 expression was similar to NH levels. Discussion The presence of LGR5+ SCs in the adult mouse cochlea, which persists after severe HC loss, suggests potential regenerative capacity of endogenous cochlear progenitor cells in adulthood. To our knowledge, this is the first study showing not only long-term survival of LGR5+ SCs in the normal and ototoxically damaged cochlea, but also increased Lgr5 expression in the adult mouse cochlea after deafening, suggesting long-term availability of potential target cells for future regenerative therapies.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ferry G. J. Hendriksen
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Robert J. Stokroos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Louise V. Straatman
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Kaur C, Van Orden M, O'Malley JT, Wu PZ, Liberman MC. Supporting-cell vs. hair-cell survival in the human cochlea: Implications for regenerative therapies. Hear Res 2023; 435:108815. [PMID: 37263113 PMCID: PMC10426718 DOI: 10.1016/j.heares.2023.108815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Animal studies have shown that the supporting-cells surviving in the organ of Corti after cochlear insult can be transdifferentiated into hair cells as a treatment for sensorineural hearing loss. Clinical trials of small-molecule therapeutics have been undertaken, but little is known about how to predict the pattern and degree of supporting-cell survival based on audiogram, hearing loss etiology or any other metric obtainable pre-mortem. To address this, we systematically assessed supporting-cell and hair cell survival, as a function of cochlear location in 274 temporal bone cases from the archives at the Massachusetts Eye and Ear and compared the histopathology with the audiograms and hearing-loss etiologies. Results showed that supporting-cell survival was always significantly greater in the apical half than the basal half of the cochlea, that inner pillars were more robust than outer pillars or Deiters' cells, and that total replacement of all supporting cells with a flat epithelium was rare outside of the extreme basal 20% of the cochlea. Supporting cell survival in the basal half of the cochlea was better correlated with the slope of the audiogram than with the mean high-frequency threshold per se: i.e. survival was better with flatter audiograms than with steeply down-sloping audiograms. Cochlear regions with extensive hair cell loss and exceptional supporting cell survival were most common in cases with hearing loss due to ototoxic drugs. Such cases also tended to have less pathology in other functionally critical structures, i.e. spiral ganglion neurons and the stria vascularis.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | | - Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Kaur C, Van Orden M, O’Malley JT, Wu PZ, Liberman MC. Supporting-cell vs. hair-cell survival in the human cochlea: Implications for regenerative therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538119. [PMID: 37163013 PMCID: PMC10168255 DOI: 10.1101/2023.04.24.538119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Animal studies have shown that the supporting-cells surviving in the organ of Corti after cochlear insult can be transdifferentiated into hair cells as a treatment for sensorineural hearing loss. Clinical trials of small-molecule therapeutics have been undertaken, but little is known about how to predict the pattern and degree of supporting-cell survival based on audiogram, hearing loss etiology or any other metric obtainable pre-mortem. To address this, we systematically assessed supporting-cell and hair cell survival, as a function of cochlear location in 274 temporal bone cases from the archives at the Massachusetts Eye and Ear and compared the histopathology with the audiograms and hearing-loss etiologies. Results showed that supporting-cell survival was always significantly greater in the apical half than the basal half of the cochlea, that inner pillars were more robust than outer pillars or Deiters' cells, and that total replacement of all supporting cells with a flat epithelium was rare outside of the extreme basal 20% of the cochlea. Supporting cell survival in the basal half of the cochlea was better correlated with the slope of the audiogram than with the mean high-frequency threshold per se: i.e. survival was better with flatter audiograms than with steeply down-sloping audiograms. Cochlear regions with extensive hair cell loss and exceptional supporting cell survival were most common in cases with hearing loss due to ototoxic drugs. Such cases also tended to have less pathology in other functionally critical structures, i.e. spiral ganglion neurons and the stria vascularis. Highlights Supporting cell survival was systematically assessed in 274 human cochleasSupporting cell survival was better with flat than with down-sloping audiogramsSupporting cell survival was most robust when hearing loss was from ototoxic drugsOtotoxic cases also showed less pathology in other critical cochlear structuresThe data can inform clinical trials for regeneration via supporting cell conversion.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| | | | - Jennifer T. O’Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114
| | - Pei-zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| | - M. Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA 02114
- Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
The effect of the surgical approach and cochlear implant electrode on the structural integrity of the cochlea in human temporal bones. Sci Rep 2022; 12:17068. [PMID: 36224234 PMCID: PMC9556579 DOI: 10.1038/s41598-022-21399-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Cochlear implants (CI) restore hearing of severely hearing-impaired patients. Although this auditory prosthesis is widely considered to be very successful, structural cochlear trauma during cochlear implantation is an important problem, reductions of which could help to improve hearing outcomes and to broaden selection criteria. The surgical approach in cochlear implantation, i.e. round window (RW) or cochleostomy (CO), and type of electrode-array, perimodiolar (PM) or lateral wall (LW), are variables that might influence the probability of severe trauma. We investigated the effect of these two variables on scalar translocation (STL), a specific type of severe trauma. Thirty-two fresh frozen human cadaveric ears were evenly distributed over four groups receiving either RW or CO approach, and either LW or PM array. Conventional radiological multiplanar reconstruction (MPR) was compared with a reconstruction method that uncoils the spiral shape of the cochlea (UCR). Histological analysis showed that RW with PM array had STL rate of 87% (7/8), CO approach with LW array 75% (6/8), RW approach with LW array 50% (4/8) and CO approach with PM array 29% (2/7). STL assessment using UCR showed a higher inter-observer and histological agreement (91 and 94% respectively), than that using MPR (69 and 74% respectively). In particular, LW array positions were difficult to assess with MPR. In conclusion, the interaction between surgical approach and type of array should be preoperatively considered in cochlear implant surgery. UCR technique is advised for radiological assessment of CI positions, and in general it might be useful for pathologies involving the inner ear or other complex shaped bony tubular structures.
Collapse
|
8
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
9
|
Ding X, Hu Y, Cheng H, Zhang X, Lu L, Gao S, Cheng C, Wang L, Qian X, Zhang C, Chai R, Gao X, Huang Z. Graphene Substrates Promote the Differentiation of Inner Ear Lgr5+ Progenitor Cells Into Hair Cells. Front Bioeng Biotechnol 2022; 10:927248. [PMID: 35814013 PMCID: PMC9256972 DOI: 10.3389/fbioe.2022.927248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
The ideal treatment for sensory hearing loss is to regenerate inner ear hair cells (HCs) through stem cell therapy, thereby restoring the function and structure of the cochlea. Previous studies have found that Lgr5+ supporting cells (SCs) in the inner ear can regenerate HCs, thus being considered inner ear progenitor cells. In addition to traditional biochemical factors, physical factors such as electrical conductivity also play a crucial role in the regulation of stem cell proliferation and differentiation. In this study, the graphene substrates were used to culture Lgr5+ progenitor cells and investigated their regulatory effects on cells. It was demonstrated that the graphene substrates displayed great cytocompatibility for Lgr5+ progenitors and promoted their sphere-forming ability. Moreover, more Myosin7a+ cells were found on the graphene substrates compared with tissue culture polystyrene (TCPS). These results suggest that graphene is an efficient interface that can promote the differentiation of Lgr5+ progenitors into HCs, which is great significance for its future application in combination with Lgr5+ cells to regenerate HCs in the inner ear.
Collapse
Affiliation(s)
- Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Hong Cheng
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Song Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lifen Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Renjie Chai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| | - Zhichun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
- *Correspondence: Renjie Chai, ; Xia Gao, ; Zhichun Huang,
| |
Collapse
|
10
|
Tisi A, Rovers J, Vink HA, Ramekers D, Maccarone R, Versnel H. No Protective Effects of Hair Cells or Supporting Cells in Ototoxically Deafened Guinea Pigs upon Administration of BDNF. Brain Sci 2021; 12:2. [PMID: 35053747 PMCID: PMC8773526 DOI: 10.3390/brainsci12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated whether treatment with brain-derived neurotrophic factor (BDNF), which is known to protect spiral ganglion cells (SGCs), could also protect hair cells (HCs) and supporting cells (SCs) in the organ of Corti of a guinea pig model of sensorineural hearing loss. Hearing loss was induced by administration of kanamycin/furosemide and two BDNF treatments were performed: (1) by gelatin sponge (BDNF-GS) with acute cochlear implantation (CI), and (2) through a mini-osmotic pump (BDNF-OP) with chronic CI. Outer HCs (OHCs), inner HCs (IHCs), Border, Phalangeal, Pillar, Deiters', and Hensen's cells were counted. The BDNF-GS cochleas had significantly fewer OHCs compared to the untreated ones, while the IHC and SC numbers did not differ between treated and untreated cochleas. The BDNF-OP group showed similar cell numbers to the untreated group. SGC packing density was not correlated with the total number of SCs for either BDNF group. Our data suggest that: (1) BDNF does not prevent cell death in the organ of Corti, and that the protection of SGCs could result from a direct targeting by BDNF; (2) BDNF might induce a different function/activity of the remaining cells in the organ of Corti (independently from cell number).
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Applied Clinical Sciences and Biotechnology, University of L′Aquila, 67100 L′Aquila, Italy; (A.T.); (R.M.)
| | - Jochebed Rovers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (J.R.); (H.A.V.); (D.R.)
| | - Henk A. Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (J.R.); (H.A.V.); (D.R.)
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (J.R.); (H.A.V.); (D.R.)
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rita Maccarone
- Department of Applied Clinical Sciences and Biotechnology, University of L′Aquila, 67100 L′Aquila, Italy; (A.T.); (R.M.)
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (J.R.); (H.A.V.); (D.R.)
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|