1
|
Zhang Y, Chen J, Xu J, Yang X, Wang S, Zeng Y, Liu J, Yu J. Effects of tea polyphenols and tea polysaccharides on improving nonylphenol-induced depression-like behavior, monoamine neurotransmitter disorder, and neuronal pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118166. [PMID: 40209346 DOI: 10.1016/j.ecoenv.2025.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Exposure to nonylphenol (NP) has been linked to depressive-like behaviors, while tea consumption is associated with a reduced risk of depression. This study investigates and compares the effects of tea polyphenols (TPs) and tea polysaccharides (TPSs) in alleviating NP-induced depressive-like behaviors, focusing on neuronal apoptosis and disrupted monoamine neurotransmitter secretion. METHODS Thirty-two specific-pathogen-free male, Sprague-Dawley rats (age: 4 weeks) were randomly assigned to four groups: control (5 mL/kg corn oil), NP (40 mg/kg NP), NP+TPS (25 mg/kg TPS), and NP+TP (50 mg/kg TP) groups. RESULTS The NP+TP group exhibited a shorter latency period in the feeding test than the NP group. Both NP+TP and NP+TPS groups showed reduced immobility time in the tail suspension and forced swimming tests. NP accumulation in the midbrain and cortical tissues was lower in these two groups. Additionally, these groups showed an increased number of "pear-shaped" neurons and higher serum neurotransmitter levels. The NP+TP and NP+TPS groups also demonstrated increased expression of estrogen receptor β (ERβ), tryptophan hydroxylase (TPH1), tryptophan hydroxylase-2 (TPH2), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) at both protein and gene levels. These two groups also showed a progressive increase in neuron counts, a more organized arrangement, and reduced nuclear staining intensity compared with the NP group. Moreover, their IL-1β and IL-18 levels were lower, along with a reduction in Iba-1-positive microglia. The neuronal apoptosis rate, number of apoptotic cells, and expression of apoptosis-related inflammatory proteins (NLRP3, GSDMD, and Caspase-1) were also decreased in the NP+TP and NP+TPS groups. CONCLUSION TP and TPS mitigate NP-induced depressive-like behaviors by significantly reducing neuronal apoptosis, normalizing monoamine neurotransmitter secretion, and alleviating neuroinflammation. These findings highlight the potential of these tea components as neuroprotective agents against environmental endocrine disruptor-induced depression.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jingting Chen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Xiao Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Songhe Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yingxi Zeng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Junni Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
2
|
Chen Q, Xu F, Wu H, Xie L, Li H, Jiao C, Zhang H, Chen X. Inhibition of Semaphorin 3A in Hippocampus Alleviates Postpartum Depression-Like Behaviors in Mice. Mol Neurobiol 2025:10.1007/s12035-025-04752-5. [PMID: 39934560 DOI: 10.1007/s12035-025-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Postpartum depression (PPD) is a widespread psychiatric condition affecting up to 20% of postpartum women. Although it is known to be associated with ovarian hormone withdrawal following delivery, current treatments remain limited due to a lack of underlying mechanism. Here, in mice, we identified that semaphorin 3A (sema3A) exhibited a notable increase in expression within the hippocampus of postpartum depression mice, whereas no such upregulation was observed in female mice experiencing depression induced by lipopolysaccharide or chronic restraint stress. The coexpression rate of sema3A and c-Fos was also elevated in the hippocampal CA3 of postpartum depression mice. Importantly, systemic inhibition or genetic knockdown of hippocampal sema3A significantly alleviated the depressive symptoms induced by ovarian hormone withdrawal. Further, overexpression of sema3A in CA3 induced depressive-like behaviors in naïve female mice. In conclusion, our cumulative findings suggest that sema3A in hippocampal CA3 plays a pivotal role in the pathogenesis of postpartum depression, and could serve as a promising treatment target for ameliorating this widespread disorder.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Fang Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Zhang Y, Liu C, Zhu Q, Wu H, Liu Z, Zeng L. Relationship Between Depression and Epigallocatechin Gallate from the Perspective of Gut Microbiota: A Systematic Review. Nutrients 2025; 17:259. [PMID: 39861389 PMCID: PMC11767295 DOI: 10.3390/nu17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression. Gut microbes influence depression-like behaviors by impacting the hypothalamic-pituitary-adrenal axis (HPA), monoamine neurotransmitters, immune responses, cell signaling, and metabolic pathways. Tea, widely used in clinical practice to improve neuropsychiatric disorders, contains Epigallocatechin gallate (EGCG), a major ingredient of green tea, which effectively regulates intestinal flora. This review examined the risks and causes of depression, the complications associated with intestinal flora, their role in the development and treatment of depression, and how EGCG may alleviate depression through interactions with gut microbiota and other mechanisms.
Collapse
Affiliation(s)
- Yangbo Zhang
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qi Zhu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Hui Wu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Li Zeng
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| |
Collapse
|
4
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Fei F, Chen Z, Tao Y, Jiang X, Xu X, Ma Y, Feng P, Wang P. Comparison of CUMS at different pregnancy stages, maternal separation, and their effects on offspring in postpartum depression mouse models. Heliyon 2024; 10:e35363. [PMID: 39166014 PMCID: PMC11334627 DOI: 10.1016/j.heliyon.2024.e35363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Due to the diversity of postpartum depression (PPD) patients and the complexity of associated pathophysiological changes, most current animal models cannot accurately simulate PPD-like symptoms. In this study, we established a reliable animal model for PPD by inducing chronic unpredictable mild stress (CUMS) at different stages (pre-pregnancy, pregnancy, or postnatal) in female mice, followed by maternal separation (MS) from day 2-21 after delivery. The results for female mice subjected to pre-pregnancy stress were not statistically significant due to a lower conception rate. However, female mice exposed to CUMS during either the gestational or postnatal stage, followed by MS, successfully exhibited PPD-like symptoms. The models were deemed effective based on observed behavioral abnormalities, impaired hippocampal neuron functioning, and reduced serum concentrations of neurotransmitters (5-HT, GABA, and NE). Additionally, mice that underwent gestational CUMS followed by MS displayed a more dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and more severe uterine inflammation. The study also investigated the impact of PPD on the behavior and neurodevelopment of adolescent offspring through behavioral tests, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and western blotting (WB). The results indicated that adolescent offspring of mothers with PPD exhibited behavioral and neurodevelopmental disorders, with male offspring being more susceptible than females. Female mice exposed to both CUMS and MS during the postnatal period had more severe adverse effects on their offspring compared to the other model groups.
Collapse
Affiliation(s)
- Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinliang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinyue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yifeng Ma
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- ZJUT-Jinhua Innovation Joint Research Institute, Jinhua, 321001, People's Republic of China
| |
Collapse
|
6
|
Xu Q, Sun L, Chen Q, Jiao C, Wang Y, Li H, Xie J, Zhu F, Wang J, Zhang W, Xie L, Wu H, Zuo Z, Chen X. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model. Brain Behav Immun 2024; 119:220-235. [PMID: 38599497 DOI: 10.1016/j.bbi.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Postpartum depression (PPD) is a severe mental disorder that affects approximately 10---20% of women after childbirth. The precise mechanism underlying PPD pathogenesis remains elusive, thus limiting the development of therapeutics. Gut microbiota dysbiosis is considered to contribute to major depressive disorder. However, the associations between gut microbiota and PPD remain unanswered. Here, we established a mouse PPD model by sudden ovarian steroid withdrawal after hormone-simulated pseudopregnancy-human (HSP-H) in ovariectomy (OVX) mouse. Ovarian hormone withdrawal induced depression-like and anxiety-like behaviors and an altered gut microbiota composition. Fecal microbiota transplantation (FMT) from PPD mice to antibiotic cocktail-treated mice induced depression-like and anxiety-like behaviors and neuropathological changes in the hippocampus of the recipient mice. FMT from healthy mice to PPD mice attenuated the depression-like and anxiety-like behaviors as well as the inflammation mediated by the NOD-like receptor protein (NLRP)-3/caspase-1 signaling pathway both in the gut and the hippocampus, increased fecal short-chain fatty acids (SCFAs) levels and alleviated gut dysbiosis with increased SCFA-producing bacteria and reduced Akkermansia in the PPD mice. Also, downregulation of NLRP3 in the hippocampus mitigated depression-like behaviors in PPD mice and overexpression of NLRP3 in the hippocampal dentate gyrus induced depression-like behaviors in naïve female mice. Intriguingly, FMT from healthy mice failed to alleviate depression-like behaviors in PPD mice with NLRP3 overexpression in the hippocampus. Our results highlighted the NLRP3 inflammasome as a key component within the microbiota-gut-brain axis, suggesting that targeting the gut microbiota may be a therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuan Wang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiaqian Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fangfang Zhu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiangling Wang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wen Zhang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
7
|
Xie H, Xie Z, Luan F, Zeng J, Zhang X, Chen L, Zeng N, Liu R. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117785. [PMID: 38262525 DOI: 10.1016/j.jep.2024.117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|