1
|
Zhang J, Dai Z, Yu H, Sun B, Ding J, Wang Y. Effects of Dictyophora polysaccharide on cerebellar Purkinje cell degeneration in a chronic alcohol mouse model. Animal Model Exp Med 2025. [PMID: 40223353 DOI: 10.1002/ame2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Recent research showed that the NLRP3 inflammasome was activated in the central nervous system of mice administered chronic ethanol (EtOH). Dictyophora polysaccharides (DIPs) are essential components of the valuable edible fungus Dictyophora, which has antioxidant properties that can delay the aging process of the body. This study aimed to investigate the roles of NLRP3 in chronic EtOH-induced cerebellar Purkinje cell (PC) degeneration and behavioral changes. METHODS C57BL/6J normal and NLRP3 knockout mice were exposed to EtOH for 14 days. Dictyophora polysaccharide (DIP) and NLRP3 inhibitor were administered to the EtOH mice. The pathology and NLRP3-ASC-caspase-1 signaling pathway proteins were analyzed in EtOH mice cerebellar tissues and behavioral performance was assessed in the mice. RESULTS In the EtOH mouse model, we observed increases in the NLRP3 inflammasome proteins, including NLRP3, ASC, caspase-1, mature IL-1β and pro IL-1β, loss of PCs, and motor coordination disorders. We found that DIPs could suppress the NLRP3-ASC-caspase-1 signaling pathway, and alleviate the motor deficits and cerebellar pathological changes in chronic EtOH mice. Next, we used MCC950, a NLRP3 inhibitor, and an NLRP3 knockout strategy to further verify the effects of NLRP3-ASC-caspase-1 signaling in chronic EtOH mice. MCC950 or NLRP3 knockout alleviated the EtOH-induced latency to decreases in fall time, increases in stride width and decreases in stride length. MCC950 or NLRP3 knockout also attenuated PC number loss and suppressed NLRP3 inflammation induced by EtOH. Taken together, pharmacologically or genetically inhibiting NLRP3 alleviated EtOH-induced cerebellar degeneration and behavioral deficits. CONCLUSION These findings indicated that DIPs might diminish EtOH-induced cerebellar degeneration and behavioral deficits through the NLRP3-ASC-caspase-1 signaling pathway, which provides a potential therapeutic target for the prevention and treatment of alcoholism and EtOH-induced cerebellar pathology.
Collapse
Affiliation(s)
- Jian Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Huanhuan Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Circuit-specific neural perturbations and recovery in methamphetamine addiction in a mouse model. Neurosci Lett 2025; 853:138201. [PMID: 40101836 DOI: 10.1016/j.neulet.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Drug addiction is characterized by profound brain adaptations, including altered neural circuit dynamics in reward-related regions, which reinforce compulsive drug-seeking behavior. This study investigated the effects of 5 mg/kg methamphetamine (METH) administration on brain activity measured by local field potentials (LFPs) in the nucleus accumbens (NAc) and dorsal hippocampus (dHP) of C57BL/6 mice. The study further examined the sensitivity of these brain regions during an abstinent period on day 8 and following a low-dose METH challenge. METH administration reduced theta power activity and enhanced gamma activity in the NAc, but decreased alpha2 power with specific high gamma increases in the dHP during conditioning and challenge phases. The sleep analysis revealed a reduction in NREM during the conditioning and challenge phases, however, these parameters returned to normal after 8 days abstinence from METH. These findings suggest that repeated METH administration induces neural sensitization and alters sleep architecture. However, the minimization of adverse neural changes, particularly in sleep regulation, highlights potential avenues for therapeutic applications in managing addiction and promoting recovery.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand.
| |
Collapse
|
3
|
Jeffery N, Mock PY, Yang K, Tham CL, Israf DA, Li H, Wang X, Lam KW. Therapeutic targeting of neuroinflammation in methamphetamine use disorder. Future Med Chem 2025; 17:237-257. [PMID: 39727147 PMCID: PMC11749361 DOI: 10.1080/17568919.2024.2447226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets. Given the multifactorial neurological effects of METH, including cognitive impairment and neurodegeneration, addressing METH-induced neuroinflammation has shown considerable promise in partially mitigating the damaging effects on the central nervous system and improving behavioral outcomes. This article provides an overview of the existing understanding while charting a promising path forward for developing innovative MUD treatments, focusing on neuroinflammation as a therapeutic target. Targeting neuroinflammation in METH-induced neurological disorders shows significant promise in mitigating cognitive impairment and neurodegeneration, offering a potential therapeutic strategy for improving outcomes in MUD. While challenges remain in optimizing treatments, ongoing research into combination therapies, novel drug delivery systems, and neuroprotective agents suggests a positive outlook for more effective interventions.
Collapse
Affiliation(s)
- Natasha Jeffery
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Phooi Yan Mock
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kun Yang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Structural Biology and Protein Engineering Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
5
|
Qi Y, Zhou Y, Li J, Zhu F, Guo G, Wang C, Yu M, Wang Y, Ma T, Feng S, Zhou L. 3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. Neural Regen Res 2024; 19:2270-2280. [PMID: 38488561 PMCID: PMC11034599 DOI: 10.4103/1673-5374.392887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00028/figure1/v/2024-02-06T055622Z/r/image-tiff Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome. 3'-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3'-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3'-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3'-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3'-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3'-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3'-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3'-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yize Qi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiyang Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fangyuan Zhu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Gengni Guo
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Can Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Man Yu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yijie Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Anesthesiology, The Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Li Zhou
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Zhang J, Yan J, Li S, Chen Q, Lin J, Peng Y, Liu Y, Wang B, Wei X, Sun C, Niu S. GPR55 activation improves anxiety- and depression-like behaviors of mice during methamphetamine withdrawal. Heliyon 2024; 10:e30462. [PMID: 38720745 PMCID: PMC11077030 DOI: 10.1016/j.heliyon.2024.e30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Shuyue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Xinrong Wei
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Chen Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
8
|
Ding J, Sun B, Gao Y, Zheng J, Liu C, Huang J, Jia N, Pei X, Jiang X, Hu S, Xia B, Meng Y, Dai Z, Qi X, Wang J. Evidence for chromium crosses blood brain barrier from the hypothalamus in chromium mice model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116179. [PMID: 38460200 DOI: 10.1016/j.ecoenv.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).
Collapse
Affiliation(s)
- Jiuyang Ding
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Baofei Sun
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Changyou Liu
- Department of Pediatrics, Taian Maternity and Child Health Hospital, Taian 271000, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yunle Meng
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhuihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
9
|
Ge F, Wang Z, Yu W, Yuan X, Cai Q, Wang G, Li X, Xu X, Yang P, Fan Y, Chang J, Guan X. Activating Lobule VI PC TH+-Med Pathway in Cerebellum Blocks the Acquisition of Methamphetamine Conditioned Place Preference in Mice. J Neurosci 2024; 44:e1312232024. [PMID: 38331582 PMCID: PMC10941241 DOI: 10.1523/jneurosci.1312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiya Yuan
- The first Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiasong Chang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
10
|
Ding J, Wu J, Hou X, Yang L, Gao Y, Zheng J, Jia N, He Z, Zhang H, Wang C, Qi X, Huang J, Pei X, Wang J. α-synuclein-lack expression rescues methamphetamine-induced mossy fiber degeneration in dorsal hippocampal CA3. Neurotoxicology 2024; 101:36-45. [PMID: 38311184 DOI: 10.1016/j.neuro.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China; Guangdong Provincial Key Laboratory of Genetic Disease Diagnostic, Guangzhou, China
| | - Li Yang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Zheng He
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Hui Zhang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Chengfei Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
11
|
Hu S, Huang X, Huang J, Qian Y, Tian Y, Xiao Y, Qi X, Zhou X, Yang Z, Chen Z. Iron chelation prevents nigrostriatal neurodegeneration in a chronic methamphetamine mice model. Neurotoxicology 2023; 99:24-33. [PMID: 37717738 DOI: 10.1016/j.neuro.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Methamphetamine (METH) has been established to selectively target and impair dopaminergic neurons through multiple pathways. Ferroptosis is a unique form of non-apoptotic cell death driven by cellular iron accumulation-induced lipid peroxidation. Nonetheless, it remains unclear whether METH can induce ferroptosis. In the present study, we sought to assess alterations in iron levels after chronic METH exposure and reveal the modulatory role of iron on METH-induced pathologies. Importantly, we demonstrated that METH increased iron deposition in the nigrostriatal system, including the substantia nigra (SN) and caudate putamen (CPu). Moreover, decreases in GPx4 levels, increases in lipid peroxidation products, and pathological alterations were observed in the nigrostriatal system as a consequence of chronic METH exposure. The iron chelator deferiprone not only alleviated nigrostriatal iron deposition, dopaminergic cell death, and lipid peroxidation, but alsoattenuated the decreases in GPx4 induced by METH. These findings suggest an alleviation of ferroptosis in dopaminergic neurons. In addition, we found that the ferroptosis inhibitor liproxstatin-1 attenuated METH-induced dopaminergic degeneration in the nigrostriatal system. Our findings corroborated that METH might induce dopaminergic neurodegeneration through iron-dependent ferroptosis. Interestingly, reducing iron levels or inhibiting ferroptosis may alleviate METH-induced dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaorong Huang
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; NHC Key Laboratory of Drug Addiction Medicine,Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Ying Qian
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yingbiao Tian
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ye Xiao
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiaoxian Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Zhusheng Yang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China.
| | - Zehui Chen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
12
|
Guo ML, Roodsari SK, Cheng Y, Dempsey RE, Hu W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023; 13:922. [PMID: 37371502 DOI: 10.3390/biom13060922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
During the last decade, substance use disorders (SUDs) have been increasingly recognized as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, methamphetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune signaling pathways, including TLR/NF-кB, reactive oxygen species, mitochondria dysfunction, as well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-mediated signaling has been identified as playing critical roles in the microglia activation induced by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia. NLRP3 has the capability of integrating multiple external and internal inputs and coordinately determining the intensity of microglia activation under various pathological conditions. Here, we summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The research on this topic is still at an infant stage; however, the readily available findings suggest that NLRP3 inflammasome could be a common downstream effector stimulated by various types of abused drugs and play critical roles in determining abused-drug-mediated biological effects through enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for ameliorating the development of SUDs.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|