1
|
Xie L, Martín RDS, Fink S, Singer W, Wolpert SM, Rüttiger L, Knipper M. Cochlear neural contributions to triple network changes in tinnitus, hyperacusis & misophonia? A perspective review. Hear Res 2025; 463:109305. [PMID: 40383086 DOI: 10.1016/j.heares.2025.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/11/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
What do tinnitus, the perception of sounds without an internal or external source of noise, hyperacusis, the pathological hypersensitivity to noise, or misophonia, an intolerance to certain everyday noises, have in common, and what differentiates them? A large number of excellent studies focused in the last few decades on identifying the neural correlates of tinnitus, hyperacusis, or misophonia on the basis of central triple-network changes. In this perspective review we explicitly examine, possible differential and causal involvement of peripheral components as a presumptive trigger that may drive observed triple-network changes. Based on our results, we venture to hypothesize that: (i) tinnitus, hyperacusis, and misophonia can occur despite clinically normal hearing thresholds, and are likely causally independent of sex and age, (ii) tinnitus and hyperacusis, but possibly also misophonia are related to altered auditory processing that through desynchronized (tinnitus) or hyperactive (hyperacusis, misophonia) bottom-up ascending processing potentially explains the activity changes in, e.g., default or salient brain networks, as suggested in various studies of these different diseases. (iii) In misophonia a stress-induced top-down influence, as deep as the auditory nerve fibers, may be discussed as a contributor to generating misophonia-trigger sounds, a hypothesis that can be tested in future studies. We hope that the selective consideration of a possible interaction between peripheral and central components will help to minimize the greatest handicap of these pathologies to date towards successful therapy: the lack of clarification of the underlying causative mechanism of the diseases.
Collapse
Affiliation(s)
- Li Xie
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany; Department of Otolaryngology - Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rodrigo Donoso-San Martín
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany; Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Shabestari PS, Schoisswohl S, Wellauer Z, Naas A, Kleinjung T, Schecklmann M, Langguth B, Neff P. Prediction of acoustic tinnitus suppression using resting-state EEG via explainable AI approach. Sci Rep 2025; 15:10968. [PMID: 40164712 PMCID: PMC11958676 DOI: 10.1038/s41598-025-95351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Tinnitus is defined as the perception of sound without an external source. Its perceptual suppression or on/off states remain poorly understood. This study investigates neural traits linked to brief acoustic tinnitus suppression (BATS) using naive resting-state EEG (closed eyes) from 102 individuals. A set of EEG features (band power, entropy, aperiodic slope and offset of the EEG spectrum, and connectivity) and standard classifiers were applied achieving consistent high accuracy across data splits: 98% for sensor and 86% for source models. The Random Forest model outperformed other classifiers by excelling in robustness and reduction of overfitting. It identified several key EEG features, most prominently alpha and gamma frequency band power. Gamma power was stronger in the left auditory network, while alpha power dominated the right hemisphere. Aperiodic features were normalized in individuals with BATS. Additionally, hyperconnected auditory-limbic networks in BATS suggest sensory gating may aid suppression. These findings demonstrate robust classification of BATS status, revealing distinct neural traits between tinnitus subpopulations. Our work emphasizes the role of neural mechanisms in predicting and managing tinnitus suppression. Moreover, it advances the understanding of effective feature selection, model choice, and validation strategies for analyzing clinical neurophysiological data in general.
Collapse
Affiliation(s)
- Payam S Shabestari
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Psychology, Universitaet der Bundeswehr München, Neubiberg, Germany
| | - Zino Wellauer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
| | - Adrian Naas
- Business School, Institute New Work, Bern University of Applied Sciences, Bern, Switzerland
- Department of Psychology, University of Fribourg/Freiburg, Fribourg/Freiburg, Switzerland
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Patrick Neff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Gong M, Han S, Shen Y, Li Y, Liu JS, Tao DD. Decoding tinnitus progression: neurochemical shifts in the anterior cingulate cortex revealed by magnetic resonance spectroscopy. Front Neurosci 2025; 19:1551106. [PMID: 40084135 PMCID: PMC11903401 DOI: 10.3389/fnins.2025.1551106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Background Tinnitus persists as a significant public health challenge with elusive neurochemical underpinnings. Emerging evidence implicates dysregulated excitatory-inhibitory neurotransmission in the anterior cingulate cortex (ACC), a limbic-auditory hub governing tinnitus salience. This study investigates dynamic ACC neurochemical changes during tinnitus progression. Methods Using single-voxel magnetic resonance spectroscopy (MRS), GABA+/creatine (Cr) and Glx (glutamate+glutamine)/Cr ratios were measured in the ACC of 16 recent-onset (RO; <6 months), 22 chronic (CH; ≥6 months) tinnitus patients, and 26 healthy controls (HC). Tinnitus severity was assessed via tinnitometry and Tinnitus Functional Index (TFI). Results RO patients exhibited significantly reduced ACC GABA+/Cr compared to CH and HC groups (p < 0.05), while CH and HC showed no differences. GABA+/Cr positively correlated with tinnitus duration across patients (r = 0.364, p = 0.025). Although Glx/Cr did not differ between groups, elevated Glx/Cr associated with higher tinnitus pitch-matching frequencies (r = 0.421, p = 0.008) and emotional distress (TFI-E; r = 0.370, p = 0.022), though these findings did not survive multiple comparison correction. Conclusion Early tinnitus is characterized by ACC GABAergic deficits, while chronicity features normalized GABA+/Cr levels-suggesting compensatory neuroplastic restoration of inhibition over time. Glutamatergic activity may modulate perceptual and emotional dimensions of tinnitus. These phase-specific ACC neurochemical shifts highlight potential therapeutic targets for arresting tinnitus progression. Longitudinal studies are warranted to validate temporal dynamics.
Collapse
Affiliation(s)
- Mengfang Gong
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongcong Shen
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-Sheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Duo-Duo Tao
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Schilling A, Sedley W, Gerum R, Metzner C, Tziridis K, Maier A, Schulze H, Zeng FG, Friston KJ, Krauss P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023; 146:4809-4825. [PMID: 37503725 PMCID: PMC10690027 DOI: 10.1093/brain/awad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Gerum
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Physics and Astronomy and Center for Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Holger Schulze
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology–Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Schultheiβ H, Zulfiqar I, Verardo C, Jolivet RB, Moerel M. Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus. Neuroimage 2023; 271:119987. [PMID: 36940510 DOI: 10.1016/j.neuroimage.2023.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/22/2023] Open
Abstract
Tinnitus is a clinical condition where a sound is perceived without an external sound source. Homeostatic plasticity (HSP), serving to increase neural activity as compensation for the reduced input to the auditory pathway after hearing loss, has been proposed as a mechanism underlying tinnitus. In support, animal models of tinnitus show evidence of increased neural activity after hearing loss, including increased spontaneous and sound-driven firing rate, as well as increased neural noise throughout the auditory processing pathway. Bridging these findings to human tinnitus, however, has proven to be challenging. Here we implement hearing loss-induced HSP in a Wilson-Cowan Cortical Model of the auditory cortex to predict how homeostatic principles operating at the microscale translate to the meso- to macroscale accessible through human neuroimaging. We observed HSP-induced response changes in the model that were previously proposed as neural signatures of tinnitus, but that have also been reported as correlates of hearing loss and hyperacusis. As expected, HSP increased spontaneous and sound-driven responsiveness in hearing-loss affected frequency channels of the model. We furthermore observed evidence of increased neural noise and the appearance of spatiotemporal modulations in neural activity, which we discuss in light of recent human neuroimaging findings. Our computational model makes quantitative predictions that require experimental validation, and may thereby serve as the basis of future human studies of hearing loss, tinnitus, and hyperacusis.
Collapse
Affiliation(s)
- Hannah Schultheiβ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Master Systems Biology, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Isma Zulfiqar
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Claudio Verardo
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Renaud B Jolivet
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Hayes SH, Beh K, Typlt M, Schormans AL, Stolzberg D, Allman BL. Using an appetitive operant conditioning paradigm to screen rats for tinnitus induced by intense sound exposure: Experimental considerations and interpretation. Front Neurosci 2023; 17:1001619. [PMID: 36845432 PMCID: PMC9950262 DOI: 10.3389/fnins.2023.1001619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
In an effort to help elucidate the neural mechanisms underlying tinnitus in humans, researchers have often relied on animal models; a preclinical approach which ultimately required that behavioral paradigms be designed to reliably screen animals for tinnitus. Previously, we developed a two-alternative forced-choice (2AFC) paradigm for rats that allowed for the simultaneous recording of neural activity at the very moments when they were reporting the presence/absence of tinnitus. Because we first validated our paradigm in rats experiencing transient tinnitus following a high-dose of sodium salicylate, the present study now sought to evaluate its utility to screen for tinnitus caused by intense sound exposure; a common tinnitus-inducer in humans. More specifically, through a series of experimental protocols, we aimed to (1) conduct sham experiments to ensure that the paradigm was able to correctly classify control rats as not having tinnitus, (2) confirm the time course over which the behavioral testing could reliably be performed post-exposure to assess chronic tinnitus, and (3) determine if the paradigm was sensitive to the variable outcomes often observed after intense sound exposure (e.g., hearing loss with our without tinnitus). Ultimately, in accordance with our predictions, the 2AFC paradigm was indeed resistant to false-positive screening of rats for intense sound-induced tinnitus, and it was able to reveal variable tinnitus and hearing loss profiles in individual rats following intense sound exposure. Taken together, the present study documents the utility of our appetitive operant conditioning paradigm to assess acute and chronic sound-induced tinnitus in rats. Finally, based on our findings, we discuss important experimental considerations that will help ensure that our paradigm is able to provide a suitable platform for future investigations into the neural basis of tinnitus.
Collapse
Affiliation(s)
- Sarah H. Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,*Correspondence: Sarah H. Hayes,
| | - Krystal Beh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,National Centre for Audiology, Elborn College, The University of Western Ontario, London, ON, Canada
| | - Marei Typlt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,Audifon GmbH & Co. KG, Kölleda, Germany
| | - Ashley L. Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Daniel Stolzberg
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Brian L. Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,National Centre for Audiology, Elborn College, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Schilling A, Krauss P. Tinnitus is associated with improved cognitive performance and speech perception-Can stochastic resonance explain? Front Aging Neurosci 2022; 14:1073149. [PMID: 36589535 PMCID: PMC9800600 DOI: 10.3389/fnagi.2022.1073149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, University of Erlangen-Nurnberg, Erlangen, Germany
- Linguistics Lab, University of Erlangen-Nurnberg, Erlangen, Germany
- Pattern Recognition Lab, University of Erlangen-Nurnberg, Erlangen, Germany
| |
Collapse
|
9
|
Henry JA. Sound Therapy to Reduce Auditory Gain for Hyperacusis and Tinnitus. Am J Audiol 2022; 31:1067-1077. [DOI: 10.1044/2022_aja-22-00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose:
Hyperacusis is the most common of the different types of sound tolerance conditions. It has been defined as physical discomfort or pain when any sound reaches a certain level of loudness that would be comfortable for most people. Because hyperacusis and tinnitus occur together so often, it has been theorized that they have a common neural mechanism. A leading contender for that mechanism is enhancement of auditory gain. The purpose of this tutorial is to review the evidence that sound/acoustic therapy can reduce auditory gain and, thereby, can increase loudness tolerance for people with hyperacusis and/or suppress the percept of tinnitus.
Method:
The scientific literature was informally reviewed to identify and elucidate relationships between tinnitus, hyperacusis, sound therapy, and auditory gain.
Results:
Evidence exists, both in animal and human studies, that enhanced auditory gain is associated with hyperacusis and tinnitus. Further evidence supports the theory that certain forms of sound therapy can reduce neural hyperactivity, thereby reducing auditory gain. The evidence for sound therapy reducing auditory gain is stronger for hyperacusis than it is for tinnitus.
Conclusions:
Based on results from numerous studies, sound therapy clearly has application as a method of desensitization for hyperacusis. Enhanced auditory gain might be responsible for tinnitus, but other mechanisms have been theorized. A review of the relevant literature leads to the conclusion that some form(s) of sound therapy has the potential to suppress or eliminate tinnitus on a long-term basis. Systematic research is needed to evaluate this premise.
Collapse
Affiliation(s)
- James A. Henry
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
10
|
Joergensen ML, Hyvärinen P, Caporali S, Dau T. Broadband Amplification as Tinnitus Treatment. Brain Sci 2022; 12:brainsci12060719. [PMID: 35741602 PMCID: PMC9221098 DOI: 10.3390/brainsci12060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of broadband amplification (125 Hz to 10 kHz) as tinnitus treatment for participants with high-frequency hearing loss and compared these effects with an active placebo condition using band-limited amplification (125 Hz to 3–4 kHz). A double-blinded crossover study. Twenty-three participants with high-frequency (≥3 kHz) hearing loss and chronic tinnitus were included in the study, and 17 completed the full treatment protocol. Two different hearing aid treatments were provided for 3 months each: Broadband amplification provided gain in the frequency range from 125 Hz to 10 kHz and band-limited amplification only provided gain in the low-frequency range (≤3–4 kHz). The effect of the two treatments on tinnitus distress was evaluated with the Tinnitus Handicap Inventory (THI) and the Tinnitus Functional Index (TFI) questionnaires. The effect of the treatment on tinnitus loudness was evaluated with a visual analog scale (VAS) for loudness and a psychoacoustic loudness measure. Furthermore, the tinnitus annoyance was evaluated with a VAS for annoyance. The tinnitus pitch was evaluated based on the tinnitus likeness spectrum. A statistically significant difference was found between the two treatment groups (broadband vs. band-limited amplification) for the treatment-related change in THI and TFI with respect to the baseline. Furthermore, a statistically significant difference was found between the two treatment conditions for the annoyance measure. Regarding the loudness measure, no statistically significant differences were found between the treatments, although there was a trend towards a lower VAS-based loudness measure resulting from the broadband amplification. No changes were observed in the tinnitus pitch between the different conditions. Overall, the results from the present study suggest that tinnitus patients with high-frequency hearing loss can experience a decrease in tinnitus-related distress and annoyance from high-frequency amplification.
Collapse
Affiliation(s)
- Mie Laerkegaard Joergensen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
- WS Audiology, 3540 Lynge, Denmark;
- Correspondence:
| | - Petteri Hyvärinen
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
| | | | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark; (P.H.); (T.D.)
| |
Collapse
|
11
|
Kurioka T, Mizutari K, Satoh Y, Shiotani A. Correlation of blast-induced tympanic membrane perforation with peripheral cochlear synaptopathy. J Neurotrauma 2022; 39:999-1009. [PMID: 35243914 DOI: 10.1089/neu.2021.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory organs, including the tympanic membrane, cochlea, and central auditory pathway, are the most fragile components of the human body when exposed to blast overpressure. Tympanic membrane perforation (TMP) is the most frequent symptom in blast-exposed patients. However, the impact of TMP on the inner ear and central auditory system is not fully understood. We aimed to analyze the effect of blast-induced TMP on the auditory pathophysiological changes in mice after blast exposure. Mice aged 7 weeks were exposed to blast overpressure to induce TMP and allowed to survive for 2 months. All TMP cases had spontaneously healed by week 3 following the blast exposure. Compared to controls, blast-exposed mice exhibited a significant elevation in hearing thresholds and an apparent disruption of stereocilia in the outer hair cells, regardless of the occurrence or absence of TMP. The reduction in synapses in the inner hair cells, which is known as the most frequent pathology in blast-exposed cochleae, was significantly more severe in mice without TMP. However, a decrease in the number of excitatory central synapses labeled by VGLUT-1 in the cochlear nucleus was observed regardless of the absence or presence of TMP. Our findings suggest that blast-induced TMP mitigates peripheral cochlear synaptic disruption but leaves the central auditory synapses unaffected, indicating that central synaptic disruption is independent of TMP and peripheral cochlear synaptic disruption. Synaptic deterioration in the peripheral and central auditory systems can contribute to the promotion of blast-induced hearing impairment, including abnormal auditory perception.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| |
Collapse
|
12
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
13
|
Chen F, Zhao F, Mahafza N, Lu W. Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Front Neurosci 2021; 15:778197. [PMID: 34987358 PMCID: PMC8721093 DOI: 10.3389/fnins.2021.778197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.
Collapse
Affiliation(s)
- Feifan Chen
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Fei Zhao
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Nadeem Mahafza
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Wei Lu
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Dotan A, Shriki O. Tinnitus-like "hallucinations" elicited by sensory deprivation in an entropy maximization recurrent neural network. PLoS Comput Biol 2021; 17:e1008664. [PMID: 34879061 PMCID: PMC8687580 DOI: 10.1371/journal.pcbi.1008664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/20/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory deprivation has long been known to cause hallucinations or "phantom" sensations, the most common of which is tinnitus induced by hearing loss, affecting 10-20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostatic mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network's output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it "hallucinates" auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network's input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.
Collapse
Affiliation(s)
- Aviv Dotan
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Hu S, Hall DA, Zubler F, Sznitman R, Anschuetz L, Caversaccio M, Wimmer W. Bayesian brain in tinnitus: Computational modeling of three perceptual phenomena using a modified Hierarchical Gaussian Filter. Hear Res 2021; 410:108338. [PMID: 34469780 DOI: 10.1016/j.heares.2021.108338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Recently, Bayesian brain-based models emerged as a possible composite of existing theories, providing an universal explanation of tinnitus phenomena. Yet, the involvement of multiple synergistic mechanisms complicates the identification of behavioral and physiological evidence. To overcome this, an empirically tested computational model could support the evaluation of theoretical hypotheses by intrinsically encompassing different mechanisms. The aim of this work was to develop a generative computational tinnitus perception model based on the Bayesian brain concept. The behavioral responses of 46 tinnitus subjects who underwent ten consecutive residual inhibition assessments were used for model fitting. Our model was able to replicate the behavioral responses during residual inhibition in our cohort (median linear correlation coefficient of 0.79). Using the same model, we simulated two additional tinnitus phenomena: residual excitation and occurrence of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations, the trajectories of the model were consistent with previously obtained behavioral and physiological observations. Our work introduces generative computational modeling to the research field of tinnitus. It has the potential to quantitatively link experimental observations to theoretical hypotheses and to support the search for neural signatures of tinnitus by finding correlates between the latent variables of the model and measured physiological data.
Collapse
Affiliation(s)
- Suyi Hu
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Department of Psychology, School of Social Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Frédéric Zubler
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Raphael Sznitman
- Artificial Intelligence in Medical Imaging, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Lukas Anschuetz
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Marco Caversaccio
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Wilhelm Wimmer
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
16
|
Refat F, Wertz J, Hinrichs P, Klose U, Samy H, Abdelkader RM, Saemisch J, Hofmeier B, Singer W, Rüttiger L, Knipper M, Wolpert S. Co-occurrence of Hyperacusis Accelerates With Tinnitus Burden Over Time and Requires Medical Care. Front Neurol 2021; 12:627522. [PMID: 33815254 PMCID: PMC8012887 DOI: 10.3389/fneur.2021.627522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Although tinnitus represents a major global burden, no causal therapy has yet been established. Ongoing controversies about the neuronal pathophysiology of tinnitus hamper efforts in developing advanced therapies. Hypothesizing that the unnoticed co-occurrence of hyperacusis and differences in the duration of tinnitus may possibly differentially influence the neural correlate of tinnitus, we analyzed 33 tinnitus patients without (T-group) and 20 tinnitus patients with hyperacusis (TH-group). We found crucial differences between the T-group and the TH-group in the increase of annoyance, complaints, tinnitus loudness, and central neural gain as a function of tinnitus duration. Hearing thresholds did not differ between T-group and TH-group. In the TH-group, the tinnitus complaints (total tinnitus score) were significantly greater from early on and the tinnitus intensity distinctly increased over time from ca. 12 to 17 dB when tinnitus persisted more than 5 years, while annoyance responses to normal sound remained nearly constant. In contrast, in the T-group tinnitus complaints remained constant, although the tinnitus intensity declined over time from ca. 27 down to 15 dB beyond 5 years of tinnitus persistence. This was explained through a gradually increased annoyance to normal sound over time, shown by a hyperacusis questionnaire. Parallel a shift from a mainly unilateral (only 17% bilateral) to a completely bilateral (100%) tinnitus percept occurred in the T-group, while bilateral tinnitus dominated in the TH-group from the start (75%). Over time in the T-group, ABR wave V amplitudes (and V/I ratios) remained reduced and delayed. By contrast, in the TH-group especially the ABR wave III and V (and III/I ratio) continued to be enhanced and shortened in response to high-level sound stimuli. Interestingly, in line with signs of an increased co-occurrence of hyperacusis in the T-group over time, ABR wave III also slightly increased in the T-group. The findings disclose an undiagnosed co-occurrence of hyperacusis in tinnitus patients as a main cause of distress and the cause of complaints about tinnitus over time. To achieve urgently needed and personalized therapies, possibly using the objective tools offered here, a systematic sub-classification of tinnitus and the co-occurrence of hyperacusis is recommended.
Collapse
Affiliation(s)
- Fatma Refat
- Audio-Vestibular Unit, Department of Ear Nose Throat, Minia University, Minia, Egypt.,Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Pauline Hinrichs
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Hesham Samy
- Audio-Vestibular Unit, Department of Ear Nose Throat, Minia University, Minia, Egypt
| | | | - Jörg Saemisch
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Benedikt Hofmeier
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan Wolpert
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J Neurosci 2021; 40:7190-7202. [PMID: 32938634 DOI: 10.1523/jneurosci.1314-19.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Collapse
|
18
|
Marchetta P, Savitska D, Kübler A, Asola G, Manthey M, Möhrle D, Schimmang T, Rüttiger L, Knipper M, Singer W. Age-Dependent Auditory Processing Deficits after Cochlear Synaptopathy Depend on Auditory Nerve Latency and the Ability of the Brain to Recruit LTP/BDNF. Brain Sci 2020; 10:brainsci10100710. [PMID: 33036168 PMCID: PMC7601375 DOI: 10.3390/brainsci10100710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related decoupling of auditory nerve fibers from hair cells (cochlear synaptopathy) has been linked to temporal processing deficits and impaired speech recognition performance. The link between both is elusive. We have previously demonstrated that cochlear synaptopathy, if centrally compensated through enhanced input/output function (neural gain), can prevent age-dependent temporal discrimination loss. It was also found that central neural gain after acoustic trauma was linked to hippocampal long-term potentiation (LTP) and upregulation of brain-derived neurotrophic factor (BDNF). Using middle-aged and old BDNF-live-exon-visualization (BLEV) reporter mice we analyzed the specific recruitment of LTP and the activity-dependent usage of Bdnf exon-IV and -VI promoters relative to cochlear synaptopathy and central (temporal) processing. For both groups, specimens with higher or lower ability to centrally compensate diminished auditory nerve activity were found. Strikingly, low compensating mouse groups differed from high compensators by prolonged auditory nerve latency. Moreover, low compensators exhibited attenuated responses to amplitude-modulated tones, and a reduction of hippocampal LTP and Bdnf transcript levels in comparison to high compensators. These results suggest that latency of auditory nerve processing, recruitment of hippocampal LTP, and Bdnf transcription, are key factors for age-dependent auditory processing deficits, rather than cochlear synaptopathy or aging per se.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Daria Savitska
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Angelika Kübler
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Giulia Asola
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marie Manthey
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Dorit Möhrle
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain;
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
- Correspondence: ; Tel.: +49-(0)7071-2988194; Fax: +49-(0)7071-294950
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; (P.M.); (D.S.); (A.K.); (G.A.); (M.M.); (D.M.); (L.R.); (W.S.)
| |
Collapse
|
19
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
20
|
McFerran DJ, Stockdale D, Holme R, Large CH, Baguley DM. Why Is There No Cure for Tinnitus? Front Neurosci 2019; 13:802. [PMID: 31447630 PMCID: PMC6691100 DOI: 10.3389/fnins.2019.00802] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Tinnitus is unusual for such a common symptom in that there are few treatment options and those that are available are aimed at reducing the impact rather than specifically addressing the tinnitus percept. In particular, there is no drug recommended specifically for the management of tinnitus. Whilst some of the currently available interventions are effective at improving quality of life and reducing tinnitus-associated psychological distress, most show little if any effect on the primary symptom of subjective tinnitus loudness. Studies of the delivery of tinnitus services have demonstrated considerable end-user dissatisfaction and a marked disconnect between the aims of healthcare providers and those of tinnitus patients: patients want their tinnitus loudness reduced and would prefer a pharmacological solution over other modalities. Several studies have shown that tinnitus confers a significant financial burden on healthcare systems and an even greater economic impact on society as a whole. Market research has demonstrated a strong commercial opportunity for an effective pharmacological treatment for tinnitus, but the amount of tinnitus research and financial investment is small compared to other chronic health conditions. There is no single reason for this situation, but rather a series of impediments: tinnitus prevalence is unclear with published figures varying from 5.1 to 42.7%; there is a lack of a clear tinnitus definition and there are multiple subtypes of tinnitus, potentially requiring different treatments; there is a dearth of biomarkers and objective measures for tinnitus; treatment research is associated with a very large placebo effect; the pathophysiology of tinnitus is unclear; animal models are available but research in animals frequently fails to correlate with human studies; there is no clear definition of what constitutes meaningful change or "cure"; the pharmaceutical industry cannot see a clear pathway to distribute their products as many tinnitus clinicians are non-prescribing audiologists. To try and clarify this situation, highlight important areas for research and prevent wasteful duplication of effort, the British Tinnitus Association (BTA) has developed a Map of Tinnitus. This is a repository of evidence-based tinnitus knowledge, designed to be free to access, intuitive, easy to use, adaptable and expandable.
Collapse
Affiliation(s)
- Don J. McFerran
- Colchester General Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, United Kingdom
- British Tinnitus Association, Sheffield, United Kingdom
| | | | - Ralph Holme
- Action on Hearing Loss, London, United Kingdom
| | - Charles H. Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - David M Baguley
- British Tinnitus Association, Sheffield, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Audiology Services, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
21
|
Knipper M, Hofmeier B, Singer W, Wolpert S, Klose U, Rüttiger L. [Differentiating cochlear synaptopathies into different hearing disorders]. HNO 2019; 67:406-416. [PMID: 30963221 DOI: 10.1007/s00106-019-0660-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to demographic change and altered recreational behavior, a rapid increase in hearing deficits is expected in the next 20-30 years. Consequently, the risk of age-related loss of speech discrimination, tinnitus, hyperacusis, or-as recently shown-dementia, will also increase. There are increasing indications that the loss of specific hearing fibers in humans and animals is involved in various hearing disorders. This fiber loss can be caused by cochlear synaptopathy or deafferentation and does not necessarily lead to clinically measurable threshold changes. Animal experiments have shown that reduced auditory nerve activity due to acoustic trauma or aging can be centrally compensated by disproportionately elevated and faster auditory brainstem responses (ABR). The analysis of the suprathreshold amplitudes of auditory evoked brain stem potentials and their latency in combination with non-invasive imaging techniques such as magnetic resonance imaging can help to identify the central compensatory ability of subjects and to assign defined hearing deficits.
Collapse
Affiliation(s)
- M Knipper
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland.
| | - B Hofmeier
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - W Singer
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - S Wolpert
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - U Klose
- MR-Forschung, Abteilung für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - L Rüttiger
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| |
Collapse
|
22
|
Haab L, Lehser C, Corona-Strauss FI, Bernarding C, Seidler H, Hannemann R, Strauss DJ. Implementation and Long-Term Evaluation of a Hearing Aid Supported Tinnitus Treatment Using Notched Environmental Sounds. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1600109. [PMID: 31037231 PMCID: PMC6483592 DOI: 10.1109/jtehm.2019.2897570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022]
Abstract
Recent work has shown that sharp spectral edges in acoustic stimuli might have advantageous effects in the treatment of tonal tinnitus. In the course of this paper, we evaluate the long-term effects of spectrally notched hearing aids on the subjective tinnitus distress. By merging recent experimental work with a computational tinnitus model, we modified the commercially available behind-the-ear hearing aids so that a frequency band of 0.5 octaves, centered on the patient’s individual tinnitus frequency, was blocked out. Those hearing aids employ a steep notch filter that filters environmental sounds to suppress the tinnitus-related changes in neural firing by lateral inhibition. The computational model reveals a renormalization of pathologically increased neural response reliability and synchrony in response to spectrally modified input. The target group, fitted with spectrally notched hearing aids, was matched with a comparable control group, fitted with standard hearing aids of the same type but without a notch filter. We analyze the subjective self-assessment by tinnitus questionnaires, and we monitor the objective distress correlates in auditory evoked response phase data. Both, subjective and objective results show a noticeable trend of a larger therapeutic benefit for notched hearing correction.
Collapse
Affiliation(s)
- Lars Haab
- Systems Neuroscience and Neurotechnology UnitSaarland University Hospital, University of Applied Sciences66117HomburgGermany
| | - Caroline Lehser
- Systems Neuroscience and Neurotechnology UnitSaarland University Hospital, University of Applied Sciences66117HomburgGermany
| | - Farah I Corona-Strauss
- Systems Neuroscience and Neurotechnology UnitSaarland University Hospital, University of Applied Sciences66117HomburgGermany.,Key Numerics Medical Engineering GmbH66129SaarbrückenGermany
| | - Corinna Bernarding
- Systems Neuroscience and Neurotechnology UnitSaarland University Hospital, University of Applied Sciences66117HomburgGermany.,Key Numerics Medical Engineering GmbH66129SaarbrückenGermany
| | - Harald Seidler
- Ear, Nose and Throat Center, MediClin Bosenberg KlinikenMediClin AG66606Sankt WendelGermany
| | | | - Daniel J Strauss
- Systems Neuroscience and Neurotechnology UnitSaarland University Hospital, University of Applied Sciences66117HomburgGermany.,Key Numerics Medical Engineering GmbH66129SaarbrückenGermany.,INM Leibniz Institute for New Materials66123SaarbrückenGermany
| |
Collapse
|
23
|
Möhrle D, Hofmeier B, Amend M, Wolpert S, Ni K, Bing D, Klose U, Pichler B, Knipper M, Rüttiger L. Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience 2018; 407:146-169. [PMID: 30599268 DOI: 10.1016/j.neuroscience.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
For successful future therapeutic strategies for tinnitus and hyperacusis, a subcategorization of both conditions on the basis of differentiated neural correlates would be of invaluable advantage. In the present study, we used our refined operant conditioning animal model to divide equally noise-exposed rats into groups with either tinnitus or hyperacusis, with neither condition, or with both conditions co-occurring simultaneously. Using click stimulus and noise burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions, no hearing threshold difference was observed between any of the groups. However, animals with neither tinnitus nor hyperacusis responded to noise trauma with shortened ABR wave I and IV latencies and elevated central neuronal gain (increased ABR wave IV/I amplitude ratio), which was previously assumed in most of the literature to be a neural correlate for tinnitus. In contrast, animals with tinnitus had reduced neural response gain and delayed ABR wave I and IV latencies, while animals with hyperacusis showed none of these changes. Preliminary studies, aimed at establishing comparable non-invasive objective tools for identifying tinnitus in humans and animals, confirmed reduced central gain and delayed response latency in human and animals. Moreover, the first ever resting state functional Magnetic Resonance Imaging (rs-fMRI) analyses comparing humans and rats with and without tinnitus showed reduced rs-fMRI activities in the auditory cortex in both patients and animals with tinnitus. These findings encourage further efforts to establish non-invasive diagnostic tools that can be used in humans and animals alike and give hope for differentiated classification of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Dorit Möhrle
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Benedikt Hofmeier
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Mario Amend
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Stephan Wolpert
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Kun Ni
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; Shanghai Jiao Tong University, Department of Otolaryngology, Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Luding Road, NO. 355. Putuo District, 200062 Shanghai, China.
| | - Dan Bing
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Uwe Klose
- University Hospital Tübingen, Department of Diagnostic and Interventional Neuroradiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Bernd Pichler
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Shaheen LA, Liberman MC. Cochlear Synaptopathy Changes Sound-Evoked Activity Without Changing Spontaneous Discharge in the Mouse Inferior Colliculus. Front Syst Neurosci 2018; 12:59. [PMID: 30559652 PMCID: PMC6286982 DOI: 10.3389/fnsys.2018.00059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Tinnitus and hyperacusis are life-disrupting perceptual abnormalities that are often preceded by acoustic overexposure. Animal models of overexposure have suggested a link between these phenomena and neural hyperactivity, i.e., elevated spontaneous rates (SRs) and sound-evoked responses. Prior work has focused on changes in central auditory responses, with less attention paid to the exact nature of the associated cochlear damage. The demonstration that acoustic overexposure can cause cochlear neuropathy without permanent threshold elevation suggests cochlear neuropathy per se may be a key elicitor of neural hyperactivity. We addressed this hypothesis by recording responses in the mouse inferior colliculus (IC) following a bilateral, neuropathic noise exposure. One to three weeks post-exposure, mean SRs were unchanged in mice recorded while awake, or under anesthesia. SRs were also unaffected by more intense, or unilateral exposures. These results suggest that neither neuropathy nor hair cell loss are sufficient to raise SRs in the IC, at least in 7-week-old mice, 1-3 weeks post exposure. However, it is not clear whether our mice had tinnitus. Tone-evoked rate-level functions at the CF were steeper following exposure, specifically in the region of maximal neuropathy. Furthermore, suppression driven by off-CF tones and by ipsilateral noise were reduced. Both changes were especially pronounced in neurons of awake mice. This neural hypersensitivity may manifest as behavioral hypersensitivity to sound - prior work reports that this same exposure causes elevated acoustic startle. Together, these results indicate that neuropathy may initiate a compensatory response in the central auditory system leading to the genesis of hyperacusis.
Collapse
Affiliation(s)
- Luke A. Shaheen
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, United States
| | - M. Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Hofmeier B, Wolpert S, Aldamer ES, Walter M, Thiericke J, Braun C, Zelle D, Rüttiger L, Klose U, Knipper M. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. NEUROIMAGE-CLINICAL 2018; 20:637-649. [PMID: 30202725 PMCID: PMC6128096 DOI: 10.1016/j.nicl.2018.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
The exact neurophysiological basis of chronic tinnitus, which affects 10-15% of the population, remains unknown and is controversial at many levels. It is an open question whether phantom sound perception results from increased central neural gain or not, a crucial question for any future therapeutic intervention strategies for tinnitus. We performed a comprehensive study of mild hearing-impaired participants with and without tinnitus, excluding participants with co-occurrences of hyperacusis. A right-hemisphere correlation between tinnitus loudness and auditory perceptual difficulty was observed in the tinnitus group, independent of differences in hearing thresholds. This correlation was linked to reduced and delayed sound-induced suprathreshold auditory brain responses (ABR wave V) in the tinnitus group, suggesting subsided rather than exaggerated central neural responsiveness. When anatomically predefined auditory regions of interest were analysed for altered sound-evoked BOLD fMRI activity, it became evident that subcortical and cortical auditory regions and regions involved in sound detection (posterior insula, hippocampus), responded with reduced BOLD activity in the tinnitus group, emphasizing reduced, rather than increased, central neural gain. Regarding previous findings of evoked BOLD activity being linked to positive connectivities at rest, we additionally analysed r-fcMRI responses in anatomically predefined auditory regions and regions associated with sound detection. A profound reduction in positive interhemispheric connections of homologous auditory brain regions and a decline in the positive connectivities between lower auditory brainstem regions and regions involved in sound detection (hippocampus, posterior insula) were observed in the tinnitus group. The finding went hand-in-hand with the emotional (amygdala, anterior insula) and temporofrontal/stress-regulating regions (prefrontal cortex, inferior frontal gyrus) that were no longer positively connected with auditory cortex regions in the tinnitus group but were instead positively connected to lower-level auditory brainstem regions. Delayed sound processing, reduced sound-evoked BOLD fMRI activity and altered r-fcMRI in the auditory midbrain correlated in the tinnitus group and showed right hemisphere dominance as did tinnitus loudness and perceptual difficulty. The findings suggest that reduced central neural gain in the auditory stream may lead to phantom perception through a failure to energize attentional/stress-regulating networks for contextualization of auditory-specific information. Reduced auditory-specific information flow in tinnitus has until now escaped detection in humans, as low-level auditory brain regions were previously omitted from neuroimaging studies. TRIAL REGISTRATION German Clinical Trials Register DRKS0006332.
Collapse
Key Words
- ABR wave
- ABR, auditory brainstem response
- BA, Brodmann area
- BA13A, anterior insula
- BA13P, posterior insula
- BA28, entorhinal cortex
- BB-chirp, broadband chirp
- BERA, brainstem-evoked response audiometry
- CN, cochlear nucleus
- CSF, cerebrospinal fluid
- Cortisol
- DL, dorsolateral
- EFR, envelope-followed responses
- ENT, ear, nose and throat
- FA, flip angle
- FDR, false discovery rate
- FOV, field of view
- FWHM, full width at half maximum
- G-H-S, Goebel-Hiller-Score
- HF-chirp, high-frequency chirp
- HPA, hypothalamic-pituitary-adrenal
- High-SR AF, high-spontaneous firing rates auditory fibers
- IC, inferior colliculus
- L, left
- LF-chirp, low-frequency chirp
- Low-SR AF, low-spontaneous firing rates auditory fibers
- M, medial
- MGB, medial geniculate body
- MNI, Montreal Neurological Institute
- PFC, prefrontal cortex
- PTA, pure tone audiogram
- R, right
- ROI, region of interest
- SD, standard deviation
- SOC, superior olivary complex
- SPL, sound pressure level
- SPM, Statistical Parametric Mapping
- TA, acquisition time
- TE, echo time
- TR, repetition time
- Tinnitus
- VBM, voxel-based morphometry
- fMRI
- r-fcMRI
- rCBF, resting-state cerebral blood flow
- rCBV, resting-state cerebral blood volume
- zFC, z-values functional connectivity
Collapse
Affiliation(s)
- Benedikt Hofmeier
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Ebrahim Saad Aldamer
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Moritz Walter
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - John Thiericke
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany/HNO Ärzte Praxis Part GmbB, Aschaffenburg, Germany
| | - Christoph Braun
- MEG Center, University Hospital Tübingen, Otfried-Müller-Str. 47, D-72076 Tübingen, Germany
| | - Dennis Zelle
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, D-73076 Tübingen, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany.
| |
Collapse
|
26
|
Affiliation(s)
- Carol A Bauer
- From the Division of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
27
|
Luo H, Pace E, Zhang J. Blast-induced tinnitus and hyperactivity in the auditory cortex of rats. Neuroscience 2017; 340:515-520. [DOI: 10.1016/j.neuroscience.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022]
|
28
|
Héricé C, Khalil R, Moftah M, Boraud T, Guthrie M, Garenne A. Decision making under uncertainty in a spiking neural network model of the basal ganglia. J Integr Neurosci 2016; 15:515-538. [PMID: 28002987 DOI: 10.1142/s021963521650028x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.
Collapse
Affiliation(s)
- Charlotte Héricé
- * University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,† CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Radwa Khalil
- † CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | | | - Thomas Boraud
- * University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,† CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Martin Guthrie
- * University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,† CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - André Garenne
- * University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,† CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| |
Collapse
|
29
|
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016; 44:173-184. [DOI: 10.1016/j.neurobiolaging.2016.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
|
30
|
Hoare DJ, Adjamian P, Sereda M. Electrical Stimulation of the Ear, Head, Cranial Nerve, or Cortex for the Treatment of Tinnitus: A Scoping Review. Neural Plast 2016; 2016:5130503. [PMID: 27403346 PMCID: PMC4925995 DOI: 10.1155/2016/5130503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of an external source. It is often associated with hearing loss and is thought to result from abnormal neural activity at some point or points in the auditory pathway, which is incorrectly interpreted by the brain as an actual sound. Neurostimulation therapies therefore, which interfere on some level with that abnormal activity, are a logical approach to treatment. For tinnitus, where the pathological neuronal activity might be associated with auditory and other areas of the brain, interventions using electromagnetic, electrical, or acoustic stimuli separately, or paired electrical and acoustic stimuli, have been proposed as treatments. Neurostimulation therapies should modulate neural activity to deliver a permanent reduction in tinnitus percept by driving the neuroplastic changes necessary to interrupt abnormal levels of oscillatory cortical activity and restore typical levels of activity. This change in activity should alter or interrupt the tinnitus percept (reduction or extinction) making it less bothersome. Here we review developments in therapies involving electrical stimulation of the ear, head, cranial nerve, or cortex in the treatment of tinnitus which demonstrably, or are hypothesised to, interrupt pathological neuronal activity in the cortex associated with tinnitus.
Collapse
Affiliation(s)
- Derek J. Hoare
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| | - Peyman Adjamian
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK
| | - Magdalena Sereda
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| |
Collapse
|
31
|
McMahon CM, Ibrahim RK, Mathur A. Cortical Reorganisation during a 30-Week Tinnitus Treatment Program. PLoS One 2016; 11:e0148828. [PMID: 26901425 PMCID: PMC4762663 DOI: 10.1371/journal.pone.0148828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/21/2016] [Indexed: 11/19/2022] Open
Abstract
Subjective tinnitus is characterised by the conscious perception of a phantom sound. Previous studies have shown that individuals with chronic tinnitus have disrupted sound-evoked cortical tonotopic maps, time-shifted evoked auditory responses, and altered oscillatory cortical activity. The main objectives of this study were to: (i) compare sound-evoked brain responses and cortical tonotopic maps in individuals with bilateral tinnitus and those without tinnitus; and (ii) investigate whether changes in these sound-evoked responses occur with amelioration of the tinnitus percept during a 30-week tinnitus treatment program. Magnetoencephalography (MEG) recordings of 12 bilateral tinnitus participants and 10 control normal-hearing subjects reporting no tinnitus were recorded at baseline, using 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz tones presented monaurally at 70 dBSPL through insert tube phones. For the tinnitus participants, MEG recordings were obtained at 5-, 10-, 20- and 30- week time points during tinnitus treatment. Results for the 500 Hz and 1000 Hz sources (where hearing thresholds were within normal limits for all participants) showed that the tinnitus participants had a significantly larger and more anteriorly located source strengths when compared to the non-tinnitus participants. During the 30-week tinnitus treatment, the participants’ 500 Hz and 1000 Hz source strengths remained higher than the non-tinnitus participants; however, the source locations shifted towards the direction recorded from the non-tinnitus control group. Further, in the left hemisphere, there was a time-shifted association between the trajectory of change of the individual’s objective (source strength and anterior-posterior source location) and subjective measures (using tinnitus reaction questionnaire, TRQ). The differences in source strength between the two groups suggest that individuals with tinnitus have enhanced central gain which is not significantly influenced by the tinnitus treatment, and may result from the hearing loss per se. On the other hand, the shifts in the tonotopic map towards the non-tinnitus participants’ source location suggests that the tinnitus treatment might reduce the disruptions in the map, presumably produced by the tinnitus percept directly or indirectly. Further, the similarity in the trajectory of change across the objective and subjective parameters after time-shifting the perceptual changes by 5 weeks suggests that during or following treatment, perceptual changes in the tinnitus percept may precede neurophysiological changes. Subgroup analyses conducted by magnitude of hearing loss suggest that there were no differences in the 500 Hz and 1000 Hz source strength amplitudes for the mild-moderate compared with the mild-severe hearing loss subgroup, although the mean source strength was consistently higher for the mild-severe subgroup. Further, the mild-severe subgroup had 500 Hz and 1000 Hz source locations located more anteriorly (i.e., more disrupted compared to the control group) compared to the mild-moderate group, although this was trending towards significance only for the 500Hz left hemisphere source. While the small numbers of participants within the subgroup analyses reduce the statistical power, this study suggests that those with greater magnitudes of hearing loss show greater cortical disruptions with tinnitus and that tinnitus treatment appears to reduce the tonotopic map disruptions but not the source strength (or central gain).
Collapse
Affiliation(s)
- Catherine M. McMahon
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
- * E-mail:
| | - Ronny K. Ibrahim
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
| | - Ankit Mathur
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
| |
Collapse
|
32
|
Hodgson SA, Herdering R, Singh Shekhawat G, Searchfield GD. A crossover trial comparing wide dynamic range compression and frequency compression in hearing aids for tinnitus therapy. Disabil Rehabil Assist Technol 2015; 12:97-103. [DOI: 10.3109/17483107.2015.1079266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Regina Herdering
- Department of Psychology, University of Muenster, Muenster, Germany,
| | - Giriraj Singh Shekhawat
- Audiology Section, The University of Auckland, Auckland, New Zealand,
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand, and
| | - Grant D. Searchfield
- Audiology Section, The University of Auckland, Auckland, New Zealand,
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand, and
- Tinnitus Research Initiative, Regensburg, Germany
| |
Collapse
|
33
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
34
|
De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamocortical Dysrhythmia: A Theoretical Update in Tinnitus. Front Neurol 2015; 6:124. [PMID: 26106362 PMCID: PMC4460809 DOI: 10.3389/fneur.2015.00124] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
Tinnitus is the perception of a sound in the absence of a corresponding external sound source. Pathophysiologically it has been attributed to bottom-up deafferentation and/or top-down noise-cancelling deficit. Both mechanisms are proposed to alter auditory thalamocortical signal transmission, resulting in thalamocortical dysrhythmia (TCD). In deafferentation, TCD is characterized by a slowing down of resting state alpha to theta activity associated with an increase in surrounding gamma activity, resulting in persisting cross-frequency coupling between theta and gamma activity. Theta burst-firing increases network synchrony and recruitment, a mechanism, which might enable long-range synchrony, which in turn could represent a means for finding the missing thalamocortical information and for gaining access to consciousness. Theta oscillations could function as a carrier wave to integrate the tinnitus-related focal auditory gamma activity in a consciousness enabling network, as envisioned by the global workspace model. This model suggests that focal activity in the brain does not reach consciousness, except if the focal activity becomes functionally coupled to a consciousness enabling network, aka the global workspace. In limited deafferentation, the missing information can be retrieved from the auditory cortical neighborhood, decreasing surround inhibition, resulting in TCD. When the deafferentation is too wide in bandwidth, it is hypothesized that the missing information is retrieved from theta-mediated parahippocampal auditory memory. This suggests that based on the amount of deafferentation TCD might change to parahippocampocortical persisting and thus pathological theta–gamma rhythm. From a Bayesian point of view, in which the brain is conceived as a prediction machine that updates its memory-based predictions through sensory updating, tinnitus is the result of a prediction error between the predicted and sensed auditory input. The decrease in sensory updating is reflected by decreased alpha activity and the prediction error results in theta–gamma and beta–gamma coupling. Thus, TCD can be considered as an adaptive mechanism to retrieve missing auditory input in tinnitus.
Collapse
Affiliation(s)
- Dirk De Ridder
- BRAI2N, Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, TX , USA
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg , Regensburg , Germany
| | - Rodolfo Llinas
- Department of Neuroscience and Physiology, New York University School of Medicine , New York, NY , USA
| |
Collapse
|
35
|
Stein A, Engell A, Lau P, Wunderlich R, Junghoefer M, Wollbrink A, Bruchmann M, Rudack C, Pantev C. Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter. PLoS One 2015; 10:e0126494. [PMID: 25951605 PMCID: PMC4423974 DOI: 10.1371/journal.pone.0126494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.
Collapse
Affiliation(s)
- Alwina Stein
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Alva Engell
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Pia Lau
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Robert Wunderlich
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Markus Junghoefer
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Maximilian Bruchmann
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Claudia Rudack
- Department of Otolaryngology, University Hospital, Muenster, Germany
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
36
|
Noreña AJ, Mulders WHAM, Robertson D. Suppression of putative tinnitus-related activity by extra-cochlear electrical stimulation. J Neurophysiol 2015; 113:132-43. [DOI: 10.1152/jn.00580.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on animals have shown that noise-induced hearing loss is followed by an increase of spontaneous firing at several stages of the central auditory system. This central hyperactivity has been suggested to underpin the perception of tinnitus. It was shown that decreasing cochlear activity can abolish the noise-induced central hyperactivity. This latter result further suggests that an approach consisting of reducing cochlear activity may provide a therapeutic avenue for tinnitus. In this context, extra-cochlear electric stimulation (ECES) may be a good candidate to modulate cochlear activity and suppress tinnitus. Indeed, it has been shown that a positive current applied at the round window reduces cochlear nerve activity and can suppress tinnitus reliably in tinnitus subjects. The present study investigates whether ECES with a positive current can abolish the noise-induced central hyperactivity, i.e., the putative tinnitus-related activity. Spontaneous and stimulus-evoked neural activity before, during and after ECES was assessed from single-unit recordings in the inferior colliculus of anesthetized guinea pigs. We found that ECES with positive current significantly decreases the spontaneous firing rate of neurons with high characteristic frequencies, whereas negative current produces the opposite effect. The effects of the ECES are absent or even reversed for neurons with low characteristic frequencies. Importantly, ECES with positive current had only a marginal effect on thresholds and tone-induced activity of collicular neurons, suggesting that the main action of positive current is to modulate the spontaneous firing. Overall, cochlear electrical stimulation may be a viable approach for suppressing some forms of (peripheral-dependent) tinnitus.
Collapse
Affiliation(s)
- A. J. Noreña
- Laboratory of Adaptive and Integrative Neuroscience, CNRS, and Aix-Marseille Université, Fédération de Recherche 3C, Marseille, France; and
| | | | - D. Robertson
- The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
37
|
Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014; 283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
Collapse
Affiliation(s)
- T Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain.
| | - B Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain
| | - U Zimmermann
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Searchfield GD. Tinnitus what and where: an ecological framework. Front Neurol 2014; 5:271. [PMID: 25566177 PMCID: PMC4266022 DOI: 10.3389/fneur.2014.00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
Tinnitus is an interaction of the environment, cognition, and plasticity. The connection between the individual with tinnitus and their world seldom receives attention in neurophysiological research. As well as changes in cell excitability, an individual's culture and beliefs, and work and social environs may all influence how tinnitus is perceived. In this review, an ecological framework for current neurophysiological evidence is considered. The model defines tinnitus as the perception of an auditory object in the absence of an acoustic event. It is hypothesized that following deafferentation: adaptive feature extraction, schema, and semantic object formation processes lead to tinnitus in a manner predicted by Adaptation Level Theory (1, 2). Evidence from physiological studies is compared to the tenants of the proposed ecological model. The consideration of diverse events within an ecological context may unite seemingly disparate neurophysiological models.
Collapse
Affiliation(s)
- Grant D. Searchfield
- Section of Audiology, School of Population Health, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Tinnitus Research Initiative, Regensburg, Germany
| |
Collapse
|
39
|
Pienkowski M, Tyler RS, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Coelho CB, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BCJ. A review of hyperacusis and future directions: part II. Measurement, mechanisms, and treatment. Am J Audiol 2014; 23:420-36. [PMID: 25478787 DOI: 10.1044/2014_aja-13-0037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hyperacusis can be extremely debilitating, and at present, there is no cure. In this detailed review of the field, we consolidate present knowledge in the hope of facilitating future research. METHOD We review and reference the literature on hyperacusis and related areas. This is the 2nd of a 2-part review. RESULTS Hyperacusis encompasses a wide range of reactions to sounds, which can be grouped into the categories of excessive loudness, annoyance, fear, and pain. Reasonable approaches to assessing the different forms of hyperacusis are emerging, including brain-imaging studies. Researchers are only beginning to understand the many mechanisms at play, and valid animal models are still evolving. There are many counseling and sound-therapy approaches that some patients find helpful, but well-controlled studies are needed to measure their long-term efficacy and to test new approaches. CONCLUSIONS Hyperacusis can make life difficult in this increasingly noisy world, forcing sufferers to dramatically alter their work and social habits. We believe this is an opportune time to explore approaches to better understand and treat hyperacusis.
Collapse
Affiliation(s)
| | | | | | | | - Tom Brozoski
- Southern Illinois University School of Medicine, Springfield
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stefanescu RA, Koehler SD, Shore SE. Stimulus-timing-dependent modifications of rate-level functions in animals with and without tinnitus. J Neurophysiol 2014; 113:956-70. [PMID: 25392166 DOI: 10.1152/jn.00457.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tinnitus has been associated with enhanced central gain manifested by increased spontaneous activity and sound-evoked firing rates of principal neurons at various stations of the auditory pathway. Yet, the mechanisms leading to these modifications are not well understood. In a recent in vivo study, we demonstrated that stimulus-timing-dependent bimodal plasticity mediates modifications of spontaneous and tone-evoked responses of fusiform cells in the dorsal cochlear nucleus (DCN) of the guinea pig. Fusiform cells from sham animals showed primarily Hebbian learning rules while noise-exposed animals showed primarily anti-Hebbian rules, with broadened profiles for the animals with behaviorally verified tinnitus (Koehler SD, Shore SE. J Neurosci 33: 19647-19656, 2013a). In the present study we show that well-timed bimodal stimulation induces alterations in the rate-level functions (RLFs) of fusiform cells. The RLF gains and maximum amplitudes show Hebbian modifications in sham and no-tinnitus animals but anti-Hebbian modifications in noise-exposed animals with evidence for tinnitus. These findings suggest that stimulus-timing bimodal plasticity produced by the DCN circuitry is a contributing mechanism to enhanced central gain associated with tinnitus.
Collapse
Affiliation(s)
- Roxana A Stefanescu
- Kresge Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Seth D Koehler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Susan E Shore
- Kresge Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
41
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
42
|
De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B. An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 2014; 44:16-32. [PMID: 23597755 DOI: 10.1016/j.neubiorev.2013.03.021] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 01/30/2023]
|
43
|
Luo H, Pace E, Zhang X, Zhang J. Blast-Induced tinnitus and spontaneous firing changes in the rat dorsal cochlear nucleus. J Neurosci Res 2014; 92:1466-77. [DOI: 10.1002/jnr.23424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Luo
- Department of Otolaryngology-Head and Neck Surgery; Wayne State University School of Medicine; Detroit Michigan
| | - Edward Pace
- Department of Otolaryngology-Head and Neck Surgery; Wayne State University School of Medicine; Detroit Michigan
| | - Xueguo Zhang
- Department of Otolaryngology-Head and Neck Surgery; Wayne State University School of Medicine; Detroit Michigan
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery; Wayne State University School of Medicine; Detroit Michigan
- Department of Communication Sciences and Disorders; Wayne State University College of Liberal Arts and Sciences; Detroit Michigan
| |
Collapse
|
44
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
45
|
Abstract
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.
Collapse
|
46
|
|
47
|
Tinnitus in men, mice (as well as other rodents), and machines. Hear Res 2013; 311:63-71. [PMID: 24374091 DOI: 10.1016/j.heares.2013.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
Abstract
The phantom auditory sensation of tinnitus is now studied in humans, animals, and computer models, and our understanding of how tinnitus is triggered and which neural mechanisms give rise to the phantom sensation in the brain has increased considerably. In most cases, tinnitus is associated with hearing loss, and even tinnitus patients with normal hearing thresholds might have cochlear damage that is not detected through conventional audiometry, as has been recently shown through auditory brainstem response measurements. Animals show behavioural signs of tinnitus after induction of hearing loss, indicating a causal relation. Moreover, surgical reduction of hearing loss in otosclerosis can reduce or even abolish tinnitus. However, hearing loss does not always lead to tinnitus. Psychophysical measurements have indicated that certain types of cochlear damage might be more closely linked to tinnitus than others. Recent animal studies have used behavioural testing to distinguish between animals with and without tinnitus after noise exposure. Comparisons between these groups of animals have helped identify neural correlates of tinnitus as well as factors that could represent a predisposition for tinnitus. Human neuroimaging studies have also begun to separate the neural signature of tinnitus from other consequences of hearing loss. The functional mechanisms that could underlie tinnitus development tinnitus have been analysed in computational modelling studies, which indicate that tinnitus could be a side-effect of the brain's attempt to compensate for hearing loss. Even though causal treatments for tinnitus are currently not available, hearing aids can provide considerable benefit when used in conjunction with counselling, tinnitus retraining therapy or cognitive behavioural therapy. Finally, animal studies demonstrate that the development of chronic noise-induced tinnitus might be prevented through timely interventions after noise exposure. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
48
|
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111:17-33. [DOI: 10.1016/j.pneurobio.2013.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
49
|
The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 2013; 8:e57247. [PMID: 23516401 PMCID: PMC3596376 DOI: 10.1371/journal.pone.0057247] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Abstract
Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1) the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC) as a measure for deafferentation; (2) the fine structure of the amplitudes of auditory brainstem responses (ABR) reflecting differences in sound responses following decreased auditory nerve activity and (3) the expression of the activity-regulated gene Arc in the auditory cortex (AC) to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers), IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.
Collapse
|
50
|
Noise-Induced Inner Hair Cell Ribbon Loss Disturbs Central Arc Mobilization: A Novel Molecular Paradigm for Understanding Tinnitus. Mol Neurobiol 2012; 47:261-79. [DOI: 10.1007/s12035-012-8372-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
|