1
|
Montemarano A, Fox LD, Alkhaleel FA, Ostman AE, Sohail H, Pandey S, Murdaugh LB, Fox ME. A Drd1-cre mouse line with nucleus accumbens gene dysregulation exhibits blunted fentanyl seeking. Neuropsychopharmacology 2025:10.1038/s41386-025-02116-0. [PMID: 40316698 DOI: 10.1038/s41386-025-02116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
The synthetic opioid fentanyl remains abundant in the illicit drug supply, contributing to tens of thousands of overdose deaths every year. Despite this, the neurobiological effects of fentanyl use remain largely understudied. The nucleus accumbens (NAc) is a central locus promoting persistent drug use and relapse, largely dependent on activity of dopamine D1 receptors. NAc D1 receptor-expressing medium spiny neurons (D1-MSNs) undergo molecular and physiological neuroadaptations in response to chronic fentanyl that may promote relapse. Here, we obtained Drd1-cre120Mxu mice to investigate D1-dependent mechanisms of fentanyl relapse. We serendipitously discovered this mouse line has reduced fentanyl seeking, despite similar intravenous fentanyl self-administration, similar sucrose self-administration and seeking, and greater fentanyl-induced locomotion compared to wildtype counterparts. We found drug-naïve Drd1-cre120Mxu mice have elevated D1 receptor expression in NAc and increased sensitivity to the D1 receptor agonist SKF-38393. After fentanyl self-administration, Drd1-cre120Mxu mice exhibit divergent expression of MSN markers, opioid receptors, glutamate receptor subunits, and TrkB which may underly their blunted fentanyl seeking. Finally, we show fentanyl-related behavior is unaltered by chemogenetic manipulation of NAc core D1-MSNs in Drd1-cre120Mxu mice. Conversely, chemogenetic stimulation of ventral mesencephalon-projecting NAc core MSNs (putative D1-MSNs) in wildtype mice recapitulated the blunted fentanyl seeking of Drd1-cre120Mxu mice, supporting a role for aberrant D1-MSN signaling in this behavior. Together, our data uncover alterations in NAc gene expression and function with implications for susceptibility and resistance to developing fentanyl use disorder.
Collapse
Affiliation(s)
- Annalisa Montemarano
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Logan D Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Farrah A Alkhaleel
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Alexandria E Ostman
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hajra Sohail
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Samiksha Pandey
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Laura B Murdaugh
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Megan E Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Department of Neuroscience and Experimental Therapeutics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Rigon L, Fogliano C, Chaudhuri KR, Poplawska-Domaszewicz K, Falup-Pecurariu C, Murasan I, Wolfschlag M, Odin P, Antonini A. Managing impulse control and related behavioral disorders in Parkinson's disease: where we are in 2025? Expert Rev Neurother 2025; 25:537-554. [PMID: 40152930 DOI: 10.1080/14737175.2025.2485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Impulse control and related behavioral disorders (ICBDs) commonly complicate Parkinson's disease (PD) course. The ICBDs spectrum encompasses two groups of conditions, with distinct pathophysiology: proper 'impulse control disorders (ICDs)' (e.g. gambling) and the 'ICDs related disorders (ICDs-RD)' (e.g. punding). Behavioral disturbances are associated with dopamine replacement therapies. ICBDs affect quality of life of patients and caregivers, making their management essential for reducing PD overall burden. AREAS COVERED This article reviews current management strategies for ICBDs in PD. The authors highlight strengths and limitations of these strategies, and explore the potential role of emerging treatment options, giving particular focus to new compounds and invasive therapies. EXPERT OPINION Prevention, close monitoring, and caregiver involvement are essential in managing ICBDs in PD. Treatment approaches should be tailored to ICBDs' functional impact and aimed to reduce the pulsatile stimulation of dopamine receptors, especially D2. Dopamine agonist (DA) tapering remains the primary therapeutic approach, alongside psychotherapy and second-line agents, like atypical antipsychotics and serotonin-noradrenaline reuptake inhibitors. Insights into ICDs pathophysiology and DA-specific pharmacodynamics indicate safer profiles for certain preparations (e.g. rotigotine patches) and possibly for D1/D5 agonists like tavapadon. Invasive treatments, including deep brain stimulation and infusion therapies, should be prioritized in advanced-stage PD complicated by ICBDs.
Collapse
Affiliation(s)
- Leonardo Rigon
- Department of Neurorehabilitation, IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Carmelo Fogliano
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - K Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University, Brasov, Romania
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Iulia Murasan
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Mirjam Wolfschlag
- Clinical Addiction Research Unit, Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine Lund University, Lund, Sweden
- Department of Psychiatry Malmö-Trelleborg, Region Skåne, Malmö Addiction Center, Kristianstad, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Angelo Antonini
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
3
|
McCarty GS, Meunier CJ, Sombers LA. Dioxythiophene/Nafion Polymer Composite Membranes for Tunable Size-Based Selectivity in the Voltammetric Detection of Small Neuropeptides. ACS Sens 2024; 9:5109-5115. [PMID: 39319559 DOI: 10.1021/acssensors.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Carbon-fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior. Each is comprised of only five amino acids including tyrosine, an electroactive species. Electroanalytical measurements targeting tyrosine can reveal the dynamics of endogenous enkephalin transients in live tissue. However, when using electrochemistry in a biological system, selectivity is always a concern. Many larger neuropeptides also contain tyrosine. As such, they could generate a redox signature similar to that of the enkephalins, potentially confounding the measurement. In this work, three distinctly sized dioxythiophene monomers were mixed with Nafion and electrodeposited onto cylindrical carbon-fiber microelectrodes to form composite polymer films that allow for the tunable, size-based exclusion of larger molecules. The dioxythiophene monomers 3,4-ethylenedioxythiophene (EDOT), 3,4-propylenedioxythiophene (ProDOT), and 3,4-(2',2'-diethylpropylene) dioxythiophene (ProDOT-Et2) were used to create nanostructured pores of increasing size. The dioxythiophene/Nafion modified electrodes were characterized in the voltammetric detection of dopamine, a classic small molecule neurotransmitter, and a series of tyrosine containing neuropeptides of increasing size: met-enkephalin (M-ENK; 5 residues), oxytocin (OXY; 9 residues), neurotensin (NT; 13 residues), and neuropeptide Y (NPY; 36 residues). The modified electrodes exhibited enhanced selectivity for smaller peptide species over larger peptides in a manner consistent with the size of the dioxythiophene monomer incorporated into the polymeric film, allowing for tunability in terms of size-based selective detection.
Collapse
Affiliation(s)
- Gregory S McCarty
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carl J Meunier
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
5
|
Singh R, Jiang R, Williams J, Dobariya P, Hanak F, Xie J, Rothwell PE, Vince R, More SS. Modulation of endogenous opioid signaling by inhibitors of puromycin-sensitive aminopeptidase. Eur J Med Chem 2024; 275:116604. [PMID: 38917665 PMCID: PMC11236497 DOI: 10.1016/j.ejmech.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin-sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.
Collapse
Affiliation(s)
- Rohit Singh
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | | | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA.
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA.
| |
Collapse
|
6
|
Hughes BW, Huebschman JL, Tsvetkov E, Siemsen BM, Snyder KK, Akiki RM, Wood DJ, Penrod RD, Scofield MD, Berto S, Taniguchi M, Cowan CW. NPAS4 supports cocaine-conditioned cues in rodents by controlling the cell type-specific activation balance in the nucleus accumbens. Nat Commun 2024; 15:5971. [PMID: 39117647 PMCID: PMC11310321 DOI: 10.1038/s41467-024-50099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
Mueller LE, Wexler RS, Lovejoy DA, Stein RB, Slee AM. Teneurin C-terminal associated peptide (TCAP)-1 attenuates the development and expression of naloxone-precipitated morphine withdrawal in male Swiss Webster mice. Psychopharmacology (Berl) 2024; 241:1565-1575. [PMID: 38630316 PMCID: PMC11269454 DOI: 10.1007/s00213-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 07/25/2024]
Abstract
RATIONALE Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined. OBJECTIVE To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice. METHODS Mice were administered via subcutaneous route TCAP-1 either before or after initial morphine exposure, after which jumping behavior was quantified to assess the effects of TCAP-1 on naloxone-precipitated morphine withdrawal. As a comparison, mice were treated with nonpeptide CRF1 receptor antagonist CP-154,526. In one experiment, plasma corticosterone (CORT) was also measured as a physiological stress indicator. RESULTS Pretreatment with TCAP-1 (10-250 nmol/kg) before morphine treatment significantly inhibited the development of naloxone-precipitated withdrawal. TCAP-1 (250-500 nmol/kg) treatment administered after morphine treatment attenuated the behavioral expression of naloxone-precipitated withdrawal. TCAP-1 (250 nmol/kg) treatment during morphine treatment was more effective than the optimal dosing of CP-154,526 (20 mg/kg) at suppressing the behavioral expression of naloxone-precipitated withdrawal, despite similar reduction of withdrawal-induced plasma CORT level increases. CONCLUSIONS These findings establish TCAP-1 as a potential therapeutic candidate for the prevention and treatment of morphine withdrawal.
Collapse
Affiliation(s)
| | | | - David A Lovejoy
- Protagenic Therapeutics, Inc., New York, NY, USA
- Department of Cell and Systems Biology, University of Toronto, Toronto, CA, Canada
| | | | | |
Collapse
|
8
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
9
|
Emami Z, Shobeiri SS, Khorrami R, Haghnavaz N, Rezaee MA, Moghadam M, Pordel S, Sankian M. Evaluation of Kynu, Defb2, Camp, and Penk Expression Levels as Psoriasis Marker in the Imiquimod-Induced Psoriasis Model. Mediators Inflamm 2024; 2024:5821996. [PMID: 39045230 PMCID: PMC11265934 DOI: 10.1155/2024/5821996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Background Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.
Collapse
Affiliation(s)
- Zahra Emami
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Sadat Shobeiri
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research CenterSabzevar University of Medical Sciences, Sabzevar, Iran
| | - Razia Khorrami
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Navideh Haghnavaz
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Rezaee
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory SciencesFaculty of ParamedicalKurdistan University of Medical Sciences, Sanandaj, Iran
| | - Malihe Moghadam
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Pordel
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Katturajan R, Evan Prince S, Valsala Gopalakrishnan A. Peptide pharmacology: Pioneering interventions for alcohol use disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:117-128. [PMID: 40122643 DOI: 10.1016/bs.pmbts.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Alcohol use disorder (AUD) is a substantial public health issue, with few treatment choices and a high social cost. This review investigates the possibility of peptide pharmacology as a new treatment for AUD. Peptides, or short chains of amino acids, provide specific manipulation of neuronal pathways involved in addiction, such as the opioid, corticotropin-releasing factor (CRF), neuropeptide Y (NPY), and glutamate systems. Preclinical research has shown that peptide-based therapies can reduce alcohol intake, demand, and relapse in animal models of AUD. Opioid peptides like β-endorphin and enkephalins affect alcohol reward processing by interacting with µ, ∂, and κ opioid receptors. CRF peptides reduce stress-induced alcohol-seeking behavior by targeting the dysregulated CRF system. NPY and associated peptides reduce cravings and anxiety by regulating stress and emotional processing. Peptide-based therapies have strong translational potential, as evidenced by early clinical trial results. There are also challenges in converting preclinical discoveries into clinical practice, such as establishing the safety, tolerability, and effectiveness of peptide therapies in humans. Future initiatives include identifying new peptide targets, optimizing pharmacokinetics, and incorporating peptide-based therapies into established therapy methods. Overall, peptide pharmacology represents a potential prospect in AUD therapy, as it provides tailored therapies that address the complex neurobiological pathways that underpin addiction.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Singh R, Jiang R, Williams J, Dobariya P, Hanak F, Xie J, Rothwell PE, Vince R, More SS. Modulation of endogenous opioid signaling by inhibitors of puromycin sensitive aminopeptidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587756. [PMID: 38617237 PMCID: PMC11014559 DOI: 10.1101/2024.04.02.587756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.
Collapse
Affiliation(s)
- Rohit Singh
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Jessica Williams
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | | | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Patrick E. Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, MN, USA
| |
Collapse
|
12
|
Hohenwarter L, Böttger R, Li SD. Modification and Delivery of Enkephalins for Pain Modulation. Int J Pharm 2023; 646:123425. [PMID: 37739096 DOI: 10.1016/j.ijpharm.2023.123425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Chronic pain negatively affects patient's quality of life and poses a significant economic burden. First line pharmaceutical treatment of chronic pain, including NSAIDs or antidepressants, is often inefficient to reduce pain, or produces intolerable adverse effects. In such cases, opioids are frequently prescribed for their potent analgesia, but chronic opioid use is also frequently associated with debilitating side effects that may offset analgesic benefits. Nonetheless, opioids continue to be widely utilized due to the lack of effective alternative analgesics. Since their discovery in 1975, a class of endogenous opioids called enkephalins (ENKs) have been investigated for their ability to relieve pain with significantly reduced adverse effects compared to conventional opioids. Their low metabolic stability and inability to cross biological membranes, however, make ENKs ineffective analgesics. Over past decades, much effort has been invested to overcome these limitations and develop ENK-based pain therapies. This review summarizes and describes chemical modifications and ENK delivery technologies utilizing ENK conjugates, nanoparticles and ENK gene delivery approaches and discusses valid lessons, challenges, and future directions of this evolving field.
Collapse
Affiliation(s)
- Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
13
|
You IJ, Bae Y, Beck AR, Shin S. Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state. Nat Commun 2023; 14:6875. [PMID: 37898655 PMCID: PMC10613253 DOI: 10.1038/s41467-023-42623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Psychological stressors, like the nearby presence of a predator, can be strong enough to induce physiological/hormonal alterations, leading to appetite changes. However, little is known about how threats can alter feeding-related hypothalamic circuit functions. Here, we found that proenkephalin (Penk)-expressing lateral hypothalamic (LHPenk) neurons of mice exposed to predator scent stimulus (PSS) show sensitized responses to high-fat diet (HFD) eating, whereas silencing of the same neurons normalizes PSS-induced HFD overconsumption associated with a negative emotional state. Downregulation of endogenous enkephalin peptides in the LH is crucial for inhibiting the neuronal and behavioral changes developed after PSS exposure. Furthermore, elevated corticosterone after PSS contributes to enhance the reactivity of glucocorticoid receptor (GR)-containing LHPenk neurons to HFD, whereas pharmacological inhibition of GR in the LH suppresses PSS-induced maladaptive behavioral responses. We have thus identified the LHPenk neurons as a critical component in the threat-induced neuronal adaptation that leads to emotional overconsumption.
Collapse
Affiliation(s)
- In-Jee You
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Yeeun Bae
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alec R Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Sora Shin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
- FBRI Center for Neurobiology Research, Roanoke, VA, USA.
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Ciucă Anghel DM, Nițescu GV, Tiron AT, Guțu CM, Baconi DL. Understanding the Mechanisms of Action and Effects of Drugs of Abuse. Molecules 2023; 28:4969. [PMID: 37446631 DOI: 10.3390/molecules28134969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
AIM Drug abuse and addiction are major public health concerns, with millions of people worldwide affected by the negative consequences of drug use. To better understand this complex issue, a review was conducted to examine the mechanisms of action and effects of drugs of abuse, including their acute and chronic effects, the symptoms of abstinence syndrome, as well as their cardiovascular impacts. METHODS The analyzed data were obtained after surveying an electronic database, namely PubMed, with no time limit, grey literature sources, and reference lists of relevant articles. RESULTS The review highlights the different categories of drugs of abuse, such as opioids, stimulants, depressants, hallucinogens, and cannabis, and discusses the specific ways that each drug affects the brain and body. Additionally, the review explores the short-term and long-term effects of drug abuse on the body and mind, including changes in brain structure and function, physical health problems, and mental health issues, such as depression and anxiety. In addition, the review explores the effects of drug abuse on cardiovascular health, focusing on electrocardiogram changes. Moreover, the analysis of relevant literature also highlighted possible genetic susceptibility in various addictions. Furthermore, the review delves into the withdrawal symptoms that occur when someone stops using drugs of abuse after a period of chronic use. CONCLUSION Overall, this review provides a comprehensive overview of the current state of knowledge on drug abuse and addiction. The findings of this review can inform the development of evidence-based prevention and intervention strategies to address this critical public health issue.
Collapse
Affiliation(s)
| | - Gabriela Viorela Nițescu
- Ward ATI-Toxicology, Paediatric Clinic 2, "Grigore Alexandrescu" Emergency Clinical Hospital for Children, 011732 Bucharest, Romania
| | - Andreea-Taisia Tiron
- Department of Medical Semiology, Sf. Ioan Emergency Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Claudia Maria Guțu
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Daniela Luiza Baconi
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
15
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|