1
|
Nag S, Datta P, Morén AF, Khani Y, Martarello L, Kaliszczak M, Halldin C. Labeling of Bruton's Tyrosine Kinase (BTK) Inhibitor [ 11C]BIO-2008846 in Three Different Positions and Measurement in NHP Using PET. Int J Mol Sci 2024; 25:7870. [PMID: 39063112 PMCID: PMC11277166 DOI: 10.3390/ijms25147870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) is pivotal in B-cell signaling and a target for potential anti-cancer and immunological disorder therapies. Improved selective reversible BTK inhibitors are in demand due to the absence of direct BTK engagement measurement tools. Promisingly, PET imaging can non-invasively evaluate BTK expression. In this study, radiolabeled BIO-2008846 ([11C]BIO-2008846-A), a BTK inhibitor, was used for PET imaging in NHPs to track brain biodistribution. Radiolabeling BIO-2008846 with carbon-11, alongside four PET scans on two NHPs each, showed a homogeneous distribution of [11C]BIO-2008846-A in NHP brains. Brain uptake ranged from 1.8% ID at baseline to a maximum of 3.2% post-pretreatment. The study found no significant decrease in regional VT values post-dose, implying minimal specific binding of [11C]BIO-2008846-A compared to free and non-specific components in the brain. Radiometabolite analysis revealed polar metabolites with 10% unchanged radioligand after 30 min. The research highlighted strong brain uptake despite minor distribution variability, confirming passive diffusion kinetics dominated by free and non-specific binding.
Collapse
Affiliation(s)
- Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; (S.N.); (P.D.); (A.F.M.); (Y.K.)
| | - Prodip Datta
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; (S.N.); (P.D.); (A.F.M.); (Y.K.)
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; (S.N.); (P.D.); (A.F.M.); (Y.K.)
| | - Yasir Khani
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; (S.N.); (P.D.); (A.F.M.); (Y.K.)
| | - Laurent Martarello
- Biogen MA Inc., 225 Binney St., Cambridge, MA 02142, USA; (L.M.); (M.K.)
| | - Maciej Kaliszczak
- Biogen MA Inc., 225 Binney St., Cambridge, MA 02142, USA; (L.M.); (M.K.)
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; (S.N.); (P.D.); (A.F.M.); (Y.K.)
| |
Collapse
|
2
|
Kaur T, Wright JS, Henderson BD, Godinez J, Shao X, Scott PJH. Automated production of 11C-labeled carboxylic acids and esters via "in-loop" 11C-carbonylation using GE FX synthesis modules. J Labelled Comp Radiopharm 2024; 67:217-226. [PMID: 37608567 PMCID: PMC10881891 DOI: 10.1002/jlcr.4058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
An in-loop 11C-carbonylation process for the radiosynthesis of 11C-carboxylic acids and esters from halide precursors has been developed. The reaction proceeds at room temperature under mild conditions and enables 11C-carbonylation of both electron deficient and electron rich (hetero)aromatic halides to provide 11C-carboxylic acids and esters in good to excellent radiochemical yields, high radiochemical purity, and excellent molar activity. The process has been fully automated using commercial radiochemistry synthesis modules, and application to clinical production is demonstrated via validated cGMP radiosyntheses of [11C]bexarotene and [11C]acetoacetic acid.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Bradford D. Henderson
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jonathan Godinez
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Boyle AJ, Lindberg A, Tong J, Zhai D, Liu F, Vasdev N. Preliminary PET imaging of [ 11C]evobrutinib in mouse models of colorectal cancer, SARS-CoV-2, and lung damage: Radiosynthesis via base-aided palladium-NiXantphos-mediated 11C-carbonylation. J Labelled Comp Radiopharm 2024; 67:235-244. [PMID: 37691152 DOI: 10.1002/jlcr.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
Evobrutinib is a second-generation, highly selective, irreversible Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in the autoimmune diseases arthritis and multiple sclerosis. Its development as a positron emission tomography (PET) radiotracer has potential for in vivo imaging of BTK in various disease models including several cancers, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), and lipopolysaccharide (LPS)-induced lung damage. Herein, we report the automated radiosynthesis of [11C]evobrutinib using a base-aided palladium-NiXantphos-mediated 11C-carbonylation reaction. [11C]Evobrutinib was reliably formulated in radiochemical yields of 5.5 ± 1.5% and a molar activity of 34.5 ± 17.3 GBq/μmol (n = 12) with 99% radiochemical purity. Ex vivo autoradiography studies showed high specific binding of [11C]evobrutinib in HT-29 colorectal cancer mouse xenograft tissues (51.1 ± 7.1%). However, in vivo PET/computed tomography (CT) imaging with [11C]evobrutinib showed minimal visualization of HT-29 colorectal cancer xenografts and only a slight increase in radioactivity accumulation in the associated time-activity curves. In preliminary PET/CT studies, [11C]evobrutinib failed to visualize either SARS-CoV-2 pseudovirus infection or LPS-induced injury in mouse models. In conclusion, [11C]evobrutinib was successfully synthesized by 11C-carbonylation and based on our preliminary studies does not appear to be a promising BTK-targeted PET radiotracer in the rodent disease models studied herein.
Collapse
Affiliation(s)
- Amanda J Boyle
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Dongxu Zhai
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Fang Liu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Murrell E, Lindberg A, Garcia A, Vasdev N. 11C-Fixation Techniques. Methods Mol Biol 2024; 2729:3-13. [PMID: 38006487 DOI: 10.1007/978-1-0716-3499-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
This protocol describes the application of cyclotron-generated [11C]CO2 fixation reactions for direct 11C-carboxylation reactions and [11C]CO for 11C-carbonylations. Herein we describe one-pot methods wherein the radioactive gas is first trapped in a reaction mixture at room temperature and atmospheric pressure prior to the radiolabeling reactions. Such procedures are widely applicable to numerous small molecules to form 11C-labeled carboxylic acids, amides, esters, ketones, oxazolidinones, carbamates, and ureas. The steps for 11C-fixation techniques described herein are tailored for a commercial automated synthesis unit and are readily adapted for routine radiopharmaceutical production.
Collapse
Affiliation(s)
- Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Dahl K, Lindberg A, Vasdev N, Schou M. Reactive Palladium-Ligand Complexes for 11C-Carbonylation at Ambient Pressure: A Breakthrough in Carbon-11 Chemistry. Pharmaceuticals (Basel) 2023; 16:955. [PMID: 37513867 PMCID: PMC10386706 DOI: 10.3390/ph16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The Pd-Xantphos-mediated 11C-carbonylation protocol (also known as the "Xantphos- method"), due to its simplistic and convenient nature, has facilitated researchers in meeting a longstanding need for preparing 11C-carbonyl-labeled radiopharmaceuticals at ambient pressure for positron emission tomography (PET) imaging and drug discovery. This development could be viewed as a breakthrough in carbon-11 chemistry, as evidenced by the rapid global adoption of the method by the pharmaceutical industry and academic laboratories worldwide. The method has been fully automated for the good manufacturing practice (GMP)-compliant production of novel radiopharmaceuticals for human use, and it has been adapted for "in-loop" reactions and microwave technology; an impressive number of 11C-labeled compounds (>100) have been synthesized. Given the simplicity and efficiency of the method, as well as the abundance of carbonyl groups in bioactive drug molecules, we expect that this methodology will be even more widely adopted in future PET radiopharmaceutical research and drug development.
Collapse
Affiliation(s)
- Kenneth Dahl
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T1R8, Canada
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| |
Collapse
|
6
|
Li K, Wang M, Akoglu M, Pollard AC, Klecker JB, Alfonso P, Corrionero A, Prendiville N, Qu W, Parker MFL, Turkman N, Cohen JA, Tonge PJ. Synthesis and Preclinical Evaluation of a Novel Fluorine-18-Labeled Tracer for Positron Emission Tomography Imaging of Bruton's Tyrosine Kinase. ACS Pharmacol Transl Sci 2023; 6:410-421. [PMID: 36926452 PMCID: PMC10012250 DOI: 10.1021/acsptsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 02/12/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases. To aid in the discovery and development of BTK inhibitors and improve clinical diagnoses, we have developed a positron emission tomography (PET) radiotracer based on a selective BTK inhibitor, remibrutinib. [18F]PTBTK3 is an aromatic, 18F-labeled tracer that was synthesized in 3 steps with a 14.8 ± 2.4% decay-corrected radiochemical yield and ≥99% radiochemical purity. The cellular uptake of [18F]PTBTK3 was blocked up to 97% in JeKo-1 cells using remibrutinib or non-radioactive PTBTK3. [18F]PTBTK3 exhibited renal and hepatobiliary clearance in NOD SCID (non-obese diabetic/severe combined immunodeficiency) mice, and the tumor uptake of [18F]PTBTK3 in BTK-positive JeKo-1 xenografts (1.23 ± 0.30% ID/cc) was significantly greater at 60 min post injection compared to the tumor uptake in BTK-negative U87MG xenografts (0.41 ± 0.11% ID/cc). In the JeKo-1 xenografts, tumor uptake was blocked up to 62% by remibrutinib, indicating the BTK-dependent uptake of [18F]PTBTK3 in tumors.
Collapse
Affiliation(s)
- Kaixuan Li
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
| | - Mingqian Wang
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
| | - Melike Akoglu
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
| | - Alyssa C. Pollard
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
| | - John B. Klecker
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
| | - Patricia Alfonso
- Enzymlogic
S.L., QUBE Technology
Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic
S.L., QUBE Technology
Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Niall Prendiville
- Enzymlogic
S.L., QUBE Technology
Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Wenchao Qu
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
- Department
of Psychiatry, Department of Radiology, Department of Medicine, Stony Brook Cancer
Center, and Facility of Experimental Radiopharmaceutical Manufacturing (FERM), Stony Brook Renaissance School of Medicine, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Matthew F. L. Parker
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
- Department
of Psychiatry, Department of Radiology, Department of Medicine, Stony Brook Cancer
Center, and Facility of Experimental Radiopharmaceutical Manufacturing (FERM), Stony Brook Renaissance School of Medicine, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Nashaat Turkman
- Department
of Psychiatry, Department of Radiology, Department of Medicine, Stony Brook Cancer
Center, and Facility of Experimental Radiopharmaceutical Manufacturing (FERM), Stony Brook Renaissance School of Medicine, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Jules A. Cohen
- Department
of Psychiatry, Department of Radiology, Department of Medicine, Stony Brook Cancer
Center, and Facility of Experimental Radiopharmaceutical Manufacturing (FERM), Stony Brook Renaissance School of Medicine, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Peter J. Tonge
- Center
for Advanced Study of Drug Action and Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony
Brook, New York 11794-3400, United States
- Department
of Psychiatry, Department of Radiology, Department of Medicine, Stony Brook Cancer
Center, and Facility of Experimental Radiopharmaceutical Manufacturing (FERM), Stony Brook Renaissance School of Medicine, Stony
Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
7
|
Kaur T, Shao X, Horikawa M, Sharninghausen LS, Preshlock S, Brooks AF, Henderson BD, Koeppe RA, DaSilva AF, Sanford MS, Scott PJH. Strategies for the Production of [ 11C]LY2795050 for Clinical Use. Org Process Res Dev 2023; 27:373-381. [PMID: 36874204 PMCID: PMC9983641 DOI: 10.1021/acs.oprd.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
This report describes a comparison of four different routes for the clinical-scale radiosynthesis of the κ-opioid receptor antagonist [11C]LY2795050. Palladium-mediated radiocyanation and radiocarbonylation of an aryl iodide precursor as well as copper-mediated radiocyanation of an aryl iodide and an aryl boronate ester have been investigated. Full automation of all four methods is reported, each of which provides [11C]LY2795050 in sufficient radiochemical yield, molar activity, and radiochemical purity for clinical use. The advantages and disadvantages of each radiosynthesis method are compared and contrasted.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Sean Preshlock
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Allen F. Brooks
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Bradford D. Henderson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Robert A. Koeppe
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Alexandre F. DaSilva
- Headache Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Peter J. H. Scott
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
9
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|