1
|
Golden A, Davis JM. Smoking, Obesity, and Post-Cessation Weight Gain: Neurobiological Intersection and Treatment Recommendations. J Multidiscip Healthc 2025; 18:2889-2900. [PMID: 40438565 PMCID: PMC12118490 DOI: 10.2147/jmdh.s509971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 05/08/2025] [Indexed: 06/01/2025] Open
Abstract
In the US, 28.8 million adults currently smoke cigarettes, and approximately 1.25 billion people use tobacco globally. Unfortunately, post-cessation weight gain is a substantial barrier to smoking cessation and sustained abstinence. Among people who smoke, 36% meet the body mass index (BMI) criteria for obesity and over 50% meet the waist circumference criteria for central obesity. Despite this, primary care providers currently have limited guidance on how to best treat their patients who want to quit smoking without post-cessation weight gain. There are common neurobiologic and endocrine dysregulations in nicotine dependence and weight gain. For example, nicotine dependence and obesity are both associated with dysregulation in hypothalamic neuropeptide systems and dopaminergic pathways. Medications for nicotine dependence act on dopaminergic pathways and hypothalamic pro-opiomelanocortin (POMC) cells. Similarly, medications for obesity may increase dopamine and norepinephrine signaling and stimulate POMC activity. A unique medication, the fixed-dose extended-release combination of naltrexone and bupropion, supports both smoking cessation and weight loss by increasing dopamine and norepinephrine signaling and stimulating POMC-producing cells. This narrative review outlines neurobiologic mechanisms common to smoking and obesity and compares the effects of available pharmacotherapies on dopaminergic system and neuroendocrine dysregulation. Finally, this review outlines factors that primary care professionals should consider when treating people who want to stop smoking but are at risk of post-cessation weight gain.
Collapse
Affiliation(s)
- Angela Golden
- NP From Home LLC and NP Obesity Treatment Clinic, Flagstaff, AZ, USA
| | - James M Davis
- Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
2
|
Pingale TD, Gupta GL. Protective effect of formononetin in chronic unpredictable stress (CUS) linked to parkinson disease. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02939-7. [PMID: 40377696 DOI: 10.1007/s00702-025-02939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Formononetin [FMN] belongs to the member of class 7-hydroxyisoflavones possesses anti-oxidant and anti-inflammatory activity. However, its efficacy in chronic unpredictable stress (CUS) associated with Parkinson disease (PD) is not evaluated. In a current study the effect of FMN on CUS associated with PD was screened to examine efficacy using different behavioral, biochemical and immuno-histochemical evaluation. During the study, CUS associated with PD was induced in mice by administering rotenone followed by exposure to different mild stressors. Animals showing CUS linked to PD were included in the study and treated daily with FMN (5, 10 & 20 mg/kg) by intraperitoneal route. After the treatment, animals evaluated for behavioral, biochemical parameters and immunohistochemistry analysis. Treatment with FMN was effective in alleviating core symptoms of chronic stress linked to PD and improved cognitive function, gait abnormality and impairment in co-ordination of CUS + ROT model. FMN showed dose dependent reduction in IL- 1β, TNF- α, IL- 6 concentration. FMN increasing the levels of dopamine, norepinephrine and serotonin. Immunohistochemical study revealed that the expression of α-synuclein reduced which helps to improve CUS linked to Parkinson's. Furthermore, expression of BDNF and BCL-2 found to be improved after FMN treatment and helps in elevation of dopamine levels thereby surviving neuronal system. Study findings revealed that formononetin is effective in the treatment of chronic unpredictable stress linked to Parkinson's, however further clinical investigation is required to evaluate its effect in human.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
| | - Girdhari Lal Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur-425 405, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Zeng Z, Xiong L, Cen Y, Hong G, Shen Y, Luo X. Associations of Dietary Intakes with Parkinson's Disease: Findings from a Cross-Sectional Study. INT J VITAM NUTR RES 2024; 95:36422. [PMID: 40134248 DOI: 10.31083/ijvnr36422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/08/2024] [Accepted: 09/09/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic progressive neurodegenerative disease, and the exact etiology of PD has not been fully elucidated. Changes in dietary patterns play an important role in the onset and progression of PD. However, the association between specific dietary factors and PD remains unclear. METHODS A total of 14,309 subjects from the National Health and Nutrition Examination Survey (NHANES) (2007-2016) were included. Logistic regression was used to analyze the association between 34 nutrients and PD. The regression model was adjusted for potential confounders and effect modifiers including age, gender, race, education, hypertension, and stroke. RESULTS The data showed negative associations of the intake of protein (0.99 (0.98, 1.00), p = 0.018), fiber (0.96 (0.93, 0.99), p = 0.003), vitamin E (0.91 (0.86, 0.97), p = 0.005), copper (0.55 (0.36, 0.86), p = 0.009) with PD. Alpha carotene (p = 0.042), beta-carotene (p = 0.006), phosphorus (p = 0.018), magnesium (p = 0.002), sodium (p = 0.035), potassium (p = 0.001) had a potential negative correlation with PD. The intake of carbohydrate, sugars, fat, cholesterol, vitamin A, beta-cryptoxanthin, lycopene, lutein zeaxanthin, vitamin B1, vitamin B2, niacin, vitamin B6, folate, vitamin B12, vitamin C, vitamin D, vitamin K, calcium, iron, zinc, selenium, caffeine, theobromine, alcohol was not associated with PD (p > 0.05). CONCLUSIONS Some specific dietary elements are associated with PD, and supplementation of dietary elements may have potentially beneficial effects. However, the observed associations between dietary factors and PD may be influenced by changes in diet resulting from the disease itself, rather than diet influencing PD risk. Further longitudinal studies are needed to establish causal relationships and directionality.
Collapse
Affiliation(s)
- Zhaohao Zeng
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518001 Shenzhen, Guangdong, China
- The First Clinical Medical College of Jinan University, 510632 Guangzhou, Guangdong, China
| | - Lijiao Xiong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518001 Shenzhen, Guangdong, China
| | - Yanmei Cen
- The First Clinical Medical College of Jinan University, 510632 Guangzhou, Guangdong, China
| | - Guo Hong
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518001 Shenzhen, Guangdong, China
- The First Clinical Medical College of Jinan University, 510632 Guangzhou, Guangdong, China
| | - Yingao Shen
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518001 Shenzhen, Guangdong, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518001 Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Cheng X, Wu T, Han L, Sun T, Huang G. Association between added sugars intake and Parkinson's disease status in U.S. adults: a cross-sectional study from NHANES 1990-2020. Arch Public Health 2024; 82:225. [PMID: 39593073 PMCID: PMC11590255 DOI: 10.1186/s13690-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Added sugars intake is common among individuals with Parkinson's disease (PD), yet the link between added sugars intake and PD is not well understood. Our study aims to investigate the association between added sugars intake and PD. METHODS This study utilized data from the National Health and Nutrition Examination Survey (NHANES) from1990 to 2020. Added sugars intake was estimated based on a 24-hour dietary recall from participants. Multivariable logistic regression analysis was employed to explore the relationship between added sugars intake and the prevalence of PD. Restricted cubic spline (RCS) was used to explore the nonlinear association between added sugars intake and PD. To further observe whether the conclusions were consistent across different subgroups, we conducted subgroup analyses to investigate the association of added sugars intake with PD in different populations. RESULTS The study included 12,489 participants, of which 100 had PD. When weighted, the data represented 136,959,144 participants. The study revealed a positive association between added sugars intake and the prevalence of PD. In multivariable regression models adjusted for all confounding factors, compared with the lowest quartile of added sugars intake, the third quartile (OR = 2.99; 95% CI: 1.43-6.26) and those consuming more than 25% of their calories from added sugars (OR = 3.34; 95% CI: 1.03-10.86) had the highest risk of PD. The RCS curve showed an L-shaped nonlinear association between added sugars intake and PD. Two-segment linear regression by sex revealed that PD prevalence in women was linearly related to sugar intake (nonlinear P = 0.465), while men exhibited an L-shaped nonlinear relationship (nonlinear P = 0.03). Additionally, subgroup analysis showed that alcohol consumption and diabetes significantly influenced the association between added sugars intake and the prevalence of PD. CONCLUSION These results highlight a positive association between added sugars intake and the prevalence of PD, particularly among women, heavy drinkers, and individuals with diabetes.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Han
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Tong Sun
- Department of Neonatology, Jiuting Hospital, Shanghai, 201615, China.
| | - Guoxin Huang
- Department of Evidence-Based Medicine Center, People's Hospital, Hubei University of Medicine, Xiangyang No.1, Xiangyang, 441000, China.
| |
Collapse
|
5
|
Brzenczek C, Klopfenstein Q, Hähnel T, Fröhlich H, Glaab E. Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson's disease. NPJ Digit Med 2024; 7:235. [PMID: 39242660 PMCID: PMC11379877 DOI: 10.1038/s41746-024-01236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Parkinson's disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data's utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83-92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.
Collapse
Affiliation(s)
- Cyril Brzenczek
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Quentin Klopfenstein
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tom Hähnel
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT (b-it), University of Bonn, Bonn, Germany
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Rusch C, Beke M, Nieves C, Mai V, Stiep T, Tholanikunnel T, Ramirez-Zamora A, Hess CW, Langkamp-Henken B. Promotion of a Mediterranean Diet Alters Constipation Symptoms and Fecal Calprotectin in People with Parkinson's Disease: A Randomized Controlled Trial. Nutrients 2024; 16:2946. [PMID: 39275262 PMCID: PMC11396875 DOI: 10.3390/nu16172946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Parkinson's disease is associated with gastrointestinal (GI) dysfunction, including constipation symptoms and abnormal intestinal permeability and inflammation. A Mediterranean diet (MediDiet) may aid in disease management. This parallel, randomized, controlled trial in people with Parkinson's (PwP) and constipation symptoms compared a MediDiet against standard of care on change in constipation symptoms, dietary intake, and fecal zonulin and calprotectin concentrations as markers of intestinal permeability and inflammation, respectively. Participants were randomized to either standard of care for constipation (control; n = 17, 65.1 ± 2.2 years) or a MediDiet plus standard of care (n = 19, 68.8 ± 1.4 years) for 8 weeks. Constipation scores decreased with both interventions (p < 0.01), but changes from baseline were not different between groups (MediDiet, -0.5 [-1.0, 0]; control, -0.8 [-1.0, 0.2]; median [25th, 75th]; p = 0.60). The MediDiet group had a higher intake of dietary fiber at week 4 than the control group (13.1 ± 0.7 g/1000 kcal vs. 9.8 ± 0.7 g/1000 kcal; p < 0.001). No differences in fecal zonulin were observed between groups (p = 0.33); however, fecal calprotectin tended to be lower in the MediDiet group at week 8 (45.8 ± 15.1 µg/g vs. 93.9 ± 26.8 µg/g; p = 0.05). The MediDiet and standard interventions reduced constipation symptoms; however, the MediDiet provided additional benefit of increased dietary fiber intake and less intestinal inflammation.
Collapse
Affiliation(s)
- Carley Rusch
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611-0370, USA; (C.R.); (M.B.)
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Matthew Beke
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611-0370, USA; (C.R.); (M.B.)
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Carmelo Nieves
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611-0370, USA; (C.R.); (M.B.)
| | - Volker Mai
- Department of Epidemiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610-0009, USA;
| | - Tamara Stiep
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Tracy Tholanikunnel
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Christopher W. Hess
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610-0236, USA; (T.S.); (T.T.); (A.R.-Z.); (C.W.H.)
| | - Bobbi Langkamp-Henken
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611-0370, USA; (C.R.); (M.B.)
| |
Collapse
|
7
|
Zhang L, Yang S, Liu X, Wang C, Tan G, Wang X, Liu L. Association between dietary niacin intake and risk of Parkinson's disease in US adults: cross-sectional analysis of survey data from NHANES 2005-2018. Front Nutr 2024; 11:1387802. [PMID: 39091685 PMCID: PMC11291445 DOI: 10.3389/fnut.2024.1387802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and involves various pathogenic mechanisms, including oxidative stress and neuroinflammation. Niacin, an important cofactor in mitochondrial energy metabolism, may play a key role in the pathogenesis of PD. An in-depth exploration of the relationship between niacin and mitochondrial energy metabolism may provide new targets for the treatment of PD. The present study was designed to examine the association between dietary niacin intake and the risk of PD in US adults. Data from adults aged 40 years and older collected during cycles of the United States (US) National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 were used. A multiple logistic regression model was used to analyze the relationship between dietary niacin intake and the risk of PD. Further linear tests using restricted cubic splines (RCS) were performed to explore the shape of the dose-response relationship. Subgroup stratification and interaction analyses were conducted according to years of education, marital status, smoking, and hypertension to evaluate the stability of the association between different subgroups. A total of 20,211 participants were included in this study, of which 192 were diagnosed with PD. In the fully adjusted multiple logistic regression model, dietary niacin intake was negatively associated with the risk of PD (OR: 0.77, 95%CI: 0.6-0.99; p = 0.042). In the RCS linear test, the occurrence of PD was negatively correlated with dietary niacin intake (nonlinearity: p = 0.232). In stratified analyses, dietary niacin intake was more strongly associated with PD and acted as an important protective factor in patients with fewer years of education (OR: 0.35, 95%CI: 0.13-0.93), married or cohabitating (OR: 0.71, 95%CI: 0.5-0.99), taking dietary supplements (OR: 0.6, 95%CI: 0.37 0.97), non-smokers (OR: 0.57, 95%CI: 0.39-0.85), those with hypertension (OR: 0.63, 95%CI: 0.63-0.95), coronary artery disease (OR: 0.77, 95%CI: 0.6-1), and stroke (OR: 0.75, 95%CI: 0.88-0.98), but the interaction was not statistically significant in all subgroups. Dietary niacin intake was inversely associated with PD risk in US adults, with a 23% reduction in risk for each 10 mg increase in niacin intake.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Shaojie Yang
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Xiaoyan Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Chunxia Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, 363 Hospital, Chengdu, China
| | - Ge Tan
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xueping Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ling Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Rees J, Ryan J, Laws M, Devine A. A comprehensive examination of the evidence for whole of diet patterns in Parkinson's disease: a scoping review. Nutr Neurosci 2024; 27:547-565. [PMID: 37431106 DOI: 10.1080/1028415x.2023.2233727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Both motor and non-motor symptoms of Parkinson's disease (PD), a progressive neurological condition, have broad-ranging impacts on nutritional intake and dietary behaviour. Historically studies focused on individual dietary components, but evidence demonstrating ameliorative outcomes with whole-of-diet patterns such as Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) is emerging. These diets provide plenty of antioxidant rich fruits, vegetables, nuts, wholegrains and healthy fats. Paradoxically, the ketogenic diet, high fat and very low carbohydrate, is also proving to be beneficial. Within the PD community, it is well advertised that nutritional intake is associated with disease progression and symptom severity but understandably, the messaging is inconsistent. With projected prevalence estimated to rise to 1.6 million by 2037, more data regarding the impact of whole-of-diet patterns is needed to develop diet-behaviour change programmes and provide clear advice for PD management. Objectives and Methods: Objectives of this scoping review of both peer-reviewed academic and grey literatures are to determine the current evidence-based consensus for best dietary practice in PD and to ascertain whether the grey literature aligns. Results and Discussion: The consensus from the academic literature was that a MeDi/MIND whole of diet pattern (fresh fruit, vegetables, wholegrains, omega-3 fish and olive oil) is the best practice for improving PD outcomes. Support for the KD is emerging, but further research is needed to determine long-term effects. Encouragingly, the grey literature mostly aligned but nutrition advice was rarely forefront. The importance of nutrition needs greater emphasis in the grey literature, with positive messaging on dietary approaches for management of day-to-day symptoms.
Collapse
Affiliation(s)
- Joanna Rees
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Manja Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Amanda Devine
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
9
|
Kwon D, Zhang K, Paul KC, Folle AD, Del Rosario I, Jacobs JP, Keener AM, Bronstein JM, Ritz B. Diet and the gut microbiome in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:89. [PMID: 38649365 PMCID: PMC11035608 DOI: 10.1038/s41531-024-00681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
It has been suggested that gut microbiota influence Parkinson's disease (PD) via the gut-brain axis. Here, we examine associations between diet and gut microbiome composition and its predicted functional pathways in patients with PD. We assessed gut microbiota in fecal samples from 85 PD patients in central California using 16S rRNA gene sequencing. Diet quality was assessed by calculating the Healthy Eating Index 2015 (HEI-2015) based on the Diet History Questionnaire II. We examined associations of diet quality, fiber, and added sugar intake with microbial diversity, composition, taxon abundance, and predicted metagenomic profiles, adjusting for age, sex, race/ethnicity, and sequencing platform. Higher HEI scores and fiber intake were associated with an increase in putative anti-inflammatory butyrate-producing bacteria, such as the genera Butyricicoccus and Coprococcus 1. Conversely, higher added sugar intake was associated with an increase in putative pro-inflammatory bacteria, such as the genera Klebsiella. Predictive metagenomics suggested that bacterial genes involved in the biosynthesis of lipopolysaccharide decreased with higher HEI scores, whereas a simultaneous decrease in genes involved in taurine degradation indicates less neuroinflammation. We found that a healthy diet, fiber, and added sugar intake affect the gut microbiome composition and its predicted metagenomic function in PD patients. This suggests that a healthy diet may support gut microbiome that has a positive influence on PD risk and progression.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aline D Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angele, CA, USA.
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
11
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
12
|
Tosefsky KN, Zhu J, Wang YN, Lam JST, Cammalleri A, Appel-Cresswell S. The Role of Diet in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S21-S34. [PMID: 38251061 PMCID: PMC11380239 DOI: 10.3233/jpd-230264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The aim of this review is to examine the intersection of Parkinson's disease (PD) with nutrition, to identify best nutritional practices based on current evidence, and to identify gaps in the evidence and suggest future directions. Epidemiological work has linked various dietary patterns and food groups to changes in PD risk; however, fewer studies have evaluated the role of various diets, dietary components, and supplements in the management of established PD. There is substantial interest in exploring the role of diet-related interventions in both symptomatic management and potential disease modification. In this paper, we evaluate the utility of several dietary patterns, including the Mediterranean (MeDi), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), Alternative Healthy Eating Index (AHEI), vegan/vegetarian, and ketogenic diet in persons with PD. Additionally, we provide an overview of the evidence relating several individual food groups and nutritional supplements to PD risk, symptoms and progression.
Collapse
Affiliation(s)
- Kira N Tosefsky
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Julie Zhu
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Yolanda N Wang
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Joyce S T Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Cammalleri
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
14
|
Kwon D, Folle AD, Del Rosario I, Zhang K, Paul KC, Keener AM, Bronstein JM, Ritz B. Diet quality and Parkinson's disease: Potential strategies for non-motor symptom management. Parkinsonism Relat Disord 2023; 115:105816. [PMID: 37611510 PMCID: PMC11121503 DOI: 10.1016/j.parkreldis.2023.105816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is now considered a systemic disease, and some phenotypes may be modifiable by diet. We will compare the diet quality and intake of specific nutrients and food groups of PD patients with household and community controls to examine how diet may influence PD clinical features. METHODS We conducted a case-control study of 98 PD patients and 83 controls (household = 53; community = 30) in central California, assessing dietary habits over the past month and calculating the Healthy Eating Index (HEI)-2015. We employed multivariate logistic and linear regression analyses to assess associations between diet and PD status, PD symptom profiles, and medication, adjusting for relevant confounders. RESULTS PD patients had a lower HEI score than controls, with an OR of 0.65 (95% CI: 0.45, 0.94) per 10-points increase in HEI. Lower-quality diet was characterized by higher intakes of carbohydrates, total and added sugars, and trans fats and lower intakes of fiber, folate, unsaturated fatty acids, protein, and fat. PD patients with chronic constipation had a 4.84 point lower HEI score than those without (β per 10-point in HEI: -0.48; 95% CI: -0.97, -0.00). Furthermore, patients on high dopamine agonist doses consumed more sugar than those on lower doses. CONCLUSION PD patients consume a lower-quality diet compared to household and community controls. Dietary modifications may alleviate non-motor symptoms like constipation, and promoting a healthy diet should become a part of routine care and disease management for PD patients, with special attention on agonist-treated and hyposmic patients.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aline D Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
16
|
Alizadeh M, Kheirouri S, Keramati M. What Dietary Vitamins and Minerals Might Be Protective against Parkinson's Disease? Brain Sci 2023; 13:1119. [PMID: 37509049 PMCID: PMC10377174 DOI: 10.3390/brainsci13071119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Dietary constituents may affect the progression of Parkinson's disease (PD). This study aimed to assess the contribution of dietary intake of vitamins and minerals to the severity, motor and non-motor symptoms, and risk of PD. METHODS In this case-control study, 120 patients with PD and 50 healthy participants participated. Dietary intake of vitamins and minerals was determined using a 147-item food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS Patients with PD had lower intake of several vitamins and minerals including lycopene, thiamine, vitamin B6, vitamin B12, pantothenic acid, magnesium, zinc, manganese, selenium, chromium, and phosphorus, but had higher intake of α-tocopherol. High dietary intake of vitamin A, α-carotene, β-cryptoxanthin, vitamin C, and α-tocopherol were correlated with increased odds of PD. High intake of lycopene, thiamin, vitamin B6, pantothenic acid, magnesium, zinc, manganese, chromium, and phosphorous correlated with reduced odds of PD. The predictive power of α-tocopherol concerning the risk of PD was stronger relative to other vitamins. Dietary intake of pantothenic acid was negatively correlated with PD severity and symptoms of motor examination and complication. The severity and motor symptoms of PD were also negatively correlated with β-carotene, vitamin C, riboflavin, vitamin B6, and biotin intake. The UPDRS total score and motor symptoms in PD patients were negatively correlated with phosphorus, magnesium, zinc, manganese, and chromium, and strongly with potassium intake. CONCLUSION The findings indicate that adequate dietary intake of vitamins and minerals may have a preventive effect on developing PD and progression of motor decline.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Majid Keramati
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| |
Collapse
|
17
|
Xu X, Lubomski M, Holmes AJ, Sue CM, Davis RL, Muller S, Yang JYH. NEMoE: a nutrition aware regularized mixture of experts model to identify heterogeneous diet-microbiome-host health interactions. MICROBIOME 2023; 11:51. [PMID: 36918961 PMCID: PMC10015776 DOI: 10.1186/s40168-023-01475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Unrevealing the interplay between diet, the microbiome, and the health state could enable the design of personalized intervention strategies and improve the health and well-being of individuals. A common approach to this is to divide the study population into smaller cohorts based on dietary preferences in the hope of identifying specific microbial signatures. However, classification of patients based solely on diet is unlikely to reflect the microbiome-host health relationship or the taxonomic microbiome makeup. RESULTS We present a novel approach, the Nutrition-Ecotype Mixture of Experts (NEMoE) model, for establishing associations between gut microbiota and health state that accounts for diet-specific cohort variability using a regularized mixture of experts model framework with an integrated parameter sharing strategy to ensure data-driven diet-cohort identification consistency across taxonomic levels. The success of our approach was demonstrated through a series of simulation studies, in which NEMoE showed robustness with regard to parameter selection and varying degrees of data heterogeneity. Further application to real-world microbiome data from a Parkinson's disease cohort revealed that NEMoE is capable of not only improving predictive performance for Parkinson's Disease but also for identifying diet-specific microbial signatures of disease. CONCLUSION In summary, NEMoE can be used to uncover diet-specific relationships between nutritional-ecotype and patient health and to contextualize precision nutrition for different diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiangnan Xu
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
- The University of Notre Dame Australia, School of Medicine, Sydney, NSW, Australia
| | - Andrew J Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Samuel Muller
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong, SAR, China.
| |
Collapse
|
18
|
Ferguson CC, Jung SE, Lawrence JC, Douglas JW, Halli-Tierney A, Bui C, Ellis AC. A Qualitative Analysis of Experiences With Food-Related Activities Among People Living With Parkinson Disease and Their Care-Partners. J Appl Gerontol 2023; 42:131-140. [PMID: 36062816 DOI: 10.1177/07334648221118358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives: The purpose of this qualitative study was to explore factors associated with the ability of people with PD to perform food-related activities (FRAs). Methods: Eleven dyads, older adults with Parkinson disease (PD) and their care-partners (n = 22), completed virtual semi-structured interviews guided by the Social Cognitive Theory (SCT) that were independently analyzed by two coders via directed content analysis. Results: The following themes were identified-(1) Personal: perception of a healthy diet, perception of how nutrition influences PD, confidence in following a healthy diet, and barriers to performing FRA; (2) Environmental: previous sources of nutrition information and willingness to changing their diet with a registered dietitian; and (3) Behavioral: modifications to FRA due to food-medication interactions, and skills necessary to maintain a healthy diet. Discussion: Findings from this study highlight the need for nutrition intervention research to inform evidence-based guidelines in order to provide tailored education for people with PD and care-partners.
Collapse
Affiliation(s)
- Christine C Ferguson
- Department of Human Nutrition and Hospitality Management, 8063The University of Alabama, Tuscaloosa, AL, USA.,UAB/Lakeshore Research Collaborative, School of Health Professions, 9968The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seung Eun Jung
- Department of Human Nutrition and Hospitality Management, 8063The University of Alabama, Tuscaloosa, AL, USA
| | - Jeannine C Lawrence
- Department of Human Nutrition and Hospitality Management, 8063The University of Alabama, Tuscaloosa, AL, USA
| | - Joy W Douglas
- Department of Human Nutrition and Hospitality Management, 8063The University of Alabama, Tuscaloosa, AL, USA
| | - Anne Halli-Tierney
- Department of Family, Internal, and Rural Medicine, 8063The University of Alabama, Box 870326, Tuscaloosa, AL, USA
| | - Chuong Bui
- Alabama Life Research Institute, 8063The University of Alabama, Tuscaloosa, AL, USA
| | - Amy C Ellis
- Department of Human Nutrition and Hospitality Management, 8063The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
19
|
Parkinson's Disease and Sugar Intake-Reasons for and Consequences of a Still Unclear Craving. Nutrients 2022; 14:nu14153240. [PMID: 35956417 PMCID: PMC9370710 DOI: 10.3390/nu14153240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Lately, studies have shown that patients with Parkinson’s disease (PD) report a strong craving for sweets and consume significantly more fast-acting carbohydrates than healthy controls. Consuming food with a high-sugar content is assumed to lead to an increase in insulin concentration, which could positively influence dopamine concentration in the brain and unconsciously be used by patients as kind of “self-medication” to compensate for a lack of dopamine in PD. On the other hand, high-sugar intake could also lead to insulin resistance and diabetes, which is discussed as a causative factor for progressive neurodegeneration in PD. In this critical appraisal, we discuss the role of sugar intake and insulin on dopamine metabolism in patients with PD and how this could influence the potential neurodegeneration mediated by insulin resistance.
Collapse
|
20
|
Witek K, Wydra K, Filip M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022; 14:2940. [PMID: 35889898 PMCID: PMC9323357 DOI: 10.3390/nu14142940] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.
Collapse
Affiliation(s)
| | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (K.W.); (K.W.)
| |
Collapse
|
21
|
Xu J, Wang L, Chen X, Le W. New Understanding on the Pathophysiology and Treatment of Constipation in Parkinson’s Disease. Front Aging Neurosci 2022; 14:917499. [PMID: 35813960 PMCID: PMC9257174 DOI: 10.3389/fnagi.2022.917499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Constipation, one of the most common prodromal non-motor symptoms of Parkinson’s disease (PD), usually occurs several years earlier than the onset of motor symptoms. Previous studies have shown that constipation occurrence increases as the disease progresses. However, the mechanism underlying this pathologic disorder is not clear yet. Moreover, chronic constipation causes slowness in gastric emptying and, therefore, may lead to a delay in the absorption of medications for PD, including levodopa and dopamine agonists. Accordingly, it is necessary to understand how the pathophysiological factors contribute to constipation during PD as well as pursue precise and effective treatment strategies. In this review, we encapsulate the molecular mechanism of constipation underlying PD and update the progress in the treatments of PD-associated constipation.
Collapse
Affiliation(s)
- Jianli Xu
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Wang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Xi Chen Weidong Le
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Xi Chen Weidong Le
| |
Collapse
|
22
|
Lubomski M, Xu X, Holmes AJ, Muller S, Yang JYH, Davis RL, Sue CM. The Gut Microbiome in Parkinson's Disease: A Longitudinal Study of the Impacts on Disease Progression and the Use of Device-Assisted Therapies. Front Aging Neurosci 2022; 14:875261. [PMID: 35656540 PMCID: PMC9152137 DOI: 10.3389/fnagi.2022.875261] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Altered gut microbiome (GM) composition has been established in Parkinson's disease (PD). However, few studies have longitudinally investigated the GM in PD, or the impact of device-assisted therapies. Objectives To investigate the temporal stability of GM profiles from PD patients on standard therapies and those initiating device-assisted therapies (DAT) and define multivariate models of disease and progression. Methods We evaluated validated clinical questionnaires and stool samples from 74 PD patients and 74 household controls (HCs) at 0, 6, and 12 months. Faster or slower disease progression was defined from levodopa equivalence dose and motor severity measures. 19 PD patients initiating Deep Brain Stimulation or Levodopa-Carbidopa Intestinal Gel were separately evaluated at 0, 6, and 12 months post-therapy initiation. Results Persistent underrepresentation of short-chain fatty-acid-producing bacteria, Butyricicoccus, Fusicatenibacter, Lachnospiraceae ND3007 group, and Erysipelotrichaceae UCG-003, were apparent in PD patients relative to controls. A sustained effect of DAT initiation on GM associations with PD was not observed. PD progression analysis indicated that the genus Barnesiella was underrepresented in faster progressing PD patients at t = 0 and t = 12 months. Two-stage predictive modeling, integrating microbiota abundances and nutritional profiles, improved predictive capacity (change in Area Under the Curve from 0.58 to 0.64) when assessed at Amplicon Sequence Variant taxonomic resolution. Conclusion We present longitudinal GM studies in PD patients, showing persistently altered GM profiles suggestive of a reduced butyrogenic production potential. DATs exerted variable GM influences across the short and longer-term. We found that specific GM profiles combined with dietary factors improved prediction of disease progression in PD patients.
Collapse
Affiliation(s)
- Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Xiangnan Xu
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Camperdown, NSW, Australia
- The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Andrew J. Holmes
- The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Samuel Muller
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Camperdown, NSW, Australia
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Jean Y. H. Yang
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Camperdown, NSW, Australia
- The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ryan L. Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia
| | - Carolyn M. Sue
- Department of Neurology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
23
|
Lubomski M, Xu X, Holmes AJ, Muller S, Yang JYH, Davis RL, Sue CM. Nutritional Intake and Gut Microbiome Composition Predict Parkinson's Disease. Front Aging Neurosci 2022; 14:881872. [PMID: 35645785 PMCID: PMC9131011 DOI: 10.3389/fnagi.2022.881872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background Models to predict Parkinson's disease (PD) incorporating alterations of gut microbiome (GM) composition have been reported with varying success. Objective To assess the utility of GM compositional changes combined with macronutrient intake to develop a predictive model of PD. Methods We performed a cross-sectional analysis of the GM and nutritional intake in 103 PD patients and 81 household controls (HCs). GM composition was determined by 16S amplicon sequencing of the V3-V4 region of bacterial ribosomal DNA isolated from stool. To determine multivariate disease-discriminant associations, we developed two models using Random Forest and support-vector machine (SVM) methodologies. Results Using updated taxonomic reference, we identified significant compositional differences in the GM profiles of PD patients in association with a variety of clinical PD characteristics. Six genera were overrepresented and eight underrepresented in PD patients relative to HCs, with the largest difference being overrepresentation of Lactobacillaceae at family taxonomic level. Correlation analyses highlighted multiple associations between clinical characteristics and select taxa, whilst constipation severity, physical activity and pharmacological therapies associated with changes in beta diversity. The random forest model of PD, incorporating taxonomic data at the genus level and carbohydrate contribution to total energy demonstrated the best predictive capacity [Area under the ROC Curve (AUC) of 0.74]. Conclusion The notable differences in GM diversity and composition when combined with clinical measures and nutritional data enabled the development of a predictive model to identify PD. These findings support the combination of GM and nutritional data as a potentially useful biomarker of PD to improve diagnosis and guide clinical management.
Collapse
Affiliation(s)
- Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Faculty of Medicine and Health, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Xiangnan Xu
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Andrew J. Holmes
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Samuel Muller
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Sydney, NSW, Australia
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Jean Y. H. Yang
- School of Mathematics and Statistics, Sydney Precision Bioinformatics, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ryan L. Davis
- Department of Neurogenetics, Faculty of Medicine and Health, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Carolyn M. Sue
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
- Department of Neurogenetics, Faculty of Medicine and Health, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| |
Collapse
|
24
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and affects about 1% of the population over the age of 60 years in industrialised countries. The aim of this review is to examine nutrition in PD across three domains: dietary intake and the development of PD; whole body metabolism in PD and the effects of PD symptoms and treatment on nutritional status. In most cases, PD is believed to be caused by a combination of genetic and environmental factors and although there has been much research in the area, evidence suggests that poor dietary intake is not a risk factor for the development of PD. The evidence about body weight changes in both the prodromal and symptomatic phases of PD is inconclusive and is confounded by many factors. Malnutrition in PD has been documented as has sarcopaenia, although the prevalence of the latter remains uncertain due to a lack of consensus in the definition of sarcopaenia. PD symptoms, including those which are gastrointestinal and non-gastrointestinal, are known to adversely affect nutritional status. Similarly, PD treatments can cause nausea, vomiting and constipation, all of which can adversely affect nutritional status. Given that the prevalence of PD will increase as the population ages, it is important to understand the interplay between PD, comorbidities and nutritional status. Further research may contribute to the development of interventional strategies to improve symptoms, augment care and importantly, enhance the quality of life for patients living with this complex neurodegenerative disease.
Collapse
|
25
|
Wu G, Jiang Z, Pu Y, Chen S, Wang T, Wang Y, Xu X, Wang S, Jin M, Yao Y, Liu Y, Ke S, Liu S. Serum short-chain fatty acids and its correlation with motor and non-motor symptoms in Parkinson's disease patients. BMC Neurol 2022; 22:13. [PMID: 34996385 PMCID: PMC8740341 DOI: 10.1186/s12883-021-02544-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s disease (PD) is associated with enteric nervous system dysfunction and gut microbiota dysbiosis. Short-chain fatty acids (SCFAs), derived from gut microbiota, are supposed to anticipate PD pathogenesis via the pathway of spinal cord and vagal nerve or the circulatory system. However, the serum concentration of SCFAs in PD patients is poorly known. This study aims to investigate the exact level of SCFAs in PD patients and its correlation with Parkinson’s symptoms. Methods 50 PD patients and 50 healthy controls were recruited, and their demographic and clinical characteristics were collected. The serum concentration of SCFAs was detected using a gas chromatography-mass spectrometer. SCFAs were compared between PD and control groups. The correlation between serum SCFAs and Parkinson’s symptoms and the potential effects of medications on the serum SCFAs was analyzed. Results Serum propionic acid, butyric acid and caproic acid were lower, while heptanoic acid was higher in PD patients than in control subjects. However, only the serum level of propionic acid was correlated with Unified Parkinson’s Disease Rating Scale (UPDRs) part III score (R = -0.365, P = 0.009), Mini-mental State Examination (MMSE) score (R = -0.416, P = 0.003), and Hamilton Depression Scale (HAMD) score (R = 0.306, P = 0.03). There was no correlation between other serum SCFAs and motor complications. The use of trihexyphenidyl or tizanidine increased the serum concentration of propionic acid. Conclusions Serum SCFAs are altered in PD patients, and the decrease of serum propionic acid level is correlated with motor symptoms, cognitive ability and non-depressed state. Thus, the gut microbial-derived SCFAs potentially affect Parkinson’s symptoms through the blood circulation. Propionic acid supplementation might ameliorate motor and non-motor symptoms of PD patients, although clinical trials are needed to test this hypothesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02544-7.
Collapse
Affiliation(s)
- Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.,Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yaling Pu
- Clinical Medical College, Shaoxing University of Arts and Sciences, Shaoxing, 312099, Zhejiang, China
| | - Shiyong Chen
- Clinical laboratory Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Tingling Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yajing Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Xiaoping Xu
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Shanshan Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Minya Jin
- Clinical laboratory Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yangyang Yao
- Health Management Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yang Liu
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.,Department of Neurology, Saarland University, 66421, Homburg, Germany
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| | - Suzhi Liu
- Department of Neurology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China. .,Clinical Medical College, Shaoxing University of Arts and Sciences, Shaoxing, 312099, Zhejiang, China.
| |
Collapse
|
26
|
BEZERRA GKDA, LUZ MCLD, BURGOS MGPDA, LEMOS MDCCD, SOUZA JWCD, CABRAL PC. Food consumption, anthropometry and body composition of patients diagnosed with Parkinson’s disease. REV NUTR 2022. [DOI: 10.1590/1678-9865202235e220058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT Objective The aim of the present study was to evaluate the consumption of risk and protective foods for chronic noncommunicable diseases and to investigate associations with anthropometric parameters and body composition in individuals with Parkinson’s disease. Methods A case-series study was conducted with 79 adult and elderly patients of both genders in outpatient care. Food intake was evaluated using a food frequency questionnaire for the identification of foods with greater daily consumption, stratified by gender. The consumption frequency of each food was converted into scores of two food groups characteristics: risk and protection. The conceptual model took into account sociodemographic, behavioral and anthropometric variables as well as body composition. Results A total of 72.1% of the participants in the sample had excess weight based on the body mass index and 43.5% had excess body fat. The consumption of protective foods was greater among individuals with a higher body mass index and with a greater rate of body fat. Conclusion The data indicate a situation of reverse causality and reveal the complexity of the relationship among food intake, body fat and chronic noncommunicable diseases.
Collapse
|
27
|
Lubomski M, Davis RL, Sue CM. Cognitive Influences in Parkinson's Disease Patients and Their Caregivers: Perspectives From an Australian Cohort. Front Neurol 2021; 12:673816. [PMID: 34867699 PMCID: PMC8634644 DOI: 10.3389/fneur.2021.673816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives: Cognitive impairment impacts negatively on Parkinson's disease (PD) patient and caregiver quality of life (QoL). We examined cognitive impairment in PD patients and their caregivers to determine if caregiver cognition affected their PD relative. Methods: Validated cognition and clinical outcome measures were assessed in 103 PD patients and 81 caregivers. Results: PD patients showed more cognitive impairment than their carers, with 48.6% having possible Mild Cognitive Impairment (MCI) and 16.5% having PD dementia. Increasing age, male gender, lower education level, various non-motor symptoms and certain therapies, associated with poorer cognition in PD. Eighteen and a half percent of caregivers were found to have MCI, in association with a lower physical and mental QoL. This reflected in lower QoL and mood for the respective PD patients. Conclusion: Impaired cognition and QoL in caregivers was associated with decreased QoL and mood for respective PD patients, suggesting MCI in caregivers is an important consideration for the management of PD.
Collapse
Affiliation(s)
- Michal Lubomski
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, St Leonards, NSW, Australia.,School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Northern Sydney Local Health District, St Leonards, NSW, Australia
| |
Collapse
|
28
|
The impact of device-assisted therapies on the gut microbiome in Parkinson's disease. J Neurol 2021; 269:780-795. [PMID: 34128115 DOI: 10.1007/s00415-021-10657-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Microbiome feedbacks are proposed to influence Parkinson's disease (PD) pathophysiology. A number of studies have evaluated the impact of oral medication on the gut microbiome (GM) in PD. However, the influence of PD device-assisted therapies (DATs) on the GM remains to be investigated. OBJECTIVES To profile acute gut microbial community alterations in response to PD DAT initiation. METHODS Clinical data and stool samples were collected from 21 PD patients initiating either deep brain stimulation (DBS) or levodopa-carbidopa intestinal gel (LCIG) and ten spousal healthy control (HC) subjects. 16S amplicon sequencing of stool DNA enabled comparison of temporal GM stability between groups and with clinical measures, including disease alterations relative to therapy initiation. RESULTS We assessed GM response to therapy in the PD group by comparing pre-therapy (- 2 and 0 weeks) with post-therapy initiation timepoints (+ 2 and + 4 weeks) and HCs at baseline (0 weeks). Altered GM compositions were noted between the PD and HC groups at various taxonomic levels, including specific differences for DBS (overrepresentation of Clostridium_XlVa, Bilophila, Parabacteroides, Pseudoflavonifractor and underrepresentation of Dorea) and LCIG therapy (overrepresentation of Pseudoflavonifractor, Escherichia/Shigella, and underrepresentation of Gemmiger). Beta diversity changes were also found over the 4 week post-treatment initiation period. CONCLUSIONS We report on initial short-term GM changes in response to the initiation of PD DATs. Prior to the introduction of the DAT, a PD-associated GM was observed. Following initiation of DAT, several DAT-specific changes in GM composition were identified, suggesting DATs can influence the GM in PD.
Collapse
|