1
|
Antache A, Simionov IA, Petrea ȘM, Nica A, Georgescu PL, Oprică L, Grigore MN, Oroian M, Jitaru D, Liteanu A, Ciobîcă AS, Poroch V. Insect-Antioxidants Symbiotic Nexus-Pathway for Sustainable and Resilient Aquaculture: A Case Study for Evaluating Koi Carp Growth and Oxidative Stress Status. Antioxidants (Basel) 2025; 14:371. [PMID: 40298621 DOI: 10.3390/antiox14040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Various innovative fish feeds were tested for the production of koi carp in a recirculating aquaculture system, considering insect meal (Acheta domestica) as the main protein source and phytogenic additives (Curcuma longa-turmeric and Beta vulgaris-beetroot) as antioxidants, in the spirit of sustainable aquaculture practice. The growth performance, metabolic rate (respirometry), hematological profile, blood biochemical indicators, and oxidative stress of koi carp were determined, using feeds according to the following experimental design: CF-commercial feed, IF-innovative feed based on cricket meal, BIF-innovative feed (IF) with beetroot, and TIF-innovative feed (IF) with turmeric. The TIF recorded the best growth rate. The lowest values of lipid peroxidation (MDA), standard metabolic rate (SMR), and routine metabolic rate (RMR) were registered for the IF and TIF variants. A reduction in MDA was noted, correlated to the decrease in the metabolic rate regarding SMR and RMR for the IF and TIF. An intensification in amylase was recorded in the TIF and BIF. Compared with the CF, it seems that the IF, TIF, and BIF had a beneficial effect on the koi carp by reducing cholesterol, HDL cholesterol, alanine aminotransferase, triglycerides, and urea and by increasing the concentration of calcium and growth hormone in the blood plasma.
Collapse
Affiliation(s)
- Alina Antache
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
- Rexdan Research Infrastructure, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
- Rexdan Research Infrastructure, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
- Rexdan Research Infrastructure, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
| | - Aurelia Nica
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
| | - Puiu-Lucian Georgescu
- Rexdan Research Infrastructure, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
- Department of Chemistry, Physics and Environment, Faculty of Science and Environment, "Dunărea de Jos" University of Galați, 800008 Galați, Romania
| | - Lăcrămioara Oprică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
| | - Marius-Nicușor Grigore
- Doctoral School of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, "Ștefan cel Mare" University of Suceava, 720229 Suceava, Romania
| | - Daniela Jitaru
- Department of Hematology, Regional Institute of Oncology, 700483 Iași, Romania
| | - Andreea Liteanu
- Department of Hematology, Regional Institute of Oncology, 700483 Iași, Romania
| | - Alin-Stelian Ciobîcă
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- "Ioan Haulica" Institute, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Vladimir Poroch
- Department of Medicine III, Faculty of Medicine, "Grigore T Popa" University of Medicine and Pharmacy, 700111 Iași, Romania
| |
Collapse
|
2
|
Abdo SE, El-Nahas AF, Abdellatif RE, Mohamed R, Helal MA, Azzam MM, Di Cerbo A, El-Kassas S. Combined Dietary Spirulina platensis and Citrus limon Essential Oil Enhances the Growth, Immunity, Antioxidant Capacity and Intestinal Health of Nile Tilapia. Vet Sci 2024; 11:474. [PMID: 39453066 PMCID: PMC11512375 DOI: 10.3390/vetsci11100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dietary presence of feed additives is crucial for boosting fish growth and immunity. Accordingly, this feeding trial aimed to investigate the effects of the separate and concurrent dietary supplementation of Spirulina platensis (SP) and bitter lemon (Citrus limon) peel essential oil (LEO) on the growth, immunity, antioxidant capacity, and intestinal health of Nile tilapia (Oreochromis niloticus). Four groups of male Nile tilapia were employed. The first group (control) was given the basal diet, while the second and third groups received the basal diet supplemented with LEO extract (1%) and SP (1 g/kg diet), respectively. The fourth group received the basal diet supplemented with a mix of LEO (1%) and SP at 1 g/kg. After two months of feeding, using LEO or/and SP improved the overall growth and immunological parameters, with their combination yielding the best outcomes. The supplementation of LEO or/and SP improved the Nile tilapia's growth metrics and transcriptomic levels of growth-regulating genes such as (oligo-peptide transporter 1 (Pep1), growth hormone receptors 1 (GHR1), and insulin-like growth factor (IGF1). The improved growth performance was linked to significant increases in the expression levels of mucin and fat metabolism-related genes. Moreover, fish supplemented with LEO, SP, or their combination showed enhanced non-specific immunological measures, including phagocytic and lysozyme activities and the mRNA copies of its regulating genes. Additionally, remarkable increases in the antioxidant enzyme activities and the mRNA levels of their related genes were detected. The complement (C3) gene's transcriptomic level was also significantly increased. Furthermore, the dietary supplementation of LEO, SP, or their combination improved the histological structures of the spleen, hepatopancreas, and intestine. The enhanced effects of LEO, SP, or their combination on fish immunity and growth are suggested to be due to their contents of bioactive compounds with anti-inflammatory, antioxidant, and antimicrobial properties. Thus, using the LOE and SP blends as feed additives is recommended for better growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Safaa E. Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Abeer F. El-Nahas
- Department of Animal Husbandry and Animal Wealth Development-Genetics, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Rabab E. Abdellatif
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Radi Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. Helal
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| |
Collapse
|
3
|
Ren F, Lin J, Zhu M, Ma R, Zhang M, Chen W, Ma G, Chen H, He R, Chen W. Polysaccharides from Alpinia oxyphylla fruit prevent hyperuricemia by inhibiting uric acid synthesis, modulating intestinal flora and reducing renal inflammation. Int J Biol Macromol 2024; 278:134782. [PMID: 39151857 DOI: 10.1016/j.ijbiomac.2024.134782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Hyperuricemia (HUA) is one of the most common chronic diseases today, with a prevalence exceeding 14 % in both the United States and China. Current clinical treatments for HUA focus on promoting uric acid (UA) excretion and inhibiting UA production, but often neglect the strain on the liver and kidneys. The fruit of Alpinia oxyphylla (A. oxyphylla) is known to improve renal function, regulate metabolism, and exhibit anti-inflammatory effects; however, its effectiveness and mechanisms in treating HUA are not well understood. In this study, HUA mice induced by potassium oxonate and adenine were treated with A. oxyphylla polysaccharide (AFP) for 21 days. The levels associated with HUA were quantified using assay kits to evaluate the impact of AFP on HUA. Serum metabolomics and 16S rRNA sequencing were used to investigate the mechanisms by which AFP ameliorates HUA. The results showed that AFP treatment reduced abnormal biochemical levels, including UA, blood urea nitrogen, and creatinine, in HUA mice. AFP inhibited UA synthesis by regulating pyrimidine metabolism and the metabolism of alanine, aspartate and glutamate, reduced kidney inflammation, and promoted UA excretion by regulating intestinal flora. Thus, AFP appears to be an effective agent for alleviating HUA symptoms.
Collapse
Affiliation(s)
- Fei Ren
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Jinji Lin
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Mengxu Zhu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Rui Ma
- South China Agricultural University, 483 Wushan Road, Guangzhou 510642, PR China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Weijun Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Guobiao Ma
- Health-decode Pharmacy (Guangdong) Co., Ltd., 41 Zhenxing North Road, Guangzhou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Rongrong He
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
4
|
Huang JK, Wu PH, Chen ZF, Liu PY, Kuo CC, Chuang YS, Lu MZ, Kuo MC, Chiu YW, Lin YT. Identification of Gut Microbiome Signatures Associated with Indole Pathway in Tryptophan Metabolism in Patients Undergoing Hemodialysis. Biomolecules 2024; 14:623. [PMID: 38927027 PMCID: PMC11201546 DOI: 10.3390/biom14060623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.
Collapse
Grants
- MOST 111-2314-B-037-032-MY3 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-037 -083 -MY3 Ministry of Science and Technology, Taiwan
- KMUH-DK(C)113003 Kaohsiung Medical University Hospital, Taiwan
- KMUH-DK(B)110003-4 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2M08 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2R21 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2R76 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1M60 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1R73 Kaohsiung Medical University Hospital, Taiwan
- KMUH110-0M73 Kaohsiung Medical University Hospital, Taiwan
- NHRIKMU-111-I003-2 Kaohsiung Medical University, Taiwan
- NHRIKMU-113-I005 Kaohsiung Medical University, Taiwan
- NYCUKMU-112-I006 Kaohsiung Medical University, Taiwan
- KT112P012 Kaohsiung Medical University, Taiwan
- KT113P006 Kaohsiung Medical University, Taiwan
- S11209 Kaohsiung Medical University, Taiwan
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ping-Hsun Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zhao-Feng Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 3500, Taiwan;
| | - Yun-Shiuan Chuang
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Zhan Lu
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ting Lin
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Liaqat R, Fatima S, Komal W, Minahal Q, Hussain AS. Dietary supplementation of methionine, lysine, and tryptophan as possible modulators of growth, immune response, and disease resistance in striped catfish (Pangasius hypophthalmus). PLoS One 2024; 19:e0301205. [PMID: 38625974 PMCID: PMC11020371 DOI: 10.1371/journal.pone.0301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 04/18/2024] Open
Abstract
The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.
Collapse
Affiliation(s)
- Razia Liaqat
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Shafaq Fatima
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Wajeeha Komal
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Qandeel Minahal
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aya S. Hussain
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
6
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Qu X, Song Y, Li Q, Xu Q, Li Y, Zhang H, Cheng X, Mackay CR, Wang Q, Liu W. Indole-3-acetic acid ameliorates dextran sulfate sodium-induced colitis via the ERK signaling pathway. Arch Pharm Res 2024; 47:288-299. [PMID: 38489148 DOI: 10.1007/s12272-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-β1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.
Collapse
Affiliation(s)
- Xinyan Qu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingying Song
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanru Li
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xuemei Cheng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Charles R Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Wei Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
8
|
Wang R, Deng Y, Zhang Y, Li X, Gooneratne R, Li J. Integrated microbiome, metabolome and transcriptome profiling reveals the beneficial effects of fish oil and Bacillus subtilis jzxj-7 on mouse gut ecosystem. Food Funct 2024; 15:1655-1670. [PMID: 38251410 DOI: 10.1039/d3fo04213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The effects of fish oil (FO) and Bacillus subtilis jzxj-7 (JZXJ-7) on the colonic physiology, bacteria, metabolites, and gene expressions were studied in C57BL/6J mice. Co-administration of FO and JZXJ-7 was more beneficial than individual supplementation, as evidenced by improved growth performance, enhanced colon crypt depth and goblet cell numbers. FO + JZXJ-7 inhibited colonic fibrosis by downregulating fibrosis marker protein expression and upregulating occludin, claudin-2 and claudin-4 gene expressions. FO + JZXJ-7 ameliorated oxidative stress and inflammation by increasing catalase, superoxide dismutase, total anti-oxidation capacity, and reducing colon tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels. Mechanistically, FO + JZXJ-7 modulated the colon micro-ecological environment by enriching Roseburia, Lachnospiraceae NK4B4, Faecalibaculum and Lactococcus and its derived short-chain fatty acids, and activating Ppara and Car1 mediated peroxisome proliferators-activated receptor (PPAR) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling. Overall, FO + JZXJ-7 may serve as a promising nutraceutical to improve health by boosting the growth of colonic beneficial bacteria, altering metabolic phenotype, and regulating gene expression.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China.
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Yijia Deng
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China.
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
9
|
He Z, Cai Y, Xiao Y, Cao S, Zhong G, Li X, Li Y, Luo J, Tang J, Qu F, Liu Z, Liu S. Intervention of Dietary Protein Levels on Muscle Quality, Antioxidation, and Autophagy in the Muscles of Triploid Crucian Carp ( Carassius carassius Triploid). Int J Mol Sci 2023; 24:12043. [PMID: 37569417 PMCID: PMC10418328 DOI: 10.3390/ijms241512043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study is to investigate the effect of dietary protein levels on flesh quality, oxidative stress, and autophagy status in the muscles of triploid crucian carp (Carassius carassius triploid), and the related molecular mechanisms. Six experimental diets with different protein levels (26%, 29%, 32%, 35%, 38%, 41%) were formulated. A total of 540 fish with an initial weight of 11.79 ± 0.09 g were randomly assigned to 18 cages and six treatments with three replicates of 30 fish each for 8 weeks feeding. It could be found that the whole-body ash content significantly increased in high protein level groups (p < 0.05). The 29% dietary protein level group exhibited the highest muscle moisture, although there was an inconspicuous decrease in the chewiness of the muscles when compared with the other groups. The dietary protein level influenced the content of free amino acids and nucleotides, especially the content of flavor amino acids, which exhibited an increasing tendency along with the increasing protein level, such as alanine and glutamic acid, while the flavor nucleotides showed different fluctuation trends. Moreover, the genes related to muscle development were shown to be influenced by the dietary protein level, especially the expression of MRF4, which was up-regulated with the increasing dietary protein levels. The 29% dietary protein level promoted the majority of analyzed muscle genes expression to the highest level when compared to other dietary levels, except the Myostain, whose expression reached its highest at 38% dietary protein levels. Furthermore, the effect of dietary protein levels on antioxidant signaling pathway genes were also examined. High protein levels would boost the expression of GSTα; GPX1 and GPX4α mRNA expression showed the highest level at the 32% dietary protein group. The increasing dietary protein level decreased both mRNA and protein expressions of Nrf2 by up-regulating Keap1. Autophagy-related gene expression levels reached the peak at 32% dietary protein level, as evidenced by a similar change in protein expression of FoxO1. In summary, muscle nutritional composition, antioxidative pathways, and autophagy levels were affected by the dietary protein levels. A total of 29-32% dietary protein level would be the appropriate level range to improve muscle quality and promote the antioxidant and autophagy capacity of triploid crucian carp muscles.
Collapse
Affiliation(s)
- Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Yuyang Cai
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Gaode Zhong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Xinting Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Yanfang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Junhan Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Z.H.); (Y.C.); (F.Q.)
| | - Suchun Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Vijayaram S, Ringø E, Zuorro A, van Doan H, Sun Y. Beneficial roles of nutrients as immunostimulants in aquaculture: A review. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Wang L, Wang W, Shan J, Li C, Suo H, Liu J, An K, Li X, Xiong X. A Genome-Wide View of the Transcriptome Dynamics of Fresh-Cut Potato Tubers. Genes (Basel) 2023; 14:genes14010181. [PMID: 36672922 PMCID: PMC9859442 DOI: 10.3390/genes14010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food. To reveal the physiological changes in fresh-cut potato tubers at the molecular level, a transcriptome analysis of potato tubers after cutting was carried out. A total of 10,872, 10,449, and 11,880 differentially expressed genes (DEGs) were identified at 4 h, 12 h and 24 h after cutting, respectively. More than 87.5% of these DEGs were classified into the categories of biological process (BP) and molecular function (MF) based on Gene Ontology (GO) analysis. There was a difference in the response to cutting at different stages after the cutting of potato tubers. The genes related to the phenol and fatty biosynthesis pathways, which are responsible for enzymatic browning and wound healing in potato tubers, were significantly enriched at 0-24 h after cutting. Most genes related to the enzymatic browning of potato tubers were up-regulated in response to cut-wounding. Plant hormone biosynthesis, signal molecular biosynthesis and transduction-related genes, such as gibberelin (GA), cytokinin (CK), ethylene (ET), auxin (IAA), jasmonic acid (JA), salicylic (SA), and Respiratory burst oxidase (Rboh) significantly changed at the early stage after cutting. In addition, the transcription factors involved in the wound response were the most abundant at the early stage after cutting. The transcription factor with the greatest response to injury was MYB, followed by AP2-EREBP, C3H and WRKY. This study revealed the physiological changes at the molecular level of fresh-cut potato tubers after cutting. This information is needed for developing a better approach to enhancing the postharvest shelf life of fresh processed potato and the breeding of potato plants that are resistant to enzymatic browning.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianwei Shan
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengchen Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haicui Suo
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jitao Liu
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kang An
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaobo Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (X.L.); (X.X.)
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: (X.L.); (X.X.)
| |
Collapse
|
12
|
Jin X, Su M, Liang Y, Li Y. Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp ( Carassius auratus). Front Microbiol 2023; 13:1084500. [PMID: 36699591 PMCID: PMC9868665 DOI: 10.3389/fmicb.2022.1084500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, with the harm caused by the abuse of antibiotics and the increasing demand for green and healthy food, people gradually began to look for antibiotic alternatives for aquaculture. As a Chinese herbal medicine, leaf extract chlorogenic acid (CGA) of Eucommia ulmoides Oliver can improve animal immunity and antioxidant capacity and can improve animal production performance. In this study, crucian carp (Carassius auratus) was fed with complete feed containing 200 mg/kg CGA for 60 days to evaluate the antioxidant, immuno-enhancement, and regulation of intestinal microbial activities of CGA. In comparison to the control, the growth performance indexes of CGA-added fish were significantly increased, including final body weight, weight gain rate, and specific growth rate (P < 0.01), while the feed conversion rate was significantly decreased (P < 0.01). Intestinal digestive enzyme activity significantly increased (P < 0.01); the contents of triglyceride in the liver (P < 0.01) and muscle (P > 0.05) decreased; and the expression of lipid metabolism-related genes in the liver was promoted. Additionally, the non-specific immune enzyme activities of intestinal and liver tissues were increased, but the expression level of the adenylate-activated protein kinase gene involved in energy metabolism was not affected. The antioxidant capacity of intestinal, muscle, and liver tissues was improved. Otherwise, CGA enhanced the relative abundance of intestinal microbes, Fusobacteria and Firmicutes and degraded the relative abundance of Proteobacteria. In general, our data showed that supplementation with CGA in dietary had a positive effect on Carassius auratus growth, immunity, and balance of the bacteria in the intestine. Our findings suggest that it is of great significance to develop and use CGA as a natural non-toxic compound in green and eco-friendly feed additives.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Su
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Yunxiang Liang,
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China,*Correspondence: Yingjun Li,
| |
Collapse
|
13
|
Hou M, Pang Y, Niu C, Zhang D, Zhang Y, Liu Z, Song Y, Shi A, Chen Q, Zhang J, Cheng Y, Yang X. Effects of Dietary L-TRP on Immunity, Antioxidant Capacity and Intestinal Microbiota of the Chinese Mitten Crab ( Eriocheir Sinensis) in Pond Culture. Metabolites 2022; 13:metabo13010001. [PMID: 36676926 PMCID: PMC9866439 DOI: 10.3390/metabo13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
L-tryptophan (L-TRP) is an essential amino acid for the normal growth of crustaceans. As a nutritional supplement and antioxidant, L-TRP has the function of immune and antioxidant capacity regulation. From July to November, the effects of L-TRP on the immunity, antioxidant capacity and intestinal microflora of the Chinese mitten crab (Eriocheir sinensis) in pond culture were investigated. After feeding an L-TRP diet for 30 (named as August), 60 (named as September) and 106 (named as November) days, respectively, the activities of the immune and antioxidant enzymes in the hepatopancreas and hemolymph were evaluated, and the intestinal microbiota were profiled via high-throughput Illumina sequencing. The results showed that supplementation of L-TRP significantly increased the activities of AKP in the hepatopancreas in September, and significantly increased the activities of ACP in the hepatopancreas in August and September, and the hemolymph’s ACP activities also significantly increased in August and November (p < 0.05). Similarly, the activities of SOD, AOC and POD in the hepatopancreas significantly increased in September and November (p < 0.05) after feeding the L-TRP diet; meanwhile, the activities of SOD and AOC in the hemolymph also significantly increased in August (p < 0.05). However, in August, the L-TRP diet resulted in a significant increase in MDA activity in the hepatopancreas and hemolymph (p < 0.05). In addition, the results of the intestinal microbiota analysis showed that Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in August, September and November, and Patescibacteria was the dominant phylum in September and November. After feeding the L-TRP diet, the richness of Cyanobacteria and Desulfobacterota significantly increased in August (p < 0.05), and the richness of Actinobacteriota significantly decreased in September (p < 0.05). Moreover, the L-TRP supplementation significantly reduced the abundance of ZOR0006 in the Firmicutes in September (p < 0.05). In conclusion, dietary L-TRP could improve the immunity and antioxidant ability and impact the intestinal health of E. sinensis at the early stage of pond culturing. However, long-term feeding of an L-TRP diet might have no positive impact on the activities of the immune, antioxidant enzymes and intestinal microbiota.
Collapse
Affiliation(s)
- Mengna Hou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Dongxin Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiqiang Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Junyan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.C.); (X.Y.); Tel.: +86-21-6190-0417 (Y.C. & X.Y.)
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.C.); (X.Y.); Tel.: +86-21-6190-0417 (Y.C. & X.Y.)
| |
Collapse
|
14
|
Fu Y, Gao H, Hou X, Chen Y, Xu K. Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling. Front Immunol 2022; 13:1014881. [PMID: 36159803 PMCID: PMC9495931 DOI: 10.3389/fimmu.2022.1014881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
3-Indolepropionic acid (IPA) is a tryptophan metabolite that has anti-inflammatory properties. The present study try to investigate the phylactic effects of IPA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that IPA pretreatment ameliorated the DSS-induced decrease in growth performance, and intestinal damage and enhanced immunity in mice. RNA-seq analysis of mouse colon samples revealed that the differentially expressed genes (DEGs) were mainly enriched in immune-related pathways. 16S rRNA sequencing showed that IPA pretreatment ameliorated DSS-induced colonic microbiota dysbiosis. Moreover, the expression levels of gut immune genes were positively correlated with the relative abundance of several probiotics, such as Alloprevotella and Catenibacterium. In conclusion, IPA alleviates DSS-induced acute colitis in mice by regulating inflammatory cytokines, balancing the colonic microbiota and modulating the expression of genes related to inflammation, which would also provide a theoretical basis for IPA as a strategy to improve intestinal health.
Collapse
Affiliation(s)
- Yawei Fu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hu Gao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaohong Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kang Xu,
| |
Collapse
|
15
|
Teodósio R, Aragão C, Conceição LEC, Dias J, Engrola S. Metabolic Fate Is Defined by Amino Acid Nature in Gilthead Seabream Fed Different Diet Formulations. Animals (Basel) 2022; 12:1713. [PMID: 35804612 PMCID: PMC9264960 DOI: 10.3390/ani12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
The sustainability of the Aquaculture industry relies on optimising diets to promote nitrogen retention and maximise fish growth. The aim of this study was to assess how different dietary formulations influence the bioavailability and metabolic fate of distinct amino acids in gilthead seabream juveniles. Amino acids (lysine, tryptophan, and methionine) were selected based on their ketogenic and/or glucogenic nature. Seabream were fed practical diets with different protein (44 and 40%) and lipid contents (21 and 18%): 44P21L, 44P18L, 40P21L, and 40P18L. After three weeks of feeding, the fish were tube-fed the correspondent diet labelled with 14C-lysine, 14C-tryptophan, or 14C-methionine. The amino acid utilisation was determined based on the evacuation, retention in gut, liver, and muscle, and the catabolism of the tracer. The metabolic fate of amino acids was mainly determined by their nature. Tryptophan was significantly more evacuated than lysine or methionine, indicating a lower availability for metabolic purposes. Methionine was more retained in muscle, indicating its higher availability. Lysine was mainly catabolised, suggesting that catabolism is preferentially ketogenic, even when this amino acid is deficient in diets. This study underpins the importance of optimising diets considering the amino acids' bioavailability and metabolic fate to maximise protein retention in fish.
Collapse
Affiliation(s)
- Rita Teodósio
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Claúdia Aragão
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Luís E. C. Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Sofia Engrola
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
| |
Collapse
|
16
|
Cao S, Xiao Y, Huang R, Zhao D, Xu W, Li S, Tang J, Qu F, Jin J, Xie S, Liu Z. Dietary Supplementation With Hydroxyproline Enhances Growth Performance, Collagen Synthesis and Muscle Quality of Carassius auratus Triploid. Front Physiol 2022; 13:913800. [PMID: 35721560 PMCID: PMC9198714 DOI: 10.3389/fphys.2022.913800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023] Open
Abstract
An eight-week experiment was undertaken to examine the effect of dietary hydroxyproline (Hyp) supplementation on growth performance, collagen synthesis, muscle quality of an improved triploid crucian carp (Carassius auratus Triploid) (ITCC). Six isonitrogenous (340 g/kg diet), isolipidic (60 g/kg diet) and isocaloric (17.80 MJ/kg diet) diets were formulated containing a certain amount of Hyp: 0.09% (the control group), 0.39, 0.76, 1.14, 1.53 and 1.90%. Each diet was randomly assigned to three tanks and each group was fed two times daily until apparent satiation. The results showed that growth performance and feed utilization of ITCC were significantly improved with the dietary Hyp level was increased from 0.09 to 0.76%. Crude protein, threonine and arginine content in the dorsal muscle in 0.76% hydroxyproline group were significantly higher than those in basic diet group (p < 0.05). The muscle textural characteristics increased remarkably with the amount of Hyp in the diet rising from 0.09 to 1.53% (p < 0.05). Meanwhile, the contents of type I collagen (Col I) and Pyridinium crosslink (PYD) in the muscle of fish were significantly increased by dietary Hyp (p < 0.05). The muscle fiber diameter and density of the fish were significantly increased when fed with 0.76% Hyp (p < 0.05). Furthermore, dietary supplementation with an appropriate concentration of Hyp substantially increased the expression of genes involved in collagen synthesis (col1a1, col1a2, p4hα1, p4hβ, smad4, smad5, smad9, and tgf-β) and muscle growth (igf-1, tor, myod, myf5, and myhc) (p < 0.05). In conclusion, dietary supplementation of Hyp can enhance fish growth performance, collagen production, muscle textural characteristics and muscle growth of ITCC. According to the SGR broken-line analysis, the recommended supplementation level of Hyp was 0.74% in the diet for ITCC, corresponding to 2.2% of dietary protein.
Collapse
Affiliation(s)
- Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yangbo Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Rong Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shitao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|