1
|
Rubin JB. Gender and sex interactions are intrinsic components of cancer phenotypes. Nat Rev Cancer 2025:10.1038/s41568-025-00829-4. [PMID: 40389544 DOI: 10.1038/s41568-025-00829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/21/2025]
Abstract
Sex is a significant determinant of cancer incidence and outcome. The effects of sexual differentiation on normal and cancer biology underly this epidemiology. The resultant sex differences in therapeutic target pathways and processes provide a foundation for developing more personalized cancer treatments. However, our efforts at personalization cannot stop there. Humans also have gender, and sex and gender are highly interactive in individuation. Thus, we will also need to consider how gender-sex interactions (GSI) affect cancer biology and clinical parameters such as the timing of diagnoses, clinical trial enrolment, and the completeness of efficacy and toxicity data. Ignoring the effects of GSI can compromise the quality of basic biological and clinical data and the conclusions drawn from them. This is not to say that GSI will always have a significant effect or any effect at all in every cancer study. Rather, it is to say that we know enough about GSI and human cancer to anticipate measurable differences when GSI are considered in research, enabling us to experimentally determine whether their effects are significant. Here, I delve deeply into GSI and cancer, as this approach to treatment personalization holds great promise to benefit all patients with cancer.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Paediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Li Y, Shi J, Liu C, Ma D, Meng L, Zhang Z, Jia H. Ciprofol reduces postoperative glioma recurrence by promoting MAPK11-PML phosphorylation: insights from transcriptomic and proteomic analysis. J Neurooncol 2025; 172:361-376. [PMID: 40019711 DOI: 10.1007/s11060-024-04906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Glioma, the most common malignant tumor of the central nervous system, has a high postoperative recurrence rate. While Ciprofol is widely used as an anesthetic, its therapeutic potential in glioma treatment remains largely unexplored. METHODS Glioma T98G cells were treated with varying concentrations of Ciprofol to assess proliferation, invasion, migration, and apoptosis via CCK-8, Transwell, and flow cytometry assays. Proteomic, phosphoproteomic, and transcriptomic analyses were performed to identify molecular targets and pathways. Molecular docking evaluated the binding of Ciprofol to key kinases, and silencing experiments validated their roles. In vivo, glioma mouse models were used to assess postoperative recurrence via tumor size, fluorescence imaging, and histological analysis. RESULTS Ciprofol inhibited glioma cell proliferation, invasion, and migration while promoting apoptosis. Proteomic analyses identified MAPK11 and PML as key mediators of Ciprofol's effects. Silencing MAPK11 impaired these effects, while in vivo experiments showed reduced postoperative recurrence via MAPK11-PML phosphorylation. CONCLUSION Ciprofol reduces postoperative glioma recurrence by promoting MAPK11-PML phosphorylation, providing novel molecular targets for glioma treatment and suggesting its therapeutic potential beyond anesthesia.
Collapse
Affiliation(s)
- Yanli Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingpu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, 050011, Hebei, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Dongyang Ma
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lijiang Meng
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhiqiang Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
3
|
Al-Refai W, Keenan S, Camera DM, Cooke MB. The Influence of Vegan, Vegetarian, and Omnivorous Diets on Protein Metabolism: A Role for the Gut-Muscle Axis? Nutrients 2025; 17:1142. [PMID: 40218900 PMCID: PMC11990293 DOI: 10.3390/nu17071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
There has been a growing interest globally in vegan and vegetarian diets over the last decade for a combination of health, ethical, environmental, spiritual, and social reasons. In line with this popularity, research examining the role of plant-based food sources, including vegan and vegetarian diets, in supporting skeletal muscle remodeling and anabolism in humans has also received considerable attention. The emergence of the microbiota-gut-muscle axis, a bidirectional pathway where the gut microbiota impacts skeletal muscle and vice versa, has been suggested as a potential mediator of food and nutrition's influence on the mechanistic processes that regulate muscle mass and function. Considering inherent nutritional differences between vegan, vegetarian, and omnivorous diets related to the fiber and macronutrient content, presence of anti-nutritional factors, and diverse food and supplemental sources for obtaining protein, it stands to reason that the regulation of the microbiota-gut-muscle axis via diet-induced changes in gut microbiota composition and function may be dissimilar. However, whether this translates into differential effects on the skeletal muscle is unclear. This review article aims to provide a contemporary perspective for how variations in gut microbiota linked to vegan, vegetarian, and omnivorous diets may be a potential mechanism for influencing protein metabolism in skeletal muscle mass via a purported microbiota-gut-muscle axis.
Collapse
Affiliation(s)
- Waed Al-Refai
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Stephen Keenan
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Donny M. Camera
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Matthew B. Cooke
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| |
Collapse
|
4
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
5
|
Kim H, Rebholz CM. Insights from omics research on plant-based diets and cardiometabolic health. Trends Endocrinol Metab 2025:S1043-2760(25)00023-2. [PMID: 39984401 DOI: 10.1016/j.tem.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Plant-based diets emphasize higher intake of plant foods and are low in animal products. Individuals following plant-based diets have a lower risk of chronic conditions; however, the mechanisms underlying these associations are not completely understood. Omics data have opened opportunities to investigate the mechanistic effect of dietary intake on health outcomes. Here, we review omics analyses of plant-based diets in feeding and observational studies, showing that although metabolomics and proteomics identified candidate biomarkers and distinct pathways modifiable by plant-based diets, current evidence from transcriptomics and methylomics is limited. We also argue that future studies should examine how unhealthful plant-based diets are associated with a higher risk of health outcomes and integrate multiple omics data from feeding studies to provide further mechanistic insights.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA; Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
7
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
8
|
Cruz AK, Alves MA, Andresson T, Bayless AL, Bloodsworth KJ, Bowden JA, Bullock K, Burnet MC, Neto FC, Choy A, Clish CB, Couvillion SP, Cumeras R, Dailey L, Dallmann G, Davis WC, Deik AA, Dickens AM, Djukovic D, Dorrestein PC, Eder JG, Fiehn O, Flores R, Gika H, Hagiwara KA, Pham TH, Harynuk JJ, Aristizabal-Henao JJ, Hoyt DW, Jean-François F, Kråkström M, Kumar A, Kyle JE, Lamichhane S, Li Y, Nam SL, Mandal R, de la Mata AP, Meehan MJ, Meikopoulos T, Metz TO, Mouskeftara T, Munoz N, Gowda GAN, Orešic M, Panitchpakdi M, Pierre-Hugues S, Raftery D, Rushing B, Schock T, Seifried H, Servetas S, Shen T, Sumner S, Carrillo KST, Thibaut D, Trejo JB, Van Meulebroek L, Vanhaecke L, Virgiliou C, Weldon KC, Wishart DS, Zhang L, Zheng J, Da Silva S. Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors. Metabolomics 2024; 20:125. [PMID: 39495321 PMCID: PMC11904883 DOI: 10.1007/s11306-024-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications. OBJECTIVES This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements. METHODS An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). RESULTS Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques. CONCLUSION This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies.
Collapse
Affiliation(s)
- Abraham Kuri Cruz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr.,, Gaithersburg, MD, 20899, USA
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Walter Mors Institute of Research On Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Thorkell Andresson
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Amanda L Bayless
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Kent J Bloodsworth
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | | | - Kevin Bullock
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Meagan C Burnet
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Angelina Choy
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Sneha P Couvillion
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Raquel Cumeras
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
- Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Reus, Spain
| | - Lucas Dailey
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Guido Dallmann
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - W Clay Davis
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St., Cambridge, MA, 02142, USA
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Josie G Eder
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Roberto Flores
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kehau A Hagiwara
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Tuan Hai Pham
- Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
| | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Juan J Aristizabal-Henao
- University of Florida, Gainesville, FL, 32611, USA
- BPGbio Inc., 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Focant Jean-François
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Matilda Kråkström
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Amit Kumar
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Jennifer E Kyle
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Yuan Li
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Thomas Meikopoulos
- Division of Program Coordination, Planning and Strategic Initiatives, Office of Nutrition Research, Office of the Director, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Thomas O Metz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Matej Orešic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70281, Örebro, Sweden
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Stefanuto Pierre-Hugues
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, Gerberding Hall G80, Box 351202, Seattle, WA, 98195, USA
| | - Blake Rushing
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Tracey Schock
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 331 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Harold Seifried
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, 9000 Rockville Pike, , Bethesda, MD, 20892, USA
| | - Stephanie Servetas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA
| | - Tong Shen
- West Coast Metabolomics Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Susan Sumner
- UNC Chapel Hill's Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | | | - Dejong Thibaut
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Pl. du Vingt Août 7, 4000, Liège, Belgium
| | - Jesse B Trejo
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA
| | - Lieven Van Meulebroek
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Christina Virgiliou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd., 57001, Thessaloniki, Greece
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Lu Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Sandra Da Silva
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), 100 Bureau Dr. , Gaithersburg, MD, 20899, USA.
| |
Collapse
|
9
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Ferreira H, Duarte D, Rodrigues JA, Vasconcelos MW, Pinto E, Gil AM. Urine Metabolomics during a Legume Diet Intervention Suggests Altered Metabolic Signatures and Potential New Intake Markers: First Insights. ACS OMEGA 2024; 9:43453-43468. [PMID: 39494014 PMCID: PMC11525520 DOI: 10.1021/acsomega.4c04795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/05/2024]
Abstract
Given the general increase in legume consumption worldwide, there is a need to characterize the resulting human metabolic adaptations in order to demonstrate potential legume diet/health relationships. A nuclear magnetic resonance (NMR) metabolomics urine study was carried out on a small cohort (n = 18) to characterize the excretory effects of a pilot longitudinal 8-week legume-based dietary intervention. Despite the expected high interindividual variability in the excreted metabolome, the results suggested a nonlinear metabolic response, with higher metabolic activity in the first 4 weeks and a tendency toward baseline at the end of the intervention. The excretion of isoleucine, leucine, and threonine increased, along with metabolite changes suggestive of activation of the tricarboxylic acid cycle (through anaplerosis), ketogenesis, fat catabolism, and glycoprotein biosynthesis. Gut microbiota adaptations were also suggested based on the increased excretion of 2-hydroxyisobutyrate, allantoin, and hippurate. Increased levels of trigonelline were consistent with its role as a legume intake marker, whereas malonate and pseudouridine were suggested as possible additional markers. Correlation of NMR data with nutritional parameters aided putative explanatory hypotheses to be advanced. Our results suggest a dynamic response to legume consumption, mainly through increased amino acid excretion and altered energy metabolism, while advancing potential new markers of legume intake. These results require confirmation in larger cohorts but pave the way for an informed interpretation of the effects of legume-based diets on human health.
Collapse
Affiliation(s)
- Helena Ferreira
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
| | - Daniela Duarte
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João A. Rodrigues
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Marta W. Vasconcelos
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
| | - Elisabete Pinto
- CBQF
- Centro de Biotecnologia e Química Fina − Laboratório
Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto 4200-072, Portugal
- EPIUnit
- Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, Porto 4050-600, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
11
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
12
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
13
|
Kortesniemi M, Noerman S, Kårlund A, Raita J, Meuronen T, Koistinen V, Landberg R, Hanhineva K. Nutritional metabolomics: Recent developments and future needs. Curr Opin Chem Biol 2023; 77:102400. [PMID: 37804582 DOI: 10.1016/j.cbpa.2023.102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Kårlund
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Jasmin Raita
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Topi Meuronen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
14
|
Cumeras R, Shen T, Valdiviez L, Tippins Z, Haffner BD, Fiehn O. Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material. Metabolites 2023; 13:921. [PMID: 37623865 PMCID: PMC10456543 DOI: 10.3390/metabo13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
To gain confidence in results of omic-data acquisitions, methods must be benchmarked using validated quality control materials. We report data combining both untargeted and targeted metabolomics assays for the analysis of four new human fecal reference materials developed by the U.S. National Institute of Standards and Technologies (NIST) for metagenomics and metabolomics measurements. These reference grade test materials (RGTM) were established by NIST based on two different diets and two different samples treatments, as follows: firstly, homogenized fecal matter from subjects eating vegan diets, stored and submitted in either lyophilized (RGTM 10162) or aqueous form (RGTM 10171); secondly, homogenized fecal matter from subjects eating omnivore diets, stored and submitted in either lyophilized (RGTM 10172) or aqueous form (RGTM 10173). We used four untargeted metabolomics assays (lipidomics, primary metabolites, biogenic amines and polyphenols) and one targeted assay on bile acids. A total of 3563 compounds were annotated by mass spectrometry, including 353 compounds that were annotated in more than one assay. Almost half of all compounds were annotated using hydrophilic interaction chromatography/accurate mass spectrometry, followed by the lipidomics and the polyphenol assays. In total, 910 metabolites were found in at least 4-fold different levels in fecal matter from vegans versus omnivores, specifically for peptides, amino acids and lipids. In comparison, only 251 compounds showed 4-fold differences between lyophilized and aqueous fecal samples, including DG O-34:0 and methionine sulfoxide. A range of diet-specific metabolites were identified to be significantly different between vegans and omnivores, exemplified by citrinin and C17:0-acylcarnitine for omnivores, and curcumin and lenticin for vegans. Bioactive molecules like acyl alpha-hydroxy-fatty acids (AAHFA) were differentially regulated in vegan versus omnivore fecal materials, highlighting the importance of diet-specific reference materials for dietary biomarker studies.
Collapse
Affiliation(s)
- Raquel Cumeras
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), Univeristat Rovira i Virgili (URV), 43204 Reus, Spain
- Nutrition and Metabolism Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), Univeristat Rovira i Virgili (URV), 43204 Reus, Spain
| | - Tong Shen
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
| | - Luis Valdiviez
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
| | - Zakery Tippins
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
| | - Bennett D. Haffner
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (R.C.)
| |
Collapse
|
15
|
Šik Novak K, Bogataj Jontez N, Petelin A, Hladnik M, Baruca Arbeiter A, Bandelj D, Pražnikar J, Kenig S, Mohorko N, Jenko Pražnikar Z. Could Gut Microbiota Composition Be a Useful Indicator of a Long-Term Dietary Pattern? Nutrients 2023; 15:2196. [PMID: 37432336 DOI: 10.3390/nu15092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the known effects of diet on gut microbiota composition, not many studies have evaluated the relationship between distinct dietary patterns and gut microbiota. The aim of our study was to determine whether gut microbiota composition could be a useful indicator of a long-term dietary pattern. We collected data from 89 subjects adhering to omnivorous, vegetarian, vegan, and low-carbohydrate, high-fat diet that were equally distributed between groups and homogenous by age, gender, and BMI. Gut microbiota composition was analyzed with a metabarcoding approach using V4 hypervariable region of the 16S rRNA gene. K-means clustering of gut microbiota at the genus level was performed and the nearest neighbor classifier was applied to predict microbiota clustering classes. Our results suggest that gut microbiota composition at the genus level is not a useful indicator of a subject's dietary pattern, with the exception of a vegan diet that is represented by a high abundance of Prevotella 9. Based on our model, a combination of 26 variables (anthropometric measurements, serum biomarkers, lifestyle factors, gastrointestinal symptoms, psychological factors, specific nutrients intake) is more important to predict an individual's microbiota composition cluster, with 91% accuracy, than the dietary intake alone. Our findings could serve to develop strategies to educate individuals about changes of some modifiable lifestyle factors, aiming to classify them into clusters with favorable health markers, independent of their dietary pattern.
Collapse
Affiliation(s)
- Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nives Bogataj Jontez
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nina Mohorko
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| |
Collapse
|
16
|
Ďásková N, Modos I, Krbcová M, Kuzma M, Pelantová H, Hradecký J, Heczková M, Bratová M, Videňská P, Šplíchalová P, Králová M, Heniková M, Potočková J, Ouřadová A, Landberg R, Kühn T, Cahová M, Gojda J. Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial. Nutr Diabetes 2023; 13:7. [PMID: 37085526 PMCID: PMC10121613 DOI: 10.1038/s41387-023-00235-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
AIM The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME signature and clinical characteristics. METHOD Forty-nine patients with newly diagnosed pre/diabetes (DM), 66 metabolically healthy overweight/obese (OB), and 32 healthy lean (LH) volunteers were compared in a cross-sectional case-control study integrating clinical variables, dietary intake, gut microbiome, and fecal/serum metabolomes (16 S rRNA sequencing, metabolomics profiling). Subsequently, 27 DM were recruited for a predictive study: 3 months of dietary inulin (10 g/day) intervention. RESULTS MIME composition was different between groups. While the DM and LH groups represented opposite poles of the abundance spectrum, OB was closer to DM. Inulin supplementation was associated with an overall improvement in glycemic indices, though the response was very variable, with a shift in microbiome composition toward a more favorable profile and increased serum butyric and propionic acid concentrations. The improved glycemic outcomes of inulin treatment were dependent on better baseline glycemic status and variables related to the gut microbiota, including the abundance of certain bacterial taxa (i.e., Blautia, Eubacterium halii group, Lachnoclostridium, Ruminiclostridium, Dialister, or Phascolarctobacterium), serum concentrations of branched-chain amino acid derivatives and asparagine, and fecal concentrations of indole and several other volatile organic compounds. CONCLUSION We demonstrated that obesity is a stronger determinant of different MIME patterns than impaired glucose metabolism. The large inter-individual variability in the metabolic effects of dietary inulin was explained by differences in baseline glycemic status and MIME signatures. These could be further validated to personalize nutritional interventions in patients with newly diagnosed diabetes.
Collapse
Affiliation(s)
- N Ďásková
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - I Modos
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Krbcová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kuzma
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - H Pelantová
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - J Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - M Heczková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Bratová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - P Videňská
- Mendel University, Department of Chemistry and Biochemistry, Brno, Czech Republic
| | - P Šplíchalová
- RECETOX, Faculty of Science Masaryk University, Brno, Czech Republic
| | - M Králová
- Ambis University, Department of Economics and Management, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Heniková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Potočková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Ouřadová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - R Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Goteborg, Sweden
| | - T Kühn
- Institute of Global Food Security, Queen's University Belfast, Belfast, UK
- Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - J Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Raman M, Vishnubhotla R, Ramay HR, Gonçalves MCB, Shin AS, Pawale D, Subramaniam B, Sadhasivam S. Isha yoga practices, vegan diet, and participation in Samyama meditation retreat: impact on the gut microbiome & metabolome - a non-randomized trial. BMC Complement Med Ther 2023; 23:107. [PMID: 37020274 PMCID: PMC10074366 DOI: 10.1186/s12906-023-03935-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Growing evidence suggests a role for gut bacteria and their metabolites in host-signaling responses along the gut-brain axis which may impact mental health. Meditation is increasingly utilized to combat stress, anxiety, and depression symptoms. However, its impact on the microbiome remains unclear. This study observes the effects of preparation and participation in an advanced meditation program (Samyama) implemented with a vegan diet including 50% raw foods, on gut microbiome and metabolites profiles. METHODS There were 288 subjects for this study. Stool samples were collected at 3-time points for meditators and household controls. Meditators prepared for 2 months for the Samyama, incorporating daily yoga and meditation practices with a vegan diet including 50% raw foods. Subjects were requested to submit stool samples for 3 time points - 2 months before Samyama (T1), right before Samyama (T2), and 3 months following Samyama (T3). 16 s rRNA sequencing was used to study participants' microbiome. Alpha and beta diversities along with short-chain fatty acid (SCFA) were assessed. Metabolomics were performed on a mass spectrometer coupled to a UHLPC system and analyzed by El-MAVEN software. RESULTS Alpha diversity showed no significant differences between meditators and controls, while beta diversity showed significant changes (padj = 0.001) after Samyama in meditators' microbiota composition. After the preparation phase, changes in branched short-chain fatty acids, higher levels of iso-valerate (padj = 0.02) and iso-buytrate (padj = 0.019) were observed at T2 in meditators. Other metabolites were also observed to have changed in meditators at timepoint T2. CONCLUSION This study examined the impact of an advanced meditation program combined with a vegan diet on the gut microbiome. There was an increase in beneficial bacteria even three months after the completion of the Samyama program. Further study is warranted to validate current observations and investigate the significance and mechanisms of action related to diet, meditation, and microbial composition and function, on psychological processes, including mood. TRIAL REGISTRATION Registration number: NCT04366544 ; Registered on 29/04/2020.
Collapse
Affiliation(s)
- Maitreyi Raman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ramana Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria C B Gonçalves
- Department of Anesthesia, Critical Care and Pain Medicine, Sadhguru Center for a Conscious Planet, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andrea S Shin
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dhanashri Pawale
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Balachundhar Subramaniam
- Department of Anesthesia, Critical Care and Pain Medicine, Sadhguru Center for a Conscious Planet, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Daskova N, Heczkova M, Modos I, Hradecky J, Hudcovic T, Kuzma M, Pelantova H, Buskova I, Sticova E, Funda D, Golias J, Drabonova B, Jarkovska J, Kralova M, Cibulkova I, Gojda J, Cahova M. Protective Effect of Vegan Microbiota on Liver Steatosis Is Conveyed by Dietary Fiber: Implications for Fecal Microbiota Transfer Therapy. Nutrients 2023; 15:nu15020454. [PMID: 36678325 PMCID: PMC9867259 DOI: 10.3390/nu15020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Fecal microbiota transfer may serve as a therapeutic tool for treating obesity and related disorders but currently, there is no consensus regarding the optimal donor characteristics. We studied how microbiota from vegan donors, who exhibit a low incidence of non-communicable diseases, impact on metabolic effects of an obesogenic diet and the potential role of dietary inulin in mediating these effects. Ex-germ-free animals were colonized with human vegan microbiota and fed a standard or Western-type diet (WD) with or without inulin supplementation. Despite the colonization with vegan microbiota, WD induced excessive weight gain, impaired glucose metabolism, insulin resistance, and liver steatosis. However, supplementation with inulin reversed steatosis and improved glucose homeostasis. In contrast, inulin did not affect WD-induced metabolic changes in non-humanized conventional mice. In vegan microbiota-colonized mice, inulin supplementation resulted in a significant change in gut microbiota composition and its metabolic performance, inducing the shift from proteolytic towards saccharolytic fermentation (decrease of sulfur-containing compounds, increase of SCFA). We found that (i) vegan microbiota alone does not protect against adverse effects of WD; and (ii) supplementation with inulin reversed steatosis and normalized glucose metabolism. This phenomenon is associated with the shift in microbiota composition and accentuation of saccharolytic fermentation at the expense of proteolytic fermentation.
Collapse
Affiliation(s)
- Nikola Daskova
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 12108 Prague, Czech Republic
| | - Marie Heczkova
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Istvan Modos
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Jaromir Hradecky
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Tomas Hudcovic
- Institute of Microbiology of the CAS, 14220 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology of the CAS, 14220 Prague, Czech Republic
| | - Helena Pelantova
- Institute of Microbiology of the CAS, 14220 Prague, Czech Republic
| | - Irena Buskova
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - David Funda
- Institute of Microbiology of the CAS, 14220 Prague, Czech Republic
| | - Jaroslav Golias
- Institute of Microbiology of the CAS, 14220 Prague, Czech Republic
| | - Barbora Drabonova
- Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | | | - Maria Kralova
- Department of Applied Mathematics and Computer Science, Masaryk University, 60177 Brno, Czech Republic
| | - Ivana Cibulkova
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jan Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Monika Cahova
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
19
|
Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance. Nutrients 2023; 15:nu15020280. [PMID: 36678151 PMCID: PMC9864151 DOI: 10.3390/nu15020280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral administration. This analog acted as an anti-obesity and glucose-lowering agent, attenuating lipogenesis in rats and mice with high-fat (HF) diet-induced obesity. In Wistar Kyoto (WKY) rats fed a HF diet for 52 weeks, we explored glucose intolerance, but also prediabetes, liver steatosis and insulin resistance-related changes, as well as neuroinflammation in the brain. A potential beneficial effect of 6 weeks of treatment with palm11-PrRP31 and liraglutide as comparator was investigated. Liver lipid profiles, as well as urinary and plasma metabolomic profiles, were measured by lipidomics and metabolomics, respectively. Old obese WKY rats showed robust glucose intolerance that was attenuated by palm11-PrRP31, but not by liraglutide treatment. On the contrary, liraglutide had a beneficial effect on insulin resistance parameters. Despite obesity and prediabetes, WKY rats did not develop steatosis owing to HF diet feeding, even though liver lipogenesis was enhanced. Plasma triglycerides and cholesterol were not increased by HFD feeding, which points to unincreased lipid transport from the liver. The liver lipid profile was significantly altered by a HF diet that remained unaffected by palm11-PrRP31 or liraglutide treatment. The HF-diet-fed WKY rats revealed astrogliosis in the brain cortex and hippocampus, which was attenuated by treatment. In conclusion, this study suggested multiple beneficial anti-obesity-related effects of palm11-PrRP31 and liraglutide in both the periphery and brain.
Collapse
|
20
|
Kirk D, Kok E, Tufano M, Tekinerdogan B, Feskens EJM, Camps G. Machine Learning in Nutrition Research. Adv Nutr 2022; 13:2573-2589. [PMID: 36166846 PMCID: PMC9776646 DOI: 10.1093/advances/nmac103] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Data currently generated in the field of nutrition are becoming increasingly complex and high-dimensional, bringing with them new methods of data analysis. The characteristics of machine learning (ML) make it suitable for such analysis and thus lend itself as an alternative tool to deal with data of this nature. ML has already been applied in important problem areas in nutrition, such as obesity, metabolic health, and malnutrition. Despite this, experts in nutrition are often without an understanding of ML, which limits its application and therefore potential to solve currently open questions. The current article aims to bridge this knowledge gap by supplying nutrition researchers with a resource to facilitate the use of ML in their research. ML is first explained and distinguished from existing solutions, with key examples of applications in the nutrition literature provided. Two case studies of domains in which ML is particularly applicable, precision nutrition and metabolomics, are then presented. Finally, a framework is outlined to guide interested researchers in integrating ML into their work. By acting as a resource to which researchers can refer, we hope to support the integration of ML in the field of nutrition to facilitate modern research.
Collapse
Affiliation(s)
- Daniel Kirk
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Esther Kok
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Michele Tufano
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Bedir Tekinerdogan
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands.,OnePlanet Research Center, Wageningen, The Netherlands
| |
Collapse
|
21
|
Katonova A, Sheardova K, Amlerova J, Angelucci F, Hort J. Effect of a Vegan Diet on Alzheimer's Disease. Int J Mol Sci 2022; 23:14924. [PMID: 36499257 PMCID: PMC9738978 DOI: 10.3390/ijms232314924] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
There is evidence indicating that a vegan diet could be beneficial in the prevention of neurodegenerative disorders, including Alzheimer's disease (AD). The purpose of this review is to summarize the current knowledge on the positive and negative aspects of a vegan diet regarding the risk of AD. Regarding AD prevention, a vegan diet includes low levels of saturated fats and cholesterol, contributing to a healthy blood lipid profile. Furthermore, it is rich in phytonutrients, such as vitamins, antioxidants, and dietary fiber, that may help prevent cognitive decline. Moreover, a vegan diet contributes to the assumption of quercetin, a natural inhibitor of monoamine oxidase (MAO), which can contribute to maintaining mental health and reducing AD risk. Nonetheless, the data available do not allow an assessment of whether strict veganism is beneficial for AD prevention compared with vegetarianism or other diets. A vegan diet lacks specific vitamins and micronutrients and may result in nutritional deficiencies. Vegans not supplementing micronutrients are more prone to vitamin B12, vitamin D, and DHA deficiencies, which have been linked to AD. Thus, an evaluation of the net effect of a vegan diet on AD prevention and/or progression should be ascertained by taking into account all the positive and negative effects described here.
Collapse
Affiliation(s)
- Alzbeta Katonova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Centre, St. Anne’s University Hospital, 602 00 Brno, Czech Republic
| | - Jana Amlerova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| |
Collapse
|
22
|
Ramos-Lopez O, Martinez JA, Milagro FI. Holistic Integration of Omics Tools for Precision Nutrition in Health and Disease. Nutrients 2022; 14:4074. [PMID: 36235725 PMCID: PMC9572439 DOI: 10.3390/nu14194074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of multiple omics approaches has emerged as an innovative holistic scope to provide a more comprehensive view of the molecular and physiological events underlying human diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well as for elucidating unique and specific metabolic phenotypes. These omics technologies include genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation, histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota composition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although more evidence is still necessary, it is expected that the incorporation of integrative omics could be useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust and reproducible results due to methodological aspects, the high cost of omics methodologies, and high-dimensional data analyses and interpretation. In this review, we provide examples of system biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J. Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
23
|
Hertel J, Fässler D, Heinken A, Weiß FU, Rühlemann M, Bang C, Franke A, Budde K, Henning AK, Petersmann A, Völker U, Völzke H, Thiele I, Grabe HJ, Lerch MM, Nauck M, Friedrich N, Frost F. NMR Metabolomics Reveal Urine Markers of Microbiome Diversity and Identify Benzoate Metabolism as a Mediator between High Microbial Alpha Diversity and Metabolic Health. Metabolites 2022; 12:metabo12040308. [PMID: 35448495 PMCID: PMC9025190 DOI: 10.3390/metabo12040308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Microbial metabolites measured using NMR may serve as markers for physiological or pathological host–microbe interactions and possibly mediate the beneficial effects of microbiome diversity. Yet, comprehensive analyses of gut microbiome data and the urine NMR metabolome from large general population cohorts are missing. Here, we report the associations between gut microbiota abundances or metrics of alpha diversity, quantified from stool samples using 16S rRNA gene sequencing, with targeted urine NMR metabolites measures from 951 participants of the Study of Health in Pomerania (SHIP). We detected significant genus–metabolite associations for hippurate, succinate, indoxyl sulfate, and formate. Moreover, while replicating the previously reported association between hippurate and measures of alpha diversity, we identified formate and 4-hydroxyphenylacetate as novel markers of gut microbiome alpha diversity. Next, we predicted the urinary concentrations of each metabolite using genus abundances via an elastic net regression methodology. We found profound associations of the microbiome-based hippurate prediction score with markers of liver injury, inflammation, and metabolic health. Moreover, the microbiome-based prediction score for hippurate completely mediated the clinical association pattern of microbial diversity, hinting at a role of benzoate metabolism underlying the positive associations between high alpha diversity and healthy states. In conclusion, large-scale NMR urine metabolomics delivered novel insights into metabolic host–microbiome interactions, identifying pathways of benzoate metabolism as relevant candidates mediating the beneficial health effects of high microbial alpha diversity.
Collapse
Affiliation(s)
- Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
- Correspondence:
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
| | - Almut Heinken
- School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland; (A.H.); (I.T.)
| | - Frank U. Weiß
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, D-26129 Oldenburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Henry Völzke
- Institute for Community Medicine, University of Greifswald, D-17475 Greifswald, Germany;
| | - Ines Thiele
- School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland; (A.H.); (I.T.)
- Discipline of Microbiology, National University of Galway, H91 CF50 Galway, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- Ryan Institute, National University of Galway, H91 CF50 Galway, Ireland
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, D-17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
- Faculty of Medicine, Ludwig-Maximilian University Munich, D-80539 Munich, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site, D-17475 Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site, D-17475 Greifswald, Germany
| | - Fabian Frost
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
| |
Collapse
|